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ABSTRACT 

Flooding events exert a dominant control over the deposition and formation of 

floodplains. The rate at which floodplains form depends on flood magnitude, frequency, 

and duration, and associated sediment transport capacity and supply. While it is known 

that sediment in the Big River is contaminated from historical mining, little is known 

about the patterns and rates of deposition on floodplains, especially those that have been 

modified for remediation purposes. The goal of this study was to evaluate the influence 

of flood characteristics and topography on contemporary deposition patterns and rates in 

a sedimentation basin system located within a floodplain along the Big River. The basin 

system was constructed in April 2015 with the purpose of trapping contaminated 

sediment and reducing downstream lead (Pb) loads. The duration the basin was inundated 

and cumulative flood peak had the strongest influence on the amount of sediment 

deposited. A majority of the sediment was deposited close to channel margins near the 

inlet and chute where flow velocities are reduced in the upper basin. Deposition rates in 

the upper basin averaged 10.3 cm/yr, which is 10 times greater than average pre-

construction floodplain deposition rates. Sediment deposited in the basin system is highly 

contaminated with average concentrations of 1,142 ppm Pb and 1,223 ppm Zn, with both 

coarse (2-16 mm) and fine (<2 mm) sediment containing high (>1,000 ppm) 

concentrations of Pb and Zn. 
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CHAPTER 1 – INTRODUCTION 

 

Floodplains are generally defined as low-relief sedimentary surfaces adjacent to 

the active channel that are constructed by the effects of floods of varying magnitudes and 

their associated geomorphological processes (Nardi et al., 2006; Wohl, 2014). 

Geomorphologists have traditionally referred to floodplains as geomorphic surfaces that 

are flooded at least once every two years, with the assumption that these landforms are 

composed largely of fluvial sediments deposited under the current flow regime (Dunne 

and Alto, 2013; Wohl, 2014). The morphology of a floodplain reflects the history of both 

erosion and deposition processes, although most floodplains are depositional features that 

store large quantities of sediment over various lengths of time (Wohl, 2014).   

Floodplains serve many ecological and hydrological functions including 

floodwater storage, sediment storage, biological cycling, and transitional aquatic and 

terrestrial habitats (Nardi et al., 2006; Schenk and Hupp, 2010). Floodplains also play an 

important role as a storage site for contaminated sediment for periods of 10-100 years or 

more (Lecce and Pavlowsky, 1997). The storage of these sediments represents a 

conveyance loss that will reduce the contaminant flux through the river system (Walling 

et al., 2003). As a result, floodplains can contribute to the improvement of water and 

sediment quality in downstream segments (Olde Venterink et al., 2006). The 

effectiveness of floodplain functions is often affected by upstream changes in sediment 

supply due to increased discharge from mining or land use changes, sediment capture by 

dams, or from rivers being disconnected hydrologically by constructed levees and 
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drainage systems that protect infrastructure from flooding (Bridge, 2003; Schenk and 

Hupp, 2010).  

The purpose of this study is to evaluate the effects of floodplain topography and 

flood event characteristics on contemporary deposition patterns and rates in a 

sedimentation basin system designed to trap mining-contaminated sediment for waste 

disposal and reduce exposure downstream. The basin system was designed by the U.S. 

Army Corps of Engineers and constructed within a floodplain on the inside of a large 

valley bend of the Big River below Desloge, Missouri. This basin system represents the 

first remediation structure of this design to be used to mitigate contaminated sediment in 

the region, and to the best of our knowledge, the USA as a whole.  

 

Floodplain Landforms and Features 

Floodplains consist of various landforms that form diverse and complex systems 

which respond to watershed changes heterogeneously and in space and time (Table 1; 

Figure 1). These landforms vary with elevation and will have different flood frequencies 

(Bridge, 2003). Floodplain landforms at lower elevations will have a higher flood 

frequency than those at higher elevations (Lecce and Pavlowsky, 2001).  As flood 

frequency increases, there is an increase in available sediment, thus lower elevation 

floodplain landforms will be able to accumulate more sediment (Howard 1996; 

Ciszewski and Malik, 2004; Owen et al., 2011). Further, floodplain landforms closer to 

sediment sources such as chutes will receive more sediment over time compared to areas 

farther away (Howard, 1996; Ciszwski and Malik, 2004; Wohl, 2014).  
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There are several features typically associated with a floodplain (Table 1; Figure 

1). A bench is defined as an alluvial feature similar to a floodplain, but has a lower 

elevation (Owen et al., 2011; Huggins, 2016). The bench will be flooded more frequently 

than a floodplain and as a result will have a greater amount of contaminated sediment 

deposited during flooding events (Howard, 1996; Lecce and Pavlowsky, 2001). However, 

sediment deposition is not solely based on elevation. It is also important to consider 

hydraulic variables. If a floodplain landform such as a backswamp has poor drainage 

during flooding events, water can pool in depressions, allowing suspended sediment to be 

deposited at relatively higher rates than surrounding floodplain areas (Table 1; Figure 1). 

These backswamps can act as an important areas for fine-grained floodplain deposition 

(Howard, 1996; Hupp et al. 2015; Huggins, 2016).  

On the other hand, if the floodplain is well-drained, secondary channels or chutes 

can begin to form on the floodplain and concentrated floodwater flows that promote 

scouring or deposition of coarser sediment (Table 1; Figure 1). Thus, chutes will typically 

have higher flow velocities than backswamps during floods and will typically deposit less 

fine grained sediment and scour existing deposits. Chutes can develop on floodplains 

where water leaves the channel with sufficient depth and velocity to retain enough 

momentum to scour floodplain sediment (Figure 2) (Harrison et al., 2015). McGowen 

and Garner (1970) interpreted that chutes develop on the inside of bends of streams 

during extreme floods when the thalweg shifts from the outside bank toward the inside 

bank and extends over the upstream part of the inside bank, scouring the channel through 

which bedload is transported during extreme floods. The development of chutes is 
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sensitive to floodplain topography and the density of floodplain vegetation, which affects 

the rate at which floodwaters reduce velocity (Harrison et al., 2015).  

Splay deposits are often associated with chutes. Splay deposits are generally fan-

shaped sand deposits, although Kruit (1955) also observed elongated, linear splays, 

whose sedimentary features are determined by the flow and magnitude of a flood (Figure 

1 and 2) (Elliott, 1974; Charlton, 2008). These deposits can be found at the end of chutes 

or also at levee breaches where sediment-laden water escapes the channel and flows 

across the floodplain (Charlton, 2008). The initial higher flow velocity is sometimes able 

to transport coarser sediment into backswamp areas with sediment size decreasing with 

increasing distance from the channel as flow velocities drop (Wohl, 2014). As a result, 

chutes and levee breaches can aid in sediment transport across the floodplain, increasing 

sedimentation at a greater distance from the channel (Howard, 1996). Together, hydraulic 

and topological differences can create significant spatial variation in sedimentation 

patterns and associated contaminant concentrations across a floodplain (Lecce and 

Pavlowsky, 2004). 

 

Figure 2. Diagram of a large, sinuous river floodplain, showing the different types of 

floodplain landforms and deposits (Dunne and Alto, 2013).  
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Flood Factors 

Flood events exert a dominant control over the formation of floodplains 

(Benedetti, 2003). This action of flowing water, mediates geomorphic processes that 

transfer sediment and develop floodplains (Curtis et al., 2013; Hupp et al., 2015). In 

general, flood events occur when relatively high flows exceed the bankfull capacity of a 

channel (Charlton, 2008). Wolman and Leopold (1957) defined bankfull discharge as the 

stage just before flow begins to overtop the banks of the channel. Numerous studies have 

indicated that bankfull discharge recurs approximately every one to two years in natural 

streams (Wolman and Leopold, 1957; Leopold et al., 1964; Castro and Jackson, 2001). 

This discharge transports the majority of suspended sediment in many rivers (Simon et 

al., 2004). As a result bankfull discharge has been interpreted as the most important flow 

magnitude for controlling channel processes and form (Wolman and Miller, 1960; Dunne 

and Leopold, 1978). 

Flood events of different sizes are defined in terms of high water levels or 

discharges that exceed certain arbitrary limits (Charlton, 2008). The height of the water 

level in a river is referred to as its stage. For a given river, there is a relationship between 

the size of a flood and the frequency in which it occurs. The larger the flood, the less 

often it can be expected to occur. Therefore, floods are defined in terms of their 

magnitude (size) and frequency (how often a flood of a certain size can be expected to 

occur) (Charlton, 2008). In the past it was generally believed that rare extreme events are 

the most important in the development of landforms, such as floodplains (Asselman and 

Middelkoop, 1998). However, Wolman and Miller (1960) stated that a more accurate 

sense of overall effectiveness of geomorphic processes should not only include rare 



 

8 

extreme events, but also events of moderate intensity that occur more frequently. Though, 

overall it has been difficult to reach a consensus on the role of flood intensity on 

floodplain evolution and landscape modification (Lecce et al., 2004).  

 

Floodplain Formation Processes  

Floodplains are typically formed by the deposition of fine overbank deposits over 

coarser channel deposits (Figure 3) (Day et al., 2008).  Hupp et al. (2015) stated that fine 

overbank deposition is the primary process by which most floodplains develop. However, 

the situation is more complicated and varies greatly among different river system 

environments (Wohl, 2014). Floodplains in low-energy rivers or watersheds affected by 

accelerated soil erosion are primarily developed from the deposition of fine overbank 

deposits (Lecce and Pavlowsky, 2004; Piegay et al., 2008; Dunne and Alto, 2013).  In 

these systems, the storage of overbank sediment represents a significant component of 

fluvial sediment budgets (Lecce and Pavlowsky, 2004). Whereas coarser channel 

deposition is more typical in piedmont and intramontane actively shifting rivers (Piegay 

et al, 2008; Dunne and Alto, 2013).  

The rate and pattern at which floodplains form depend on a number of variables 

including magnitude, frequency and duration of inundation, sediment load, and 

floodplain topography and roughness (Benedetti, 2003; Baborowski et al., 2007; Curtis et 

al., 2013). Generally, an increase in any of those variables could increase sedimentation 

rates on floodplains to store sediment for long periods of time compared to in-channel 

sand and gravel deposits (Asselman and Middelkoop, 1998; Lecce and Pavlowsky, 2001; 

Curtis et al., 2013). However, storage time is also related to the rate of lateral channel 
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migration and bank erosion which act to release sediment from floodplain storage back to 

the stream (Macklin et al., 2006; Martin, 2015).  

Coarser channel deposits, or lateral accretion deposits, are created by progressive 

erosion of the cut bank along the outside of the meander bend and deposition of the 

opposite point bar that causes the channel to migrate across the valley (Figure 2 and 3) 

(Wolman and Leopold, 1957; Nanson and Croke, 1992). The relatively high shear stress 

along the outer margins of the meander bend can erode the bank through fluid shear or 

they can erode the pool or the foot of the bank, leaving the bank too steep to be stable 

(Dunne and Alto, 2013). Deposition of point bars is related to the helicoidal flow 

associated with the bend of the channel and are made up of coarse-grained sands and 

gravels, often showing a fining upward sequence (Wolman and Leopold, 1957; Nanson 

and Croke, 1992). The helicoidal flow is described as the rotational component of 

flowing water in a meander that develops as the result of greater hydraulic resistance 

along the channel margins than in the center of the channel. This flow creates alterations 

in the location of the greatest flow velocity that results in differences in boundary 

erosion, sediment transport, and sediment deposition (Wohl, 2014).  

Typically, deposition of point bars and erosion of the cut bank tend to be greatest 

just downstream of the meander apex (Wolman and Leopold, 1957; Dunne and Alto, 

2013). If point bars are sufficiently developed, they may intensify the flow along the 

outer margins of the bend and accelerate bank erosion and bend growth. Point bars may 

be incorporated into the floodplain as the channel migrates away from the inside bank, 

lowering the shear stress and sediment transport across the point bar which allows the 
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growth of vegetation and accumulation of finer suspended sediment to form new 

floodplains (Dunne and Alto, 2013).  

Finer overbank deposits, or vertical accretion deposits, are created when the 

channel flow exceeds the bankfull capacity and the water and sediment spills out across 

the floodplain, thus increasing bank height (Figure 3) (Zwolinski, 1992; Miller 1997). 

When channel flow exceeds bankfull capacity, the difference between flow velocities in 

the channel and over the floodplain produces eddies, which transfer sediment and energy 

from the deeper and faster flow in the channel to the shallower and slower flow over the 

floodplain. Sediment can also be transferred to the floodplain by convection which occurs 

where there is a component of flow perpendicular to the channel. Convective sediment 

transport across the floodplain tends to be most effective on sinuous rivers, as they induce 

flows responsible for sediment deposition on the inside banks of channel bends 

(Ciszewski and Grygar, 2016). Generally, vertical accretion deposits are finer than lateral 

accretion deposits and tend to distribute sediment into floodplain depressions and reduce 

the effect of both positive and negative topographic features (Lecce and Pavlowsky, 

2001; Dunne and Alto, 2013). These deposits are typically most abundant in the middle 

and lower reaches of rivers because of decreasing river slope, slow lateral channel 

migration, high frequency and magnitude of floods, and human activity (Zwolinski, 

1992).  

Floodplain vertical accretion deposits occur in six general phases during flooding 

events as described by Zwolinski (1992). The six phases that occur are: (1) rising of 

water stage and bank modification; (2) floodplain inundation and initial deposition; (3) 

flood peak and widespread transport and deposition; (4) falling of water stages and high 
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intensity deposition; (5) cessation of overbank flow and final deposition; and (6) post-

flood transformation of overbank forms and deposits. These phases occur during a flood 

with a single peak for lowland meandering rivers in temperate climates (Zwolinski, 

1992).  

The first phase involves the increase in the volume of water in the channel and 

associated erosion to accommodate the extra water. The erosional process prepares the 

channel for the increase flow of flood waters and transport alluvial material from the 

channel onto the floodplain. In the second phase, the channel exceeds bankfull and water 

spills across the floodplain. During this phase erosion occurs in breaches, crevasses, and 

chutes, while re-deposition of previously stored sediment occurs within chutes and 

terrace channels. Phase three is divided into two sub-phases. The first sub-phase involves 

the adjustments of the overbank flow pattern to the floodplain morphology. During this 

time transport processes are dominant. The second sub-phase occurs as the flood peaks 

and transport over the whole floodplain remains dominant, especially along terrace 

channels and chutes. These conditions favor the transport of the largest quantities of 

sediment to the farthest parts of the floodplains. Sediment deposition tends to decrease in 

quantity and in grain-size with increasing distance from the channel since flow velocities 

decrease with distance from the channel, depositing coarser sediment near the channel 

and finer sediment in vertical layers further away from the channel (Zwolinski, 1992). 

Phase four involves the dissipation in energy, fall in floodwaters, and changes in 

overbank flow pattern. Also, the quantity of sediment delivered from the channel is 

decreased and erosion is minimal. The reduction in sediment transport rate is 

accompanied by the highest intensity of deposition of all floodplain features, particularly 
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within crevasse splays, terrace channels, chutes, oxbow-lakes, and swamps. Sediment 

deposition ceases with time during the fifth phase, however deposition is still rather 

intensive at the start of the phase. If floodwater returning to the channel has sufficient 

energy to erode, previously deposited sediment may be modified or eroded. During the 

six and final phase, only stagnant water in floodplain depressions remains and recent 

deposits are disturbed by wind, animals, and vegetation growth. Overall, the formation of 

floodplains by vertical accretion deposits operates as a process of cyclic erosion and 

sedimentation with human disturbance becoming an important factor (Zwolinski, 1992). 

 

Floodplain Deposition Rates 

Typically, overbank deposition rates are no more than a few centimeters per year 

and tend to decrease across the floodplain with distance from the channel as function of 

roughness and decreasing suspended sediment concentration (Piegay et al., 2008; Wohl, 

2014). However, due to fluctuations in fluvial processes and flood characteristics that 

control the amount of sediment transported and deposited, patterns of floodplain 

sedimentation, and consequently associated contaminants, are highly variable (Dennis et 

al, 2009; Sear et al., 2010).  Also, complex topography and variable geometry of 

floodplains may contribute to irregular rates and patterns of sediment deposition that 

result from the combination of diffusion, convection, and variations in the time and depth 

of inundation (Lecce and Pavlowsky, 2004). 

A wide range of deposition rates have been documented for numerous floodplains 

in the United States (Kleiss, 1996; Curtis et al., 2013; Hupp et al., 2015) and in Europe 

(Walling and He, 1997; Hensel et al., 1999; Jeffries et al., 2003) (Table 2). Piegay et al.  
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(2008) estimated a range of floodplain deposition rates along the Ain River that varied 

between 0.65 and 2.4 cm/yr over a period of 10 to 40 years. Owen et al. (2011) estimated 

floodplain deposition rates along the James River from 1850 to 2009 to average 0.46 

cm/yr. Both of these rates are generally greater than most lowland floodplains of Coastal 

Plain rivers in the United States where rates tend to range between 0.15 to 0.54 cm/yr 

(Hupp, 2000) and also along the lower Rhine River where rates range from 0.2 to 15 

mm/yr (Middlekoop, 2002). The high rate of deposition documented by Florsheim and 

Mount (2002) for the floodplain of the Lower Consumnes River can be explained by 

intentional levee breaches created in an attempt to restore floodplain topography by 

increasing connectivity between the channel and floodplain. 

Other studies have described similar attempts to increase connectivity between 

channels and floodplains in attempt to improve flood control and floodplain biodiversity 

(Acreman et al., 2003; Baptist et al., 2004). Acreman et al. (2003) did so by removing 

embankments that separated the channel from its floodplain and reduced the width and 

bankfull depth of an incised channel to its pre-engineered dimensions. While Baptist et 

al. (2004) lowered floodplains and created secondary channels. In both cases, 

modifications made to floodplains increased connectivity by creating preferential 

pathways for flood waters and associated sediment to be transported. Thus, increasing 

floodplain deposition rates by delivering sediment from the channel to interior floodplain 

areas.   

Deposition rates on floodplains can be measured using a variety of methods that 

cover a range of times scales. Historical deposition rates estimate long-term sediment 

deposition that occurs over 10 to 100s of years. While contemporary deposition rates aim 
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to estimate the sediment deposited during a single flooding event or over the course of a 

few years (Asselman and Middelkoop, 1998). Deposition rates are mainly estimated 

using sediment traps (Lambert and Walling, 1987; Baborowski et al., 2007; Curtis et al., 

2013; Hung et al., 2013), repetitive topographical surveys (Hooke, 1995; Gomez et al., 

1995), artificial markers (Kleiss, 1996; Hupp, 2000), dendrochronology (Hupp, 2000; 

Piégay et al., 2008), radionuclide dating (He and Walling, 1996), analyses of conveyance 

losses (Walling and Bradley, 1989), and tracer studies (Lecce and Pavlowsky, 2001; 

Ciszewksi et al., 2012; Lecce and Pavlowsky, 2014).  

Among these methods, only sediment traps, repetitive topographical surveys, and 

analyses of conveyance losses estimate sediment deposited during a single flood event 

(Asselman and Middlekoop, 1998). Sediment traps may be the most efficient and 

convenient due to their simple design, low cost, easy field application, and inexpensive 

laboratory analysis (Hung et al., 2013). In general, sediment traps are installed prior to 

flood events and are retrieved for analysis after the event. Recently, more attention has 

been paid to contemporary sedimentation rates due to the increasing awareness of 

suspended sediment in the transport of contaminants and the potential significance of 

floodplains to act as a sink for contaminants (Walling and Bradley, 1989). 

 

Sediment-Metal Contamination  

In order to better understand the effects of historical mining on a fluvial system, it 

is important to know the characteristics associated with contaminated sediment. Mining-

contaminated sediment is produced as a result of heavy metal mining which aims to 

extract the ore in rocks, such as lead and zinc, for economical purposes. This is 
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accomplished by crushing and grinding rock which separates the ore. Ore processing is 

completed using dry processes such as gravitational separation or wet processes such as 

wet washing or flotation separation (Smith and Schumacher, 1993). Both of these 

processes produce large volumes of metalliferous waste across a range of particle sizes 

including waste rock, tailings, and ultrafine (rock flour) particles (Macklin et al., 2006; 

Hill, 2016). Generally, the finest particle fractions tend to contain the highest residual 

metal concentrations, however, all particles sizes tend to contain residual heavy metal 

concentrations (Smith and Schumacher, 1993; Pavlowsky et al., 2010).   

During most historical mining operations there were few regulations that 

governed the disposal of mining waste. As a result, waste was carelessly released to the 

surrounding landscapes. It was not until after World War II that mining wastes were 

confined to on-site tailing piles or impoundments (Smith and Schumacher, 1993).  These 

mining wastes often severely contaminated river systems over long distances >100 km 

due to erosion, runoff, and retention pond and dam failure. (Meneau, 1997; Macklin et 

al., 2006). Macklin et al. (2006) provides a summary of recent studies on the dispersion 

of heavy metal contaminated sediment in rivers affected by mining activities. One 

example is a case study on a tailings dam failure in Aznalcolar, Spain that dumped high 

concentrations of lead (Pb), zinc (Zn), copper (Cu), and arsenic (As) into the river and 

contaminated several hundred kilometers of the river.  

 

Contaminated Floodplains from Historical Mining 

It is generally recognized that floodplains in historically mined river systems can 

function as a semi-permanent sink for metal-contaminated sediment where it can remain 
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stored for hundreds or even thousands of years (Lambert and Walling, 1987; Lecce and 

Pavlowsky, 1997; Dennis et al., 2009). Numerous studies have shown that floodplains in 

mined river systems can act as long-term sinks for large quantities of heavy metal 

contaminated sediment (e.g., Marron, 1992; Lecce and Pavlowsky, 1997; Macklin et al., 

2006; Lecce and Pavlowsky, 2014). Marron (1992) suggested that approximately 30-45% 

of contaminated sediment entering the Belle Fourche river system is stored in 

floodplains. Dennis et al (2009) estimated 35% of the total metal production in the Swale 

catchment is stored in the floodplains. Indicating the Swale floodplain is likely to 

represent the single largest storage of metal-contaminated sediment. While Forstner and 

Salomons (2010) suggested that large reservoirs such as floodplains trap between 25-30% 

of the sediment. All these studies show a significant storage of contaminated sediment in 

floodplains.  

 However, floodplains are not necessarily a permanent storage for metal-

contaminated sediment. Instead, contaminated sediment can be re-worked and 

redistributed back into the fluvial system by bank erosion and channel migration (Walling 

et al., 2003; Dennis et al., 2009). Phillips et al. (2007) found that 30 to 40% of alluvium 

remobilized from the floodplain within a century of deposition in the Waipaoa River in 

New Zealand. Once remobilized, sediment is transported downstream to potentially 

become stored in new floodplain deposits (Nanson and Croke, 1992). As a result, metal-

contaminated sediment can continue to cause present and future environmental problems 

long after mining operations have ceased (Dennis et al., 2009).  
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Big River Mining Contamination  

Historical mining in the Old Lead Belt, a sub-district of the larger Southeast 

Missouri Lead Mining District, created a serious contamination problem within the Big 

River watershed (Smith and Schumacher, 1993; Meneau, 1997). During a period of 

mining from 1869 through 1972, the Old Lead Belt was a national leader in Pb and Zn 

ore production (Smith and Schumacher, 1993; Pavlowsky et al., 2010; Martin et al., 

2016). Through the milling process, large volumes of metalliferous waste were produced 

and stored into large piles or stored in retention ponds on or near floodplains in 

Leadwood, Desloge, Park Hills, Flat River, and Bonne Terre, Missouri (Figure 4; Table 

3).  

 

 

Figure 4. Big River tailing piles. Tailing piles have been showed to contaminate the Big 

River and Flat River with heavy metals. 
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Table 3. Description of tailings piles, after Newfields (2007) in Pavlowsky et al. (2010). 

Tailings   Area Volume  Avg. Pb Avg. Zn  Pb/Zn 

Pile (km2) (m3) (ppm) (ppm) (ratio) 

Leadwood 2.3 3,896,000 2,382 4,961 0.5 

Desloge 1.5 4,966,000 2,105 1,243 1.7 

Federal 4.7 3,979,000 885 293 3.0 

Elvins 0.6 7,946,000 4,440 5,541 0.8 

National 0.6 4,890,000 3,661 417 8.8 

Bonne Terre 1.4 4,355,000 2,495 457 5.5 

 

These mining waste are generally referred to as tailings, which are made of sand 

and fine gravel-sized particles of crushed rock and ore that contain high concentrations of 

residual metals. Tailings released from mills can be classified into three different types 

based on particle size. They are classified as chat (4-16 mm), fine tailings (0.06-0.20 

mm), and slimes (>32 um) (Gale et al., 2004; Pavlowsky et al., 2010). These mining 

wastes contain high concentrations of heavy metals including Pb and Zn (Smith and 

Schumacher, 1993). Large quantities of heavy metal-rich sediment entered local streams 

through erosion, runoff, and retention pond and dam failure. Since then, fluvial processes 

have reworked contaminated sediment and distributed it downstream (Meneau, 1997). As 

a result, over 170 km of floodplain and channel sediment along with Big River have 

accumulated toxic levels of both Pb and Zn (Pavlowsky et al., 2010).  

Mining sediment released from tailing piles contributing to Big River 

contamination at Bonne Terre, Desloge, National, Elvins, Federal and Leadwood piles 

(Figure 4; Table 3). In compliance with the Comprehensive Environmental Response 



 

21 

Compensation Liability Act (“Superfund”), the six major tailing piles have been 

stabilized to limit the risk of contamination. However, contaminated sediment within 

floodplain deposits present a significant non-point source for heavy metal contamination 

for the Big River watershed (Mosby et al., 2009; Pavlowsky et al., 2010). Pavlowsky et 

al., (2010) found that floodplain material tended to have higher Pb concentrations than in 

channel sediments. Also, Huggins (2016) found that surface soil deposits along the Big 

River are highly contaminated with >1,000 ppm Pb from historical mining activity, with 

low floodplain soils such as benches containing the highest Pb concentrations. Thus, 

floodplain soil weathering and bank erosion represent significant Pb sources to the Big 

River that can create future contamination problems.   

Besides floodplains, there are still large quantities of contaminated sediment 

stored in channel and bar deposits that provide a potential source of contamination to 

downstream segments along Big River. Removal of Pb-contaminated sediment from the 

channel creates an opportunity to decrease transport of contaminated sediment 

downstream and mitigate long-term contamination risks along the Big River (Owen et al., 

2012). There are many strategies to remediate sediment contaminated from historical 

mining operations, however it is often difficult to remediate this contamination (Macklin 

et al., 2006).  

The most commonly used remediation strategies involve capping the 

contaminated sediment with a thick layer of clean sediment, phytoremediation, soil 

washing and leaching by chemical extractants, and direct removal by dredging (Mulligan 

et al., 2001; Wang et al., 2004; Peng et al., 2009). However, dredging and capping are 

some of the oldest and most available remediation strategies (Forstner and Salomons, 
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2010). Generally, dredging can be very effective in cleaning up heavily contaminated 

sediment, although it can cause adverse environmental threats by resuspension of 

contaminated sediment. Also, the treatment of the dredged sediment is usually very 

costly. As an alternative, dredged sediment is commonly capped following disposal 

(Wang et al., 2004).   

In response to the concerns over the fate of contaminated sediment in Big River, 

in-channel dredging was implemented for the Big River that removed Pb contaminated 

sediment from an impoundment above a low water crossing in 2009-10 with some 

success (Owen et al., 2012). To expand on the earlier project, the Big River Lead 

Remediation Structure (BRLRS) Project was implemented in the spring of 2015 by the 

Environmental Protection Agency and the U.S. Army Corps of Engineers. The goal of the 

BRLRS project was to create a system of managed sedimentation areas where mining-

contaminated sediment would be deposited during flooding events and later be removed 

by dredging for land disposal. The project site is located along the Big River below the 

town of Desloge in St. Francois County, Missouri where the channel bends to the north 

immediately below the confluence of the Flat River (Figure 4). The site includes a 

Newberry-type rocked riffle below the confluence of the Flat River and an off-line 

sedimentation basin system within a floodplain area. These structures are designed to 

collect channel bed-load sediment and trap finer-grained suspended sediment that will 

eventually be dredged and taken to repositories off-site. Photographs of the remediation 

structures can be found in Appendix A.  

In addition to remediation projects, extensive studies have been carried out on the 

contamination of the Big River to assess soil, water, and ecosystem quality (Smith and 
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Schumacher, 1993; Meneau, 1997; Gale et al., 2002; Pavlowsky et al., 2010; Young, 

2011; Huggins 2016; Hill, 2016). While these studies offer detailed information related to 

mining contamination across the watershed, less is known about the current 

sedimentation patterns and rates across Ozark floodplains and the amount of sediment 

moved by flooding events (Owen et al., 2012).  Further, even less is known about the 

flood variables that influence the rates and patterns of contemporary sediment deposition 

across disturbed floodplains modified for remediation purposes and how they might 

differ from natural floodplains 

 

Purpose and Objectives 

The purpose of this study is to evaluate the effects of floodplain topography and 

flood event characteristics on contemporary deposition rates and patterns in a 

sedimentation basin system designed to trap mining-contaminated sediment for waste 

disposal and reduce exposure downstream. This system represents the first remediation 

structure of this design to be used to mitigate contaminated sediment in the region, and to 

the best of our knowledge, the USA as a whole. To accomplish this study, it was 

necessary to assess the influence of flood characteristics and floodplain topography on 

sediment deposition and grain size distribution throughout the sedimentation basin 

system. It was also be necessary to assess the trapping efficiency and storage of 

contaminated sediment in the basin for remediation purposes. This was accomplished 

through the following objectives: 

1) Quantify contemporary deposition rates of the sedimentation basin. This was 

accomplished by setting sediment traps throughout upper basin and also by 

completing repetitive topographical surveys throughout basin following flooding 
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events using a real-time kinematic (RTK) GPS. Sediment traps and repetitive surveys 

also aided in assessing how floodplain topography affects sedimentation; 

 

2) Identify important flood characteristics that control sedimentation patterns and rates 

within the sedimentation basin. Understanding the important variables of floods 

allowed for a better overall understanding of floodplain sedimentation along with 

how they influence deposition rates and storage within the basin. This was 

accomplished by linking a USGS gage record to the basin flood stage; 

 

3) Quantify grain size distribution across the sedimentation basin. Grain size patterns 

can provide insight into the distribution and storage of sediment transported 

downstream; 

 

4) Quantify Pb, Zn, and Ca concentrations in recently deposited sediment throughout the 

sedimentation basin. This allowed for the examination of contamination patterns 

across the basin as well as aid in quantifying the storage of contaminated sediment. It 

also helped evaluate trends in gravel sediment contamination. Geochemical analysis 

was accomplished through sampling sediment recently deposited by flooding events; 

and 

 

5) Determine the effectiveness of the basin system at trapping contaminated sediment 

and reducing downstream Pb loads. This was accomplished by quantifying the 

amount and rate of contaminated sediment storage within the basin and comparing to 

previously published channel sediment-Pb storage estimates.   

 

 

 

Hypotheses  

 

In developing this study and examining the background literature within this field, 

there are four guiding relationships that were expected to surface:  

1) Contemporary sedimentation rates for the sedimentation basin would be greater than 

that of a natural floodplain due to a lowered bank and increased connectivity with 

channel (Florsheim and Mount, 2002; Acreman et al., 2003; Baptist et al., 2004). 

 

2) Flood characteristics of magnitude, frequency, and duration of flooding events would 

have a strong influence on sediment deposition due to various transport capacities and 

sediment supplies. Larger flood peaks and longer flood durations typically result in 

higher sedimentation rates (Asselman and Middelkoop, 1998; Lecce and Pavlowsky, 

2001; Curtis et al., 2013; Hupp et al., 2015). 

 

3) Sediment deposition rates would decrease with distance from the channel due to flood 

regime and sedimentation controls (Zwolinski, 1992; Piegay et al., 2008; Wohl, 

2014). 
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4) Concentrations of Pb and Zn would be higher in sediment samples consisting of 

sediment being <2 mm due to the tendency of finer tailings to have the highest 

concentrations of heavy metals (Horowitz, 1991; Smith and Schumacher, 1993; 

Pavlowsky et al., 2010). These samples would be deposited in areas of the basin that 

experience lower sedimentation rates. 

 

 

 

Benefits 

This thesis will provide valuable insight into the influences of floodplain 

topography and various flood characteristics on the patterns and rates of sediment 

deposition within a sedimentation basin as compared to a natural floodplain. It is also the 

first known off-line sedimentation basin system created to manage long-term sediment 

contamination for rivers affected by mining. There remains a gap in knowledge in 

examining the influence of flood characteristics on contemporary floodplain 

sedimentation rates, even more so for disturbed floodplains modified for remediation 

purposes (Owen et al., 2012). The results of this thesis will improve our understanding of 

how sediment transport and deposition is influenced by floodplain morphology and 

variable flood characteristics in Ozark river systems. It will also allow for the assessment 

of the sedimentation basin system for remediation purposes, which will help manage 

mining contamination and lower the health risk of aquatic and human life by improving 

water and soil quality. This is a main concern for environmental managers and 

geomorphologists who are working to remediate contamination in floodplain areas 

affected by historical mining operations or who are studying the effects of flood 

characteristics on contemporary floodplain sedimentation rates.  
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CHAPTER 2 – STUDY AREA 

 

Regional Location 

The Big River is located in southeastern Missouri within the Upper Mississippi 

River basin (Figure 5). It is the southernmost river in the Upper Mississippi River Basin 

with headwaters originating in the St. Francois Mountains at 530 meters above sea level 

where it flows north for 222 km until it reaches the Meramec River, a tributary of the 

Mississippi River at 125 meters above sea level (Meneau, 1997). The Big River 

watershed (2,500 km2) drains Jefferson, Washington, Franklin, St. Francois, Ste. 

Genevieve, and Iron counties. Most of the mining operations located in the Old Lead Belt 

are drained by the Big River watershed (Smith and Schumacher, 1993; Meneau, 1997). 

The release of mining waste from these areas have contaminated channel and floodplain 

sediments with toxic levels of metals from Leadwood to its confluence with the Meramec 

River (Roberts et al., 2009).  

In 1992, the Old Lead Belt was added to the U.S. Environmental Protection 

Agency’s Superfund National Priorities List for Pb contamination (Gale et al., 2002; 

Martin et al., 2016). In 1994, Doe Run Company agreed to remediate the Desloge tailing 

and remediation work began in 1995 (Gale et al., 2004). All major tailings piles in St. 

Francois County have been stabilized or are undergoing construction for stabilization by 

capping the mine waste, excluding the east Bonne Terre tailings pile which is currently 

being used as an on-site soil repository for Pb-contaminated soils. The channel reach of 

interest for this study is at the BRLRS site located at the confluence with the Flat River, 

its largest tributary (Figure 5). 
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Figure 5. Big River watershed and tailings piles. 
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Study Site Characteristics  

The BRLRS site is located in St. Francois County, MO, near of the town of 

Desloge, MO. The structures are located within the floodplain along the inside of a large 

valley bend near the confluence of the Big River and the Flat River (Figures 5 and 6). 

Prior to construction of remediation structures, human activities modified the natural 

planform of the floodplain through soil mining excavation as well as fill upon which built 

a levee and road across the property. A dirt and gravel road runs parallel to the Big River 

and along the top of the levee that is about two meters higher than the adjacent 

floodplain. Land use was estimated using aerial photography to be 49 % forest, 48 % 

grass, and 3% road. 

Due to the unique location, BRLRS receives inputs of contaminated sediment 

from both the Big River, including Leadwood and Desloge tailings piles, and the Flat 

River, including Elvins, Federal, and National tailings piles. The main remediation 

structures include: (1) upper sedimentation basin built along the inside of a large valley 

bend to pond water and capture contaminated suspended sediment and finer bed sediment 

during inundation, including an inlet from main channel; (2) lower sedimentation basin to 

pond flood water and dissipate flood energy, including an outlet structure and flood water 

spillway; and (3) Newberry-type rocked riffle downstream of the Flat River confluence 

that is designed to locally raise the base-level in the channel, decrease channel slope, and 

trap contaminated sediment behind it (Figure 6). This study focuses on the sedimentation 

basin system located within a moderately wide valley (370 m) which was constructed 

within the exiting floodplain and situated within areas previously disturbed by soil 

mining. Photographs of the sedimentation basin system can be found in Appendix A. 
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30 

Geology and Soils 

The major geologic unit at the BRLRS site is the Bonne Terre formation. The 

Bonne Terre formation is 375-400 foot thick Cambrian rock composed of mostly 

dolomite (CaMg(CO3)2). As a result of hydrothermal mineralization, significant amounts 

of galena (Pb-sulfide), sphalerite (Zn-sulfide), pyrite (Fe-sulfide), and various copper 

sulfides crystalized within this formation (Gregg and Shelton, 1989; Smith and 

Schumacher, 1993). Thus, this is a key formation for mining activity. Another important 

formation in mining activity is called the Potosi formation, which lies above the Bonne 

Terre formation stratigraphically. The Potosi formation is also Cambrian and 

predominately dolomite, and is approximately 200 feet thick. However, the total 

production from this formation was relatively low (Smith and Schumacher, 1993).  

Upland soil series at the study site include the Crider silt loam, Caneyville silt 

loam, and Gasconade silty clay loam (Table 4; Figure 7). These soils commonly are 

adjacent to one another and are formed in pleistocence glacial loess overlying clayey 

residuum (USDA, 1981). Higher terraces include the Horsecreek silt loam soil series that 

are only occasionally flooded during larger floods (Table 4: Figure 7). These soils are 

composed of material eroded from loess, residuum, and bedrock (USDA, 1981; USDA, 

2002).  

The primary floodplain soil series is the Haymond silt loam that is frequently 

flooded for short durations (Table 4; Figure 7). These soils formed from silty alluvium 

washed from nearby loess covered uplands and are generally found on nearly level 

floodplains in areas that meander and have relatively narrow valleys (USDA, 1981). 

Typically, the surface layer of Haymond soils is composed of dark brown silt loam about 
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10 inches thick with a moderate medium granular structure. Below the surface layer is 76 

inches of brown silt loam and brown loam with weak fine granular structures that is 

stratified with lenses of pale brown fine sandy loam. The particle-sizes found in soil 

below the surface layer range from 10-18% clay, 1-20% very fine sand, and 0-14% fine 

and coarse sand (USDA, 1981). Wilbur soils are similar to Haymond soils and are often 

found on adjacent floodplains, however, Wilbur soils are not found at the BRLRS site.  

 

Table 4. Soil series present at BRLRS site (USDA, 1981).  

Series Name Landform  Slope 
Flood 

Frequency 
Drainage 

Crider Silt Loam  Uplands 5-9% Never Well 

Caneyville Silt Loam Upland-Slopes 14-20% Never Well 

Gasconade Rock Outcrop Upland-Slopes 9-35% Never Very Well 

Horsecreek Silt Loam Terrace 0-2% Occasionally Well 

Haymond Silt Loam  Floodplain 0-2% Frequently Well 
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Figure 7. Soils series at BRLRS site. 
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Climate and Hydrology  

The Ozark Plateau lies within a region with a humid continental climate. The 

average annual temperature is about 55 ˚F with ranges from an average temperature of 32 

˚F in the winter to 77 ˚F in the summer (USDA, 1981; Pavlowsky et al., 2010). Average 

annual precipitation for the region is about 100 cm with rainfall accounting for 

approximately 75% of the annual total (Smith and Schumacher, 1993; Meneau 1997). 

During the spring, the area receives the highest amount of precipitation as warm, humid 

air moves north from the Gulf of Mexico. This period of increased precipitation usually 

occurs from March to June, with May tending to be the wettest month (Adamski et al., 

1995; Meneau, 1997).  There are five active U.S. Geological Survey (USGS) gaging 

stations along the Big River that measure discharge and flood stage and are located at the 

following locations in order from upstream to downstream: 

(1) Big River at Irondale, MO (07017200), draining 453 km2 with a mean flow of 5.2 

m3/s since 1965; 

 

(2) Big River below Desloge, MO (07017260), draining about 685 km2 with a mean flow 

of 11.8 m3/s since 1988; 

 

(3) Big River below Bonne Terre, MO (07007610), draining about 1,060 km2 with a 

mean flow of 17.8 m3/s since 2012; 

 

(4) Big River near Richwoods, MO (07018100), draining about 1,904 km2 with an 

average flow rate of 20 m3/s since 1942. 

 

(5) Big River at Byrnesville, MO (07018500), draining 2,375 km2 with a mean flow of 

25 m3/s since 1921.  

 

Although the Irondale, Richwoods, and Byrnesville gages have the three longest 

records, they are located the furthest away from the BRLRS site. On the other hand, the 

Desloge and Bonne Terre gages have a limited record over a relatively short period, but 
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they are located 1 km upstream and 23 km downstream of the site, respectively. Thus, 

their records are more likely to represent the current flood regime at the BRLRS site.  

 

Mining History  

Lead was first discovered west of St. Francois County by French settlers around 

1700 (Rafferty, 1980; Smith and Schumacher, 1993). Soon after, small scale mining 

operations began mining activity in shallow open-pit mines that mined large galena 

crystals (Smith and Schumacher, 1993). In the mid-1860s, mining operations quickly 

expanded due to technological advances such as dynamite blasting and the diamond drill, 

the latter which allowed miners to explore several hundred feet deeper (Rafferty, 1980).  

During the late 1800s and early 1900s as many as 15 companies had mining operations in 

the Old Lead Belt (Smith and Schumacher, 1993). Mining activity in the Old Lead Belt 

peaked in 1942 and continued until 1972 as mining operations were gradually shut down 

due to a depletion of ore deposits and increase production from the Viburnum Trend or 

New Lead Belt (Smith and Schumacher, 1993; Pavlowsky et al., 2010).  

Mining operations used either mechanical or chemical separators to processes 

lead ore. Both of these processes produced large volumes of mining waste referred to as 

tailings that contain varying quantities of trace elements (Smith and Schumacher, 1993; 

Pavlowsky et al., 2010). As technology advanced, more efficient chemical separators 

were used that produced finer-grained tailings. It is estimated that 250 million tons of 

tailings were produced in the Old Lead Belt (Smith and Schumacher, 1993). These 

tailings were stored directly on the land and cover roughly 12.1 km2 (Table 3). Coarse 
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tailings were placed in piles, while fine tailings were transported as a slurry to 

impoundments such as slurry ponds (Smith and Schumacher, 1993). 

Few environmental regulations existed or were enforced between 1850 and 1940. 

As a result, mining waste stored in tailings piles or impoundments were often discharged 

directly to surrounding streams. It was not until after World War II that environmental 

restrictions were put in place stop the release of mining waste into streams (Gale et al., 

2004; Pavlowsky et al., 2010). Since 1992, remediation efforts have stabilized six major 

tailings piles in the Big River watershed. However, mining wastes with high 

concentrations of heavy metals have been and still are being introduced to the Big River 

due to weathering and erosion of channel and floodplain deposits (Smith and 

Schumacher, 1993; Pavlowsky et al., 2010). According to Pavlowsky et al., (2010) 

approximately 86,800,000 m3 of contaminated floodplain material is stored along the 

main stem of the Big River, which represents a significant portion of the estimated 

91,500,000 m3 of contaminated material for the entire river system.  Additionally, Hill 

(2016) recently estimated 170,000 m3 of sediment is stored in channel bed and bar 

deposits in the Flat River. Both of these studies indicate the magnitude of contamination 

in the Big River watershed that poses long-term contamination risks. 
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CHAPTER 3 – METHODS 

 

 

This study utilizes sediment traps and repetitive topographical surveys to estimate 

contemporary sedimentation rates and storage, GIS to examine spatial distribution of 

sedimentation, and statistical analysis to examine trends in sedimentation and 

contamination. Field sampling and laboratory methods allow for sedimentation and 

geochemical analysis (Lecce and Pavlowsky, 2001), while GIS analysis allows spatial 

trends and relationships to be studied and mapped efficiently (Kooistra et al., 2001).   

 

Field Sampling  

This study uses concrete patio blocks (16 in x 16 in) as sediment traps. These 

patio blocks will be referred to as sampling blocks. A network of 25 (16 in x 16 in) 

sampling blocks were set even to the elevation of the present upper basin floor to monitor 

sedimentation rates and patterns (Figure 8 and 9). These blocks (1) provide a stable 

surface to measure and collect sediment; (2) are easy to find with a tile probe in case of 

burial; (3) can easily be adjusted to ground-level after each flood event; and (4) reduce 

obstacle effects on local flows and sediment transport.  

The block surface provided a stable reference point to measure overlying 

sediment deposits after inundation from flooding events. Metal posts were placed 30 cm 

north (direction opposite of the channel) to help relocate blocks after deposition and 

vegetation growth (Figure 9). During each sampling event, sediment depth was measured 

at five points on the block, at the four corners and middle of the block, to the nearest 

millimeter using a folding ruler. The top surface of the block was cleared and reset to the 

new ground elevation after each sampling event. Sedimentation rates in the  
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Figure 8. Locations of sampling blocks in upper basin.  

 

 

Figure 9. Sampling block 7 and post (12/14/15).  
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upper basin were calculated by dividing the average depth of sediment on the blocks by 

the number of days sampling blocks were set out of a year.  

In addition to sampling blocks, high-density topographical surveys of the upper 

basin floor were collected after flooding event(s) using a high-resolution Topcon HiPER 

Lite+ RTK (Real-time Kinematic) global positioning system (GPS). The RTK GPS has a 

post-processed differential correction of 1 to 5 cm for elevation. The upper basin was 

surveyed using numerous east-west transects, at key breaks in slope, and around 

important features of the excavated area in order to obtain a detailed map of basin 

topography and to measure sediment deposition and storage. The entire basin system was 

also surveyed following the same procedure used for the upper basin but transects were 

spaced 25 m apart. In order to provide stable reference points and ensure accuracy and 

precision of GPS points collected during surveys, three permanent elevation monuments 

were installed throughout the study area (Table 5; Figure 10). The location of the 

monuments were recorded during each survey, using the first recorded locations of the 

three monuments to correct for any error between monument locations of any following 

surveys. 

 

Table 5. Monument locations.  

ID Northing (m) Easting (m) Elevation (m) Description 

Mon 1 228,827.944 249,928.769 202.452 Concrete with rebar 

Mon 2 228,478.220 249,932.820 204.285 Concrete with rebar 

Mon 3 228,337.057 249,634.626 203.244 Concrete with rebar 

 



 

39 

 

 

 

Figure 10. Monument 2 (top) and monument 3 (bottom) (1/22/16).  

 

Mon 2 

Mon 3 
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Sediment samples were collected for analysis from each block using a trowel. 

Samples were placed in 1-quart plastic freezer bags and labeled according to date of 

collection and site location. Over the course of a year, sediment deposited on sampling 

blocks was collected five times and generated 143 individual samples for geochemical 

and physical analysis (Table 6). Occasionally, more than one sample type was collected 

from a single block during a sampling event where obvious stratigraphic differences were 

observed within sample deposits (Figure 11). Over the course the study, two of the 25 

blocks were lost due to burial, transport, or mowing, one only being sampled twice 

(Block 4) and the other being sampled three times (Block 1). Leaving a total of 23 blocks 

that were sampled over the entire study period.  

 

Table 6. Summary of field visits and work completed.  

Field Visit Date               Work Completed 

1 8/4/2015 Set Blocks and Sampled Upper Basin 

2 9/17/2015 Sampled and Surveyed Upper Basin 

3 12/14/2015 Sampled and Surveyed Upper Basin 

4 1/21/2016 Sampled and Surveyed Upper Basin 

5 7/8/2016 Sampled and Surveyed Upper Basin 

6 8/3/2016 Surveyed Basin System 

7 11/22/2016 
Sampled Basin System and Surveyed Upper 

Basin 
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Figure 11. Splay deposits on sampling block with sand and fine gravel deposited over a 

layer of fine sand mixed with leaf litter (1/22/16).  

 

In addition to repeat sampling and surveying of the upper basin, sediment depths 

were measured, sampled, and located at 22 sites throughout the entire basin system to 

evaluate broader sedimentation trends (Figure 12). At each site, depth of sediment 

deposition since construction (April 2015) was measured from obvious stratigraphic 

differences between floodplain soil and recent sediment deposits to the nearest centimeter 

using a folding ruler. Sediment samples were placed in 1-quart plastic freezer bags and 

labeled according to date of collection and site location. A total of 22 samples were 

collected for geochemical and textural analysis. Of those 22 samples collected, 9 were 

from the upper basin, 5 were from the well-drained flood way, 4 were from the hillslope 

left of the well-drained flood way, 2 were from the lower basin, and 2 were from the 

poorly-drained flood way (Figure 12). 
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Figure 12. Location of basinwide samples.  
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Laboratory Preparation and Analysis  

Laboratory methods involved the preparation, physical analysis, and geochemical 

analysis of sediment samples and followed the Environmental Protection Agency (EPA) 

approved Quality Assurance Project Plan (QAPP) for this study (Pavlowsky and Owen, 

2016). After field collection, sediment samples were brought to the Ozarks 

Environmental and Water Resources Institutes (OEWRI) laboratory following approved 

chain-of-custody procedures (OEWRI, 2006). Sample preparation and analysis was 

performed following similar procedures done by Lecce and Pavlowsky (2014). Sediment 

samples were first placed in oven to dry at 60 degrees Celsius. Once dry, samples were 

disaggregated and sieved through a stack of 16 mm, 8 mm, 4 mm, and 2 mm sieves to 

separate sediment into individual fractions. Grain size distribution of all samples can be 

found in Appendix B.  

It is important to know the distribution of these fractions to evaluate the effects of 

selective transport and fluvial sorting on the deposition of sediment within the basin. 

Sediment <2 mm was placed into a small lead-free plastic bag necessary for use of the X-

ray fluorescence (XRF) instrument according to the EPA XRF analysis protocol (EPA, 

2007). The <2 mm fraction was chosen over the <63 mm fraction since in mined-

watersheds, like the Big River watershed, sand-sized ore particles and Fe-Mn coatings on 

sand grains may contain significant amounts of heavy metals (Horowitz, 1991). Also, the 

<2 mm fraction is more representative of sediment deposited in the upper basin due to the 

inputs of bed and suspended sediment.  

To account for variations of heavy metals between different fraction sizes, 12 

samples that contained significant amounts (40 to 90%) of coarse material (2-16 mm) 
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were selected in order to determine the heavy metals in these fractions. To analyze this 

fraction, 1 tablespoon of sediment was taken from each sample. That sediment was then 

powdered using a ball mill and placed into a small lead-free plastic bag necessary for use 

of the XRF instrument. 

Geochemical procedures are aimed to evaluate the mining and background or 

natural source fingerprints in river sediments (Horowitz, 1991). High Pb and Zn 

concentrations of river sediments from the Big River tend to be positively related to the 

degree of mining influence (Smith and Schumacher, 1993). Geochemical analysis was 

completed using a handheld X-MET3000TX+ XRF and followed the methodology for 

undertaking semi-quantitative investigations provided by EPA Method 6200 (EPA, 

2007). Serval other studies have used a similar method to determine concentration levels 

of contaminated sediment in the Big River (MDNR, 2001, 2003, 2007; Roberts et al., 

2009; Pavlowsky et al., 2010; Huggins, 2016).  In this study, a XRF was used determine 

the concentrations of Pb, Zn, and Ca in parts per million (ppm). The elements with the 

highest analytical resolution on the XRF include, Pb, Zn, Cu, Ti, Fe, Se, and Ca. Standard 

checks and duplicated analyses were run every 10 to 20 samples depending on the total 

number of samples. Additionally, quality assurance and quality control (QA/QC) was 

completed for XRF data of each sample. Geochemistry for all samples can be found in 

Appendix C. 

Assessment of accuracy is important to ensure laboratory instruments are creating 

results that are reliable and reflect true values. Accuracy calculations for XRF analysis 

completed by analyzing a known standard and assessing the difference between the true 

value and measured valued. For this study, a US Geological Survey (USGS) standard 
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(Jasperoid, GRX-1) was analyzed with a known Pb concentration of 856 ppm. By 

comparing the measured value from the XRF to the known standard, accuracy can be 

quantified (EPA, 2007). Of the 165 sediment samples, the accuracy for Pb was -1.20%, 

for Zn was -3.46%, and for Ca was -2.08%. Precision is another important measure for 

laboratory instruments since is assesses the consistency of the results that enable the 

identification of error within the system. Precision calculations for XRF analysis were 

completed by running duplicate samples to compare the results of the same sample (EPA, 

2007). Of the 165 sediment samples, the precision for Pb was -3.44%, for Zn was -

5.51%, and for Ca was -7.25%.  

 

Geospatial and Statistical Analysis 

A geospatial database and GIS were used to organize and analyze field and 

laboratory data. The geospatial database is composed of several sources of spatial data 

readily available through OEWRI Ozarks GIS database and data collected in the field 

using survey equipment. A 1-meter LiDAR-derived digital elevation model (DEM) was 

downloaded from Missouri Spatial Data Information Service (MSDIS). 

Repeat Topographic Surveys using RTK. A series of surveys were completed 

throughout the upper basin using an RTK global positioning system (GPS). A RTK GPS 

offers an efficient way of providing near-instantaneous positions that has been widely 

adopted as an engineering surveying tool (Featherstone and Stewart, 2001).  A total of 5 

surveys were completed over the course of the study, typically following one or multiple 

flooding events (Table 6). The GPS data from repeat surveys were imported into ArcMap 

10.2.2 from Excel spreadsheets (Figure 13). Each individual survey was used to create a 
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triangular irregular network (TIN) which was then converted into rasters using the “TIN 

to Raster” tool. Using the “Raster Calculator” tool, the elevations of two raster files were 

subtracted from each other to calculate the depth of sediment deposited during particular 

flooding events. This was completed using the first and last survey to calculate depth of 

sediment accumulated over the course of the entire study, and also using surveys in-

between to calculate depth of sediment accumulated from particular flooding events 

(Figure 13). To estimate the volume of sediment stored, the average sediment depth 

deposited between surveying events was multiplied by the area all surveys covered. This 

data was mapped to enhance visualization of deposition quantities and patterns and how 

they vary over time. 

 

 

Figure 13. Steps used to analyze repeat topographic surveys. 
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Study Period Deposition Rates. Sediment deposition measured from repeat 

surveys was used to estimate deposition rates for the upper basin. The average depth of 

sediment deposited was determined by the average difference in elevations between the 

first (September 17, 2015) and last (November 22, 2016) survey. That average depth 

estimated the amount of sediment that has accumulated over that time. To estimate 

deposition rates during the study period, the average depth was multiplied by the total 

number of days between surveys out of a year (365.25 days).  

Historical Deposition Rates. Identification of 137Cs in floodplain deposits can be 

used to document sedimentation since the mid-1950s (Owen et al., 2011). Nuclear 

weapon testing beginning in the mid-1950s emitted radioactive the carbon isotope 137Cs 

into the atmosphere that was spread throughout the world as fallout (Walling et al., 

1992). As a result, the presence of 137Cs in sediments provides a marker in the 

sedimentation record (Faulkner and McIntyre, 1996). The maximum fallout of 137Cs 

occurred in 1963 and can be used to estimate the landform surface at that time (Walling 

and He, 1994). Five pre-construction cores were collected throughout the natural 

floodplain at the BRLRS site in 2014. Those cores were analyzed for peaks of 137Cs in 10 

cm sections. The depth between the upper and lower boundary depths of a core section 

where 137Cs peaked was used as the post-1963 depth.  

Lead and Zinc Storage. The Pb and Zn concentrations found in both fine (<2 

mm) and coarse sediment (2-16 mm) collected from sampling blocks and depth of 

sediment deposited were used to determine the differences in mass of Pb and Zn stored in 

fine and coarse sediment. To calculate storage for a particular block, the mass of 

sediment stored on a block for both sediment fraction sizes was first estimated by 
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multiplying the volume of sediment by the fraction of the sample 2-16 mm or <2 mm. 

That product is then multiplied by a bulk density to produce the mass of sediment stored 

by each size fraction and can be determined by: 

Msediment = (V x F)*(B) 

Where Msediment is the mass of sediment (g), V is the volume of sediment stored on a 

block (cm3), F is the fraction 2-16 mm or <2 mm (0-1), and B is the bulk density (g/cm3). 

The volume of sediment stored on a block was calculated by multiplying the area of the 

block (cm2) by the average sediment depth (cm) measured for a particular block. The 

bulk density of floodplain soils at the study site range from 1.3 to 1.5 g/cm3 (USDA, 

2000). Therefore, an average bulk density of 1.4 g/cm3 was assumed for sediment <2 mm 

since these deposits are similar to those of floodplain deposits. Bunte and Abt (2001) 

found that the bulk density of gravel in gravel-bed rivers ranged between 1.7 and 2.6 

g/cm3 and averaged 2.1 g/cm3. A bulk density of 2.1 g/cm3 was used for sediment 2-16 

mm since those sample are a mixture of sand and gravel.  

To calculate the storage of Pb mass in each size fraction by sampling block area, 

the mass of sediment stored is multiplied by the Pb concentration in the 2-16 mm 

sediment or <2 mm sediment. The product is then divided by 1,000,000 to convert to 

grams and can be determined by: 

MPb = (Msediment x CPb) / 1,000,000 

Where MPb is the mass of Pb (g), Msediment is the mass of coarse or fine sediment (g), and 

CPb is the Pb concentration (ppm) of the coarse or fine sediment. The same calculation 

was done to estimate Zn storage, but used the Zn concentrations. The percent of Pb and 

Zn in the two fraction sizes was calculated to help assess the importance of coarse 
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grained sediment to the overall storage. To calculate this, the mass of Pb stored in each 

fraction was divided by the total mass stored and then multiplied by 100.  

Flood Analysis.  Recurrence intervals (RI) of local flooding events were 

calculated to better understand the frequency of overbank events that promote deposition. 

This was accomplished through the quantification of flows from USGS gage data. 

Annual peak discharges from 1980 to present were collected from three USGS gaging 

station on the Big River (Irondale, Richwoods, and Byrnesville). The Desloge gaging 

station was not included due to a limited record of less than 10 years, which is the 

minimum number of years required for this type of analysis (Weaver et al., 2009).  

The gage data was then analyzed in PeakFQ, which is a program created by the 

USGS to perform statistical flood-frequency analysis of annual-maximum peak flows. 

This program uses gaging records to estimate the probability and discharges of different 

magnitude floods (Flynn et al., 2006). Probabilities generated by PeakFQ were converted 

to RI of 1.05, 1.25, 1.5, 2, 2.33, 5, and 10 years for each gaging station (RI = 

1/probability of flood). Estimated peak discharges for each RI were then graphed by the 

drainage area of each gage, showing a relationship between flood magnitudes of each RI 

as gage drainage area increased. Linear regression was used to model this relationship by 

fitting a linear regression equation to the observed gage data. Linear regression equations 

were used to estimate the peak discharges that related to the RI for the Desloge gage, 

given the drainage area of the gage. The estimated RI for the Desloge gage were then 

graphed by the estimated peak discharge and exponential regression was used to model 

the relationship between peak discharge and RI of the Desloge gage. That regression 
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equation was used to estimate the RI of each flooding event at the Desloge gage over the 

study period using its recorded peak discharge.   

Basin Elevation Control. Known elevations of particular features in the upper 

basin, recorded by the RTK and cross-section transects, were used to determine the 

relationship between the gage stage at the Desloge gage and the water surface height at 

the basin inlet. The low flow water line recorded on August 5, 2015 was 200.6 m above 

sea level (asl) and the thalweg was 199.5 m asl, resulting in a water depth of 1.13 m. 

During this time, the gage stage was 1.08 m (3.55 ft). On September 17, 2015 the water 

depth was measured to be 0.93 m while the gage stage was at 0.95 (3.11 ft). Therefore, a 

one-to-one relationship to road crest elevation (199.5 m to 202.2 m asl) is assumed. The 

thalweg depth is approximately equal to gage stage at the inlet during low flow 

conditions.  

However, there is a slightly different relationship during peak flood stages. The 

peak flood stage on August 15, 2016 was 6.76 m (22.18 ft). This flood event almost 

topped the highest road at 204.8 m asl (5.27 m above channel bed) as indicated by 

stranded large woody debris along the high road.  A similar relationship is also found for 

the peak flood stage on December 26, 2015. Therefore, a curvilinear line is used between 

road crest (202.2 m asl) to high road top (204.8 m asl) to match the peak discharge with 

the gage stage at 6.76 m (22.18 ft). A polynomial rating curve can then be used to predict 

inlet elevations from gage stage and can be determined by:  

Ielevation = -0.0866(gs)2 + 1.4142(gs) + 199.19     (r2 = 0.997) 

Where Ielevation is the basin inlet elevation (m asl) and gs is the gage stage (m) at a 

particular time (Figure 14). The one-to-one relationship suggests that when the gage stage 
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reaches 1.7 m (5.5 ft), the depth of water in the channel at the basin inlet reaches the 

point where water starts to enter the upper basin. Then when the gage stage reaches 

approximately 2.6 m (8.5 ft) it is at the point where water overtops the low road and 

enters the basin system. Using this relationship, the Desloge gage record was analyzed 

for gage stages of 2.6 m (8.5 ft) or greater to determine the frequency, duration, and 

magnitude of each flooding event. This provided a flood record for the study site that 

included: (1) peak gage stage, (2) peak discharge, and (3) number of days each flooding 

event inundated the basin over the course of the study. This data, along with the 

sedimentation record from the sampling blocks and RTK surveys, were used to analyze 

the quantities, rates, and patterns of sedimentation for individual flooding events.  

 

 
Figure. 14. Rating curve for basin elevations related to gage stage. 
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CHAPTER 4 – RESULTS 

 

Sedimentation Basin Form  

Basin Features and Topography. Basin features were mapped following the 

construction of remediation structures using aerial photographs and repeat surveys 

(Figure 15). The entire sedimentation basin system consists of: (1) primary inlet; (2) 

upper sedimentation basin; (3) well-drained flood way, (4) lower sedimentation basin; (5) 

secondary inlet; (6) poorly-drained flood way; (7) primary outlet; and (8) spillway 

(Figure 16). The upper inlet was created by removing portions of the bank so that bank 

height was the same as bar height. The inlet allows sediment-laden water to enter the 

basin system during high flow conditions. The upper sedimentation basin was constructed 

within the pre-existing floodplain by lowering the floodplain surface to be lower than that 

of the road that cuts across the upper basin. This road was designed to be overtopped at 

202.1 m asl and slopes upward at each end to intercept the natural ground surface. 

Additionally, the upper basin surface was graded so that area south of the road dips 

towards the Big River and the area north of the road dips towards the lower basin.  

A hillslope along the east outer margins of the basin system aids in confining and 

directing the flow of water and associated sediment through the upper basin, towards the 

lower basin and outlet. While area along the west margins gradually slopes upward until 

it intercepts the dirt road and is dominated by forest and grass. The lower basin helps 

dissipate flood energy by ponding water that flows through the well-drained flood way 

from the upper basin and water that flows directly from the Big River through a set of 

culverts. The lower basin also collects any fine-grained sediment still in suspension. A set  
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Figure 15. BRLRS site pre-construction (November 2013) (top) and post-construction 

(October 2015) (bottom) (Google Earth Pro, 2016). 
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Figure 16. Sedimentation basin system features. 
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of culverts were placed within the lower basin to act as an inlet during the rising limb of 

floods and an outlet during the falling limb of floods. Located north of the lower basin is 

a poorly-drained flood way that acts as an outlet for flood waters through a set of culverts 

and over a spillway. The spillway was designed to be overtopped at 202.4 m asl and 

slopes upward at each end to intercept the natural ground surface.  

Overall, the longitudinal profile of the basin system is steeper than that off the Big 

River (Figure 17). Through the basin system, there generally is an upward slope from the 

primary inlet to the well-drained flood way. The slope through the well-drained flood 

slopes downward and is relatively steep until it reaches the poorly-drained flood way 

where the slope tends to vary up to the primary outlet. The relatively steeper slope of the 

basin system creates favorable conditions to initiate “cut-off” processes for chutes by 

increasing flow velocities and transport capacities. 

Basin Changes since Construction. Since construction, the thalweg of Big River 

has shifted to the left and has directed both erosive forces and sediment load toward the 

basin system. In addition to the shift of the thalweg, flood events have also modified the 

topography of the basin. A chute has developed within the upper basin where water 

enters the inlet. Further, the inlet and bank along the upper basin has experienced 

significant erosion, mainly during the first 6 months after construction as the thalweg has 

shifted to the left. This has caused the banks to recede and increased the width and depth 

of the inlet. Changes in slope and increased flow velocities from the upper to the lower 

basin has caused a headcut to form in the well-drained flood way. Additionally, large 

magnitude floods have caused the low point of the downstream road, which acts a 

spillway, to wash out. This may have been enhanced due to woody debris blocking the  
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Figure 17. Longitudinal survey points (top) and longitudinal profiles (bottom) of the Big 

River and basin system.  
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outlet culverts and preventing water to flow out through the culverts. To prevent the road 

from continuing to wash out, woody debris was removed from the culverts and a concrete 

spillway was created over the road in November of 2016. Photographs of the entire basin 

system along with major changes that have occurred can be found in Appendix A.  

  

Flood Analysis  

Basin Flood Frequency Analysis. Flood frequency analysis of the Irondale, 

Richwoods, and Byrnesville gages was used to estimate peak discharge of flood 

recurrence intervals (RI) for the Desloge gage (Figure 18). Flood RI trends of the 

Irondale, Richwoods, and Byrnesville gages display a fairly linear trend with increasing 

drainage area. The peak discharges calculated for flood RI of the Desloge gage was used 

to estimate the RI of individual flooding events that occurred during the study period 

(Figure 19). 

Flooding events during the study period were considered to occur when the stage 

of the Desloge gage reached 2.6 m (8.5 ft) or 64.0 m3/s (2,260 ft3/s). At this point, water 

is able to enter the basin system by overtopping the road in the upper basin. However, 

water first enters the basin through the inlet when the stage reaches approximately 1.7 m 

(5.5 ft) or 15.5 m3/s (548 ft3/s). These discharges are associated with flooding events with 

less than the 1 year RI. Typical bankfull discharge at reaches that have not been altered is 

reached when the stage reaches approximately 3.5 m (11.5 ft) or 137.6 m3/s (4,860 ft3/s) 

and a RI of 1 year. 
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Figure 19. Flood RI for Desloge gage (Flood record May 13, 2015 – Present). 

 

Study Period Flood Record. The Desloge gage record shows that from May 13, 

2015 to December 1, 2016 there were 15 flooding events that were able to enter the basin 

system by overtopping the road in the upper basin (Figure 20; Table 7). The magnitude, 

frequency, and duration of flooding events varied between flooding events and sampling 

events (Figure 20; Table 7). The peak gage stage of all flooding events ranged from 2.63 

m (8.63 ft) to 7.24 m (23.76 ft) with an average peak stage of 4.4 m (14.3 ft). Peak 

discharges associated with gage stages ranged from 68.0 m3/s (2,400 ft3/s) to 685.3 m3/s 

(24,200 ft3/s) with an average peak discharge of 209.5 m3/s (7,397 ft3/s). The two largest 

magnitude floods occurred in December and August with peak gage stages of 7.24 m 

(23.76 ft) and 6.76 m (22.18 ft), respectively. While the two smallest magnitude floods 

occurred in November and July with peak gage stages of 2.63 m (8.63 ft) and 3.12 m 

(10.24 ft), respectively. The range in flood magnitudes transport varying quantities of 

sediment that can only be transported to certain areas of the basin. 
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Figure 20. Stage height (top) and discharge (bottom) at the Desloge gage from May 13, 

2015 to December 1, 2016 (NWIS, 2016).  
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Table 7. Flooding events at BRLRS site from May 1, 2015 to December 1, 2016. 

Flooding 

Event 
Date 

Peak Gage 

Stage (m) 

Peak 

Discharge 

(m3/s) 

Inundation 

(days ) 
RI (years) 

1 6/16/2015 4.49 231.9 1.5 1.28 

2 6/19/2015 5.15 305.8 1.75 1.54 

3 7/2/2015 3.12 104.5 0.4 0.93 

4 7/10/2015 3.13 105.9 0.75 0.93 

5 8/10/2015 5.11 300.2 0.75 1.52 

6 11/18/2015 3.40 128.6 0.5 0.99 

7 11/28/2015 2.63 68.0 0.4 0.85 

8 12/23/2015 4.04 186.3 1 1.14 

9 12/26/2015 7.24 685.3 3.5 3.97 

10 5/11/2016 3.96 177.8 1.5 1.12 

11 5/17/2016 4.10 191.1 1.3 1.15 

12 5/24/2016 3.71 155.2 0.6 1.05 

13 5/26/2016 4.06 187.2 2 1.15 

14 8/15/2016 6.76 580.5 1.6 3.05 

15 9/17/2016 3.39 127.1 0.4 0.98 

 

 

The RI of the 15 flooding events that occurred during the study period ranged 

from less than 1 to 4 years. There were multiple <1.5 year floods that occurred over the 

course of a year and half. It is expected that only up to two events of this magnitude 

would occur during a given year. Additionally, two flooding events with RI of 3 and 4 

years occurred within 9 months of one another. Since an average year would bring 1-3 

overbank floods into the basin, having 15 flooding events suggests that flood frequency 

over the past year has been higher than normal. It is uncertain whether this trend of 

increased frequency of flooding events will continue or return to the expected flood 

frequency. However, National Oceanic and Atmospheric Administration (NOAA) and 
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others predict a trend in increased intense rainfall events in the Ozark region (Kennedy, 

2014; Mallakpour and Villarini, 2015). If these prediction hold true, it is likely that 

flooding events could continue to occur more frequently and at larger magnitudes. 

 

Repeat Topographic Surveys using RTK 

Sediment Deposition and Erosion. Post-construction sedimentation was 

monitored throughout the upper basin using repeat topographical surveys. Over the 

course of the study, the upper basin was surveyed 5 times. All surveys covered an area of 

approximately 7,100 m2. Sediment accumulation in this area between the first (Sept. 17, 

2015) and last (Nov. 22, 2016) survey ranged from -140.2 to 87.8 cm with an average of 

12.2 cm (Figure 21). A majority of the upper basin experienced sediment deposition. The 

largest amounts of sediment deposition occurred near the primary inlet and along the 

outside of the chute that formed a relative coarse-grained splay deposit composed of sand 

and fine gravel (Figure 21 and 22). In comparison, overbank deposits to the west of the 

chute-splay area were finer-grained and thinner (Figure 21 and 23). Significant erosion 

occurred along the bank of the upper basin (Figure 21 and 24), where is has retreated 

approximately 5 m since September 2015 as a result of inlet expansion and thalweg 

erosion.  
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Figure 22. Coarse chute and splay deposits near inlet and chute (9/15/15).  

 

Figure 23. Fine-grained overbank deposits west of splay deposits (12/14/15). 
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Figure 24. Bank erosion along bank of upper basin (12/14/15).  

 

Sediment deposition following the largest flood event follow similar trends of 

those that occurred over the entire study period (Figure 25). Sediment deposition between 

this time (Dec. 14, 2015 – Jan. 21, 2016) ranged from – 59.7 to 84.1 cm with an average 

of 10.7 cm. The largest amounts of sediment were still deposited along the outside of the 

chute, while the rest of the basin experienced less sediment deposition. However, there 

were slightly different patterns of erosion. During the largest flood event, more erosion 

occurred within the inlet and chute, and bank erosion was measure over a larger area 

(Figure 25).  
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Sediment Storage. The total volume of sediment trapped from September 2015 

to November 2016 is approximately 865 m3 in area of 7,100 m2. The amount of sediment 

trapped is not evenly distributed and some areas did not trap any sediment. Additionally, 

some areas lost sediment due to erosion, such as the inlet and bank of the upper basin. 

Overall, sediment is being trapped at a higher rates near the inlet and along the outside of 

the chute, while lower rates of sediment are being trapped in the center of the basin and in 

areas further away from the basin inlet.  

The volume of sediment stored may be larger than expected for an average long-

term conditions due to two factors. First, the inlet enlargement by bank erosion shortly 

(<6 months) after construction was completed may have added to the volume of sediment 

stored in the upper basin. These banks have experienced significant erosion since 

September 2015 due to high energy flows entering the inlet and trying to cut-off the 

inside bend of the channel due to the leftward shift of the thalweg. The erosion of the 

inlet and bank indicated from the RTK surveys is confirmed by what is observed in the 

field (Figure 24). Second, a relatively frequent series of nine flooding events filled the 

basin during this time and therefore the present results may over-represent deposition 

rates compared to the average number of flooding events expected to occur during a 

given year. 

Deposition Patterns. Over the course of the study period, flooding events of 

various magnitudes and durations have inundated the upper basin and deposited varying 

amounts of sediment. However, the overall patterns of deposition seems relatively 

uniform. The highest rates of sediment deposition are around inlet and along the outside 

of the chute. During flooding events, water first enters the basin through the inlet with its 
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greatest carrying capacity and largest sediment load. As water flows through the inlet 

towards the flood way, flow velocities drop with distance from the inlet and sediment 

transport capacity decreases. Decrease in flow velocity is also aided by the hillslope to 

the east that increases roughness, reducing flow velocity and transport capacity. As a 

result, sand and gravel-sized sediment is deposited first, in the form of splay deposits, and 

fines away from the inlet. Also, the initial high flow velocities can potentially have the 

energy necessary to erode the banks and inlet of the upper basin.  

The lowest rates of sediment deposition occur in the west areas of the basin and 

areas north of the road. The west areas of the basin are far from the inlet-chute channel 

where flow velocities are slower. Further, low rates of fine sediment (<2 mm) deposition 

suggest relatively low loads of silt and clay entering the upper basin as suspended load. 

Areas north of the road also experience lower flow velocities than the chute, but tend to 

deposit coarser grained sediment than the west areas of the upper basin. This is likely due 

to the main flow and sediment load moving through the chute towards the flood way, as 

lower-energy water slowly spreads out across the rest of the upper basin. Thus, the areas 

north of the basin, especially between the road and flood way, also experience higher 

flow velocities than areas to the west and suggest that the sand and fine gravel bedload is 

being transported into and to the flood way of the basin system by the chute.  

 

Sediment Trap Monitoring using Concrete Blocks  

Sediment Deposition. Sampling blocks were used to quantify deposition within 

the upper basin and also provide information on changes in particle size and 

geochemistry related to flooding events. Over the course of the study, sampling blocks 
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were sampled five times (Table 6). The first of sampling events took place prior to 

sampling blocks being set, and measured the approximate depth of recent sediment 

deposition since construction of the upper basin (May 2015-August 2015). The following 

four sampling events used the sampling blocks and took place following at least one 

flooding event. There were 13 flood events that occurred over the course of five sampling 

events. Over this period, individual blocks had total sediment accumulation ranging from 

2.5 cm to 60 cm with an overall average sediment depth of 28.8 cm (Figure 26; Table 8). 

Typically, sediment depths measured on sampling blocks ranged from 5-10 cm, with 

some depths of 25-40 cm, and with an overall coefficient of variation (CV) of 55% 

(Figure 27). 

Average sediment depths on sampling blocks varied greatly between sampling 

events. Variations of sediment depths on sampling blocks for each sampling period had 

large CV values ranging from 76% to 203%. The large variation in sediment deposition is 

likely attributed to the magnitude and duration of flooding events between sampling 

periods. The largest CVs are from sampling events that experienced only one or two 

small magnitude floods that inundated the basin for less than a day. These flooding 

events may have a limited transport capacity or sediment supply, and may have only 

inundated certain areas of the basin. Thus, only a few sampling blocks would have 

significant deposition while the rest of the blocks had little or no deposition.  
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Figure 26. Location of sampling blocks (top) and average depth of sediment on sampling 

blocks in upper basin (bottom). 
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Table 8. Sampling block deposition. 

Block     
Measured Depth 

(cm) 
  

CV 

(%) 

Total Depth 

(cm) 

ID 8/4/15 9/17/15 12/14/15 1/21/16 7/8/16 
8/4/15 - 
7/8/16 

8/4/15 - 
7/8/16 

SB1 1.00 3.12 1.68 NA NA 56.0 5.80 

SB2 10.50 0.34 0.40 20.00 2.70 124.9 33.94 

SB3 4.00 5.70 0.40 0.00 12.60 112.5 22.70 

SB4 20.00 40.00 NA NA NA 47.1 60.00 

SB5 13.80 6.20 0.60 0.00 19.00 105.0 39.60 

SB6 13.70 6.86 1.40 10.00 9.60 54.9 41.56 

SB7 14.10 3.50 0.90 0.00 5.10 119.1 23.60 

SB8 13.50 1.14 0.60 10.00 0.00 123.9 25.24 

SB9 9.90 7.30 1.80 0.00 0.80 110.6 19.80 

SB10 10.00 4.02 7.40 3.00 17.10 68.0 41.52 

SB11 9.00 1.45 1.10 19.00 8.50 93.3 39.05 

SB12 0.30 1.05 0.80 8.00 4.70 111.4 14.85 

SB13 7.00 1.40 0.70 14.00 6.60 90.1 29.70 

SB14 5.00 1.15 1.30 0.00 14.70 136.4 22.15 

SB15 0.20 0.60 0.50 6.00 9.90 126.3 17.20 

SB16 2.40 0.35 0.30 14.00 3.02 142.3 20.07 

SB17 1.80 0.10 0.20 17.00 2.16 169.0 21.26 

SB18 2.00 0.10 0.20 2.00 1.90 80.4 6.20 

SB19 0.80 0.00 0.00 1.00 0.70 93.8 2.50 

SB20 11.90 0.06 0.30 3.50 1.14 146.5 16.90 

SB21 3.00 0.48 0.30 10.00 15.60 114.2 29.38 

SB22 5.30 0.82 0.20 12.00 12.00 95.1 30.32 

SB23 3.30 0.54 0.30 30.00 25.40 122.2 59.54 

SB24 11.40 15.60 0.40 12.00 16.40 57.3 55.80 

SB25 18.00 0.02 1.20 23.00 0.00 132.1 42.22 

n 25 25 24 23 23 25 25 

mean 7.68 4.08 0.96 9.33 8.24 105.31 28.84 

Stdev. 5.86 8.28 1.46 8.49 7.22 31.58 15.73 

CV% 76.3 203.2 152.4 91.0 87.6 30.0 54.6 
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Figure 27. Frequency distribution of sampling block sediment depths. 

 

Sediment Storage. All sampling blocks are located within an area about 6,300 

m2. The total volume of sediment trapped from average sampling block measurements 

from Aug, 2015 to July 2016 is approximately 1,800 m3. The volume of sediment trapped 

in not evenly distributed throughout the upper basin. However, most of the sediment 

seems to be trapped in similar locations as shown by both sampling block measurements 

and repeat surveys. A majority of the sediment was deposited on sampling blocks located 

along the outside of the chute in areas that accumulated sand and fine-gravel splay 

deposits, and sampling blocks located between the road and floodway. The smallest 

quantities of sediment where deposited on sampling blocks located in west areas of the 

upper basin. So even though estimates of sediment storage are quite different between the 

repeat surveys and sampling block measurements, they both show similar depositional 

patterns. 
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Block averages produced a total volume of sediment storage about 2.1 times that 

from the repeat surveys and are from a smaller area. The main reason for the difference in 

sediment storage is that the sampling block measurements only yield zero or positive 

deposition, while the repeat surveys can have negative values.  Sampling block 

measurements also do not take into account the significant bank erosion that has 

occurred. Thus, sampling blocks are likely to over predict sediment storage. Since repeat 

surveys do take erosion, the average sediment depths are lower than that if it did not 

include any erosion. They are also more likely to represent the net volume of sediment 

trapped since sediment is both being eroded and deposited in the upper basin. 

Additionally, the density of sampling points is much greater for the RTK (~500 points) 

compared to the sampling blocks (25). Therefore, repeat surveys have a higher resolution, 

particularly in areas along the margins of the upper basin with lower deposition rates.  

 

Sediment Size and Contamination 

Sediment Size. Sediment samples collected from sampling blocks were evaluated 

for texture. The grain size of sediment deposited varied throughout the upper basin and 

between flooding events. The majority (>95%) of sediment being deposited in the upper 

basin is <2 mm in diameter (Figure 28; Table 9). However, sand and gravel splay 

deposits were consistently deposited near the inlet and in a splay along the outside of the 

chute. Samples collected from these deposits typically contained 20 to 40 % >2 mm 

material with a few samples >50 % of the sediment >2 mm (Table 9). Similar deposits 

were also found at those locations following the largest flood event, but sand and gravel 

splay deposits extended north of the road. 



 

74 

 

Figure 28. Location of sampling blocks (top) and average percent >2 mm on sampling 

blocks in upper basin (bottom). 
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Table 9. Grain-size data from sampling block sediment samples. 

Block    < 2mm 

(%) 
    

CV 

(%) 
Avg. <2 mm 

(%) 

ID 8/4/15 9/17/15 12/14/15 1/21/16 7/8/16 
8/4/15 - 
7/8/16 

8/4/15 - 
7/8/16 

SB1 95.6 100.0 99.2 NA NA 2.4 98.27 

SB2 74.9 91.9 86.7 44.2 49.0 31.3 69.35 

SB3 70.1 49.6 57.7 NA 44.0 20.5 55.33 

SB4 60.3 74.6 45.1 NA NA 24.6 59.97 

SB5 98.1 93.0 98.2 NA 95.9 2.6 96.30 

SB6 98.4 100 80.0 51.8 100 24.3 86.02 

SB7 98.8 99.6 93.9 NA 99.5 2.8 97.93 

SB8 99.4 100 100 98.6 NA 0.7 99.51 

SB9 98.6 99.5 99.8 NA 98.2 0.7 99.00 

SB10 96.5 97.0 99.3 99.2 76.9 10.1 93.77 

SB11 100 100 96.9 94.5 100 2.5 98.28 

SB12 100 100 100 98.1 100 0.9 99.62 

SB13 99.8 100 100 91.3 100 3.9 98.22 

SB14 99.6 100 100 NA 100 0.2 99.89 

SB15 100 100 100 90.5 100 4.3 98.10 

SB16 99.6 100 100 99.1 100 0.4 99.74 

SB17 99.7 100 100 98.9 100 0.5 99.71 

SB18 98.9 100 100 93.5 99.6 2.8 98.40 

SB19 98.4 NA NA 100 100 0.9 99.46 

SB20 98.3 100 100 99.8 100 0.8 99.62 

SB21 99.7 100 100 100 99.7 0.2 99.88 

SB22 99.0 100 100 99.6 100 0.4 99.73 

SB23 99.4 100 100 98.9 100 0.5 99.65 

SB24 99.5 97.3 99.2 97.8 83.6 7.0 95.46 

SB25 98.2 NA 99.2 85.1 NA 8.3 94.18 

n 25 23 24 18 21 25 25 

mean 95.2 95.8 94.0 91.2 92.7 6.2 93.4 

Stdev. 10.4 11.5 14.1 16.3 16.5 9.0 12.5 

CV% 10.9 12.0 15.0 17.9 17.8 146.4 13.4 
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Overbank sediment deposited in west areas of the basin, away from the main 

flow, tended to be silt or fine sand-sized. The grain size of these deposits was fairly 

consistent with the percent <2 mm fraction ranging from 90 to 100%. These deposits 

formed in ponded water within relatively high and thick grass that resulted in lower flow 

velocities and transport capacities. Also, leaf litter often accumulated in west areas of the 

upper basin and not around the inlet and chute since flow velocities were high enough to 

transport leaf litter out of the upper basin. As a result, deposits in the west areas of the 

basin would often be underneath leaves, intermixed with leaves, or on top of leaves 

depending on the timing of flooding events and time of year relative to leaf fall 

(November - December).  

Additionally, the grain size of sediment deposited in the west areas varied 

depending on the magnitude of flood events. Larger flood events were able to transport 

and deposit coarser sediment to areas further from the inlet compared to smaller flood 

events. The grain size of sediment deposited near the inlet and in a splay along the 

outside of the chute, however, rarely differed as a result of various magnitude floods. 

Instead, sand and gravel was consistently deposited by both small and large magnitude 

floods.  

Distribution of Sediment. Sediment deposition in the upper basin was often a 

combination of both vertical/overbank deposits and lateral/channel deposits. Sediment 

deposits in the west areas of the basin that have slowly accumulated sediment are similar 

to vertical accretion deposits. On the other hand, sediment deposited around the inlet and 

chute was coarser and represents portions of the bed load of the river and are similar to 
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lateral accretion deposits. This mixture of sediment deposits has created an uneven 

topography across the upper basin that is re-worked during each flooding event.  

Overall, there was not a strong relationship between average <2 mm fraction and 

sampling blocks distance from the inlet (Figure 29). A majority of samples have 80-100 

% <2 mm fractions regardless of sampling block distance from the inlet, aside from 

samples collected from sampling blocks 2, 3, and 4 that have much smaller <2 mm 

fractions. These blocks are located along the outside of the chute where sand and gravel 

splay deposits have accumulated. This relationship suggests that distances from the inlet 

<100 m have little effect on grain size distribution. Instead variations in grain size may be 

more effected by local variations in transport capacity and surrounding topography that 

influence flow directions and the degree to which either bed load or suspended load is 

delivering the sediment. 

 

 

Figure 29. Relationship between distance from the inlet and percent sediment <2 mm. 
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Metal Concentrations in Sediment. Of the 143 individual samples collected 

from sampling blocks, Pb concentrations range from 479 to 2,315 ppm with an average 

concentration of 1,142 ppm. Concentrations of Zn range from 567 to 4,745 ppm with an 

average concentration of 1,223 ppm. Higher Zn concentrations suggest inputs of 

contaminates originated from Leadwood and Desloge tailings piles, as expected (Table 

3). Concentrations of Ca ranged from 14,318 to 160,715 ppm with an average of 59,202 

ppm.  

The distribution of Pb concentrations is bi-modal with peaks at 900 ppm and 

1,400 ppm Pb (Figure 30). Typically, the samples associated with the first peak are from 

samples found in splay deposits produced by bed transport, while those in the second 

peak were collected in the west areas of the upper basin produced by suspended sediment 

transport. The distribution of Zn concentrations is normal with a peak at 1,200 ppm Zn 

(Figure 31).  The concentrations of Pb and Zn found in samples are significantly higher 

than the aquatic PEC for Pb (128 ppm) and Zn (459 ppm) established by MacDonald et 

al. (2000). Concentrations of Pb are also above the threshold limit of 400 ppm for 

residential soil in accordance with U.S. EPA Region 9 “Regional Screening Levels (RSL) 

for Chemical Contaminants at Superfund Sites” reported at 

http://www.epa.gov/region09/superfund/prg/index.html.  
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Figure 30. Distribution of Pb concentrations. 

 

 

Figure 31. Distribution of Zn concentrations.  
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Average concentrations of Pb, Zn, and Ca, along with Pb/Zn ratios, for each 

sampling event are summarized in Figures 32 and 33. Average concentrations of Pb in 

samples collected each sampling event ranges from 913 to 1,279 ppm, while average 

concentrations of Zn ranges from 1,188 to 1,410 ppm (Figure 32). The coefficient of 

variation for Pb in samples collected each sampling event ranges from 17.0 to 36.9 % and 

averages 18.4% over the entire study period, indicating a relatively low variability of Pb 

concentrations in basin sediments. More variability was found for Zn concentrations in 

samples between sampling events with coefficient of variations ranging from 10.6 to 

77.4%. However the average concentrations over the entire study period showed little 

variation (16.5%).  

Similar to concentrations of Zn, Ca concentrations were the more variable 

between sampling events, however, Ca concentrations were more variable over the entire 

sampling period (Figure 33). The coefficient of variation for Ca ranges from 40.9 to 

69.5% with an average of 37.7%. Ratios of Pb and Zn over the entire study period range 

from 1.0 to 1.3 with an average of 1.1, suggesting inputs of contaminates from Leadwood 

or Desloge tailings piles (Table 3; Figure 33). These concentration of Pb and Zn differ 

from those found in tailings stored at the National and Federal tailings piles where 

average Zn concentrations are lower (<450 ppm) and Pb/Zn ratios are higher (>3.0). 

Additionally, the Pb/Zn ratio over the entire study period suggest roughly equal inputs of 

Desloge and Leadwood mine tailings.  
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Figure 32. Average concentrations of Pb (top) and Zn (bottom) in block samples 

collected each sampling period with ± one standard deviation.  
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Figure 33. Average concentrations of Ca (top) and Pb/Zn ratios (bottom) of block 

samples collected each sampling period with ± one standard deviation.  
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Distribution of Contamination. Overall, sediment Pb concentrations tend to be 

lower near the inlet and increase with distance away from the inlet in the upper basin 

(Figure 34). Average Pb concentrations from individual sampling blocks over the entire 

study period range from 639 to 1,435 ppm with an average of 1,116 ppm (Table 10). The 

highest concentrations of Pb tend to be in samples collected from sampling blocks 11-18 

and 21-23 that have average concentrations greater than 1,200 ppm.  

Concentrations of Zn tend to follow similar trends as Pb concentrations with the 

greatest concentrations being from the same samples, although the overall pattern appears 

more random (Figure 35). Average Zn concentrations from individual blocks over the 

entire study period range from 905 to 1,818 ppm with an average of 1,231 (Table 11). 

Variations of average Pb and Zn over the entire study period are small with coefficients 

of variation of 18.4% and 16.5% respectively. This suggests that the river sediment load 

entering the basin system contains relatively consistent levels of Pb and Zn and that both 

mining and natural sediment supplies are well mixed.   

To determine the mass of Pb and Zn stored in deposited sediment and at what 

rates, metal storage and mass deposition rates of sediment <2 mm were estimated from 

individual sampling block samples that had minimal amounts of sediment >2 mm (<5%). 

The mass of Pb stored on individual blocks ranges from 0.27 to 8.59 g. The mass of Zn 

stored on individual blocks ranges from 0.30 to 9.20 g. The mass deposition rates of Pb 

and Zn associated with the mass of metal stored ranges from 0.003 to 0.089 g/cm2/yr for 

Pb and from 0.003 to 0.95 g/cm2/yr for Zn. The mass of Pb and Zn stored in those 

deposits does not represent the total mass of Pb and Zn stored throughout the upper basin  
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Figure 34. Location of sampling blocks (top) and average Pb concentration of sampling 

block deposits in the upper basin (bottom). 
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Table 10. Sampling block Pb concentrations. 

Block     
XRF Pb 

(ppm) 
    

CV 

(%) 

Avg. Pb 

(ppm) 

ID 8/4/15 9/17/15 12/14/15 1/21/16 7/8/16 
8/4/15 - 7/8/16 

8/4/15 - 

7/8/16 

SB1 1134 677 905 NA NA 25.2 1033 

SB2 1050 1167 821 1415 887 22.2 981 

SB3 1416 896 819 NA 942.5 26.5 1018 

SB4 678 725 514 NA NA 17.3 639 

SB5 1159 931 914 NA 676 21.4 920 

SB6 1030 1306 1732 829 2276 40.4 1435 

SB7 1129 1054 1183 NA 1374.5 11.6 1185 

SB8 1019 808 1168 479 NA 34.4 869 

SB9 1107 964 630 NA 739 25.1 860 

SB10 1089 853 732 1865 1246 38.3 1157 

SB11 1064 1390 1747 1023 1243 22.7 1293 

SB12 1342 1352 1629 537 1343 33.2 1241 

SB13 1087 1316 2315 759 1417 42.2 1379 

SB14 1174 1331 1782 NA 1148 21.6 1261 

SB15 1420 1290 1652 870 1403 21.7 1282 

SB16 1194 1239 1682 645 1252 30.7 1236 

SB17 1318 1247 1621 1051 1087 18.0 1265 

SB18 1484 1354 1369 991 1265 14.4 1293 

SB19 928 NA NA 797 1100 16.1 942 

SB20 922 1254 1357 999 1093 15.9 1125 

SB21 1346 1283 1499 929 1394 16.8 1290 

SB22 1232 1430 1532 654 1228 28.0 1215 

SB23 1382 1387 1573 883 1146 20.9 1274 

SB24 1151 774 600 736 715 26.3 795 

SB25 828 NA 925 970 NA 8.0 908 

n 25 23 24 18 21 25 25 

mean 1147 1132 1279 913 1189 24.0 1116 

Stdev. 195 245 471 321 337 8.8 205 

CV% 17.0 21.7 36.9 35.2 28.3 36.8 18.4 

 



 

86 

 

Figure 35. Location of sampling blocks (top) and average Zn concentration of sampling 

block deposits in the upper basin (bottom). 
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Table 11. Sampling block Zn concentrations. 

Block     
XRF Zn 

(ppm) 
    

CV 

(%) 

Avg. Zn 

(ppm) 

ID 8/4/15 9/17/15 12/14/15 1/21/16 7/8/16 
8/4/15 – 

7/8/16 

8/4/15 - 

7/8/16 

SB1 1150 707 1798 NA NA 45.0 1218 

SB2 1105 1242 778 927 815 20.2 973 

SB3 1220 806 1079 NA 752 23.1 964 

SB4 854 1815 773 NA NA 50.5 1147 

SB5 1255 1190 1303 NA 890 16.0 1160 

SB6 1143 1439 1855 1043 2466 36.7 1589 

SB7 1123 1175 1726 NA 1449 20.3 1368 

SB8 1072 955 1249 633 NA 26.5 977 

SB9 1082 1705 930 NA 567 44.3 1071 

SB10 1233 1255 929 4745 928 90.4 1818 

SB11 1172 1319 1697 1258 1241 15.5 1337 

SB12 1233 1304 1537 801 1208 21.9 1217 

SB13 1089 1133 2605 645 1342 54.3 1363 

SB14 1242 1213 1730 NA 1248 18.3 1358 

SB15 1304 1162 1624 765 1393 25.5 1250 

SB16 1109 1111 1668 906 1183 23.7 1195 

SB17 1257 1091 1623 1094 944 21.7 1202 

SB18 1440 1177 1200 868 1155 17.4 1168 

SB19 1153 NA NA 1066 935 10.4 1051 

SB20 1316 1101 1494 1145 965 17.0 1204 

SB21 1225 1110 1473 1043 1448 15.4 1260 

SB22 1228 1518 1402 987 1279 15.6 1283 

SB23 1472 1182 1539 1516 1115 14.7 1365 

SB24 1176 1148 747 779 675 26.3 905 

SB25 1050 NA 1071 1053 NA 1.1 1058 

n 25 23 24 18 21 25 25 

mean 1188 1211 1410 1182 1143 26.9 1220 

Stdev. 126 245 431 915 395 18.4 201 

CV% 10.6 20.3 30.6 77.4 34.6 68.3 16.5 
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since Pb and Zn is also stored in sediment >2 mm. However, it does help obtain a general 

idea of the rate at which Pb and Zn is being stored.  

Grain Size-Metal Relationship. To check for the possibility that mining chat 

tailings might contain significant levels of Pb and Zn, the 2-16 mm fraction for selected 

samples was evaluated. The 2-16 mm fraction of 12 samples were analyzed for Pb and 

Zn. Of the 12 samples, Pb concentrations ranged from 606 to 3,072 ppm with an average 

of 1,714 ppm. Only two of those samples had a lower concentrations of Pb in the 2-16 

mm fraction compared to the <2 mm fraction (Table 12 and 13; Figure 36). Additionally, 

the Pb concentration in the 2-16 mm sediment from the sample containing the lowest <2 

mm fraction (40%) had the highest concentration (3,072 ppm Pb) among all samples (n = 

165). Concentrations of Zn range from 634 to 1,752 ppm with an average of 1,042 ppm. 

Concentrations of Zn in 2-16 mm fraction did not consistently have higher Zn 

concentrations in <2 mm fraction, such as the case with Pb concentrations. However, 

there were still only 4 samples with lower Zn concentrations in the 2-16 mm fraction 

compared to the <2 mm fraction (Figure 36).  

These findings indicate that in coarse deposits, the 2-16 mm fraction can provide 

significant storage of Pb and Zn. Samples with significant (>10%) coarse sediment (2-16 

mm) were used to compare differences in Pb and Zn storage between fine (<2 mm) and 

coarse sediment (Table 12 and 13). Coarse sediment deposited in the upper basin can 

account for 29 to 87% of Pb stored and 26 to 72% of Zn stored in lateral accretion and 

splay deposits. Overall, these differences show that coarse sediment can account for large 

percentages of Pb and Zn storage and indicate the importance of coarse grained sediment 

as a source of Pb and Zn contamination in the Big River. 
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Figure 36. Relationship between concentrations of Pb (top) and Zn (bottom) in sediment 

2-16 mm and <2 mm.  
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Flood Influence on Sediment Deposition 

Flood events exert a dominant control over sediment deposition on floodplains 

(Benedetti, 2003; Nardi et al., 2006; Wohl, 2014). The action of flowing water during 

flooding events mediates geomorphic processes the transfer sediment and develop 

floodplains (Curtis et al., 2013; Hupp et al., 2015). In the past it was generally believed 

that rare extreme flood events were the most important in depositing sediment to develop 

landforms, such as floodplains (Asselman and Middelkoop, 1998). However, Wolman 

and Miller (1960) stated a more accurate sense of the overall effectiveness of geomorphic 

processes should not only include rare extreme flood events, but also events of moderate 

magnitudes that occur more frequently.  

Flood Magnitude. The peak gage height of the largest flood event between each 

sampling period was compared to the average depth of sediment deposited on sampling 

blocks. There was a moderately strong relationship between the two with more sediment 

deposited after larger magnitude floods (Figure 37). The largest magnitude flood had the 

highest average sediment depth and the smallest magnitude flood had the lowest average 

sediment depth. A stronger relationship is found between the cumulative peak gage 

height of flood events between sampling periods and the average depth of sediment 

deposited on sampling blocks (Figure 38). The cumulative peak gage height helps 

account for smaller magnitude floods that may have occurred between sampling events 

with multiple flood events. Differences in average sediment depth between similar 

magnitude floods may influenced by the frequency or duration of floods between 

sampling periods.  
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Figure 37.  Relationship between peak gage height and average sediment depth. 

 

 

Figure 38. Relationship between cumulative peak gage height and average sediment 

depth.  
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Flood Frequency.  The frequency of flooding events controls the number of 

opportunities for sediment to be deposited in the basin system. Although, the relationship 

between the number of floods and average sediment depth for each sampling period is not 

significant, more floods generally deposited more sediment (Figure 39). The differences 

in sediment depths for sampling periods with the same number of floods can be explained 

by the magnitude of the flooding events. The December 2015 sampling event had the 

same number of floods as the January 2016 sampling event, however, the peak gage 

height for the January 2016 event was double that of the two floods for the December 

2015 event. This suggests that flood magnitude has a stronger influence on sediment 

deposition and that flood frequency has little effect, if any, on sediment deposition.  

 

 

Figure 39. Relationship between number of flood events and average sediment depth.  
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Flood Period Duration. The duration of flooding events had the strongest 

influence on average sediment depths (Figure 40). Generally, more sediment was 

deposited on sampling blocks the longer the basin was inundated. The biggest difference 

in average sediment depths for sampling events that had similar inundation lengths could 

be due to the magnitude of flooding events. The flooding events that deposited sediment 

measured during the December 2015 sampling event had a lower peak gage height 

compared to the flooding events that deposited sediment for the September 2015 

sampling event (Figure 37). This is further supported by the flood record over the study 

period that suggests that inundation times are strongly related to cumulative peak gage 

heights (Figure 41). 

 

Figure 40. Relationship between days basin was inundated and average sediment depth.  
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Figure 41. Relationship between cumulative peak gage stage at Desloge and days the 

basin was inundated. 
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into the upper basin. Lowering and grading of the floodplain created areas in the upper 

basin and lower basin where water tended to pond and allow suspended sediment to settle 

out. It also created a sand and fine-gravel splay deposition area in the upper basin near 

the inlet and chute. Erosion of the bank and expansion of the inlet have contributed an 

additional supply of sediment to the upper basin. Together these modifications have 

increased sediment supply to the basin system, thus increasing sediment deposition. 

Differences in sediment deposition throughout the upper basin can be contributed 

to one or more of the following factors: flood magnitude, frequency, or duration 

(Benedetti, 2003; Baborowski et al., 2007; Curtis et al., 2013). Generally, an increase in 

any of those factors could increase deposition rates (Asselman and Middelkoop, 1998; 

Lecce and Pavlowsky, 2001; Curtis et al., 2013).  Flood and sedimentation data suggest 

that cumulative peak gage height (flood magnitude) and flood durations have the 

strongest influence on sediment deposition, while flood frequency has little to no 

influence on sediment deposition.  However, fluctuations in flood factors and complex 

topography may contribute irregular rates and patterns of sediment deposition (Lecce and 

Pavlowsky, 2004; Dennis et al, 2009; Sear et al., 2010). Also, the small sample size that 

spans a relatively short period makes it difficult to determine the exact influence of those 

factors on sediment deposition in the basin system. A better relationship could be 

determined with a larger number of sampling events.  

Even though it is a small sample size, mangers could use the relationship between 

cumulative peak gage heights and duration of inundation of the basin system to roughly 

estimate the volume of sediment available for dredging. This was relationship was used 

to estimate the volume of sediment deposited during flooding events over the study 
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period (Table 14). The cumulative peak gage height between sampling events was used to 

estimate the duration the basin was inundated, which then used the linear regression from 

Figure 40 to estimate the average sediment depth. That average depth was multiplied by 

the surface area of the sampling block boundary to produce an estimated volume of 

sediment trapped. Overall, this produced an estimated 1,815 m3 of sediment trapped in 

the upper basin over the entire study period, which is almost identical the volume 

estimated from direct sampling block measurements.  

 

Table 14. Estimated sediment storage during the study period using flood characteristics.  

Sampling Event  
Cumulative Peak 
Gage Height (m) 

Estimated 

Days 

Inundated 

Estimated Avg. 

Sediment Depth 

(cm) 

Estimated 

Sediment Storage 

(m3) 

Aug. 2015 15.89 4.9 8.0 505 

Sept. 2015 5.11 0.5 2.2 140 

Dec. 2015 6.03 1.3 3.3 206 

Jan. 2016 11.28 4.4 7.3 459 

July. 2016 15.83 5.0 8.0 505 
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Longitudinal Basin Trends 

Sediment Depth. Sediment depths recorded through the entire sediment basin 

system represent deposition from construction (April 2015) to November 21, 2016. 

Sediment depths range from 1 to 56 cm with an average depth of 27 cm (Figure 42; Table 

15). Generally, larger sediment depths were recorded closer to the inlet and decreased 

with distance from the inlet, although the relationship is not strong (Figure 43). This 

decrease typically occurs due to decreases in transport capacity and sediment supply as 

flow velocities decrease with increasing distance from the inlet. However, several 

samples collected in the flood way and lower basin had sediment depths over 30 cm. 

Variations in sediment depths is large with a CV of 61.7% and may be affected by non-

random sampling and variations in post-construction topography, such as depressions or 

ruts that may have filled in locally.  

Sediment Size. The majority (>95%) of sediment deposited throughout the flood 

way and lower basin is <2 mm in diameter (Table 15). Variations of <2 mm in these 

samples is small with a CV of 14.4%. Generally, the percent of sediment >2 mm 

decreases with increasing distance from the inlet (Figure 43). Samples with sediment 

larger than 2 mm in lower basin may be due to scouring and incision of the flood way 

introducing coarse grained material or may have been inherited as a result of construction 

of the basin system. This would help explain why some samples located farther from the 

inlet contain more coarse material (2-16 mm) than others at similar locations. 
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Figure 42. Depth of sediment throughout the entire basin system since construction.  
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Table 15. Sediment data of samples collected throughout the basin system.  

ID 
Depth 

(cm) 

>2 mm 

(%) 
<2 mm (%) Pb (ppm) Zn (ppm) 

Pb/Zn 

ratio 

V1 30 41.8 58.2 880 1,511 0.6 

V2 23 0.0 100 1,513 1,517 1.0 

V3 40 0.0 100 1,488 1,468 1.0 

V4 44 13.0 87.0 831 990 0.8 

V5 22 16.9 83.1 830 823 1.0 

V6 51 46.8 53.2 1,265 765 1.7 

V7 56 10.6 89.4 1,063 1,095 1.0 

V8 33 12.9 87.1 840 875 1.0 

V9 40 0 100 1,618 1,343 1.2 

V10 25 7.0 93.0 971 1,165 0.8 

V11 28 5.7 94.3 657 612 1.1 

V12 5 0 100 1,739 1,792 1.0 

V13 47 6.1 93.9 758 871 0.9 

V14 5 2.6 97.4 1,586 1,549 1.0 

V15 4 20.6 79.4 1,308 1,238 1.1 

V16 40 0.7 99.3 1,130 1,260 0.9 

V17 32 0.2 99.8 532 610 0.9 

V18 1 0 100 1,507 1,225 1.2 

V19 15 0 100 888 916 1.0 

V20 10 0 100 1,626 1,333 1.2 

V21 7 0 100 1,611 1,255 1.3 

V22 35 3.3 96.7 1,135 654 1.7 

n 22 22 22 22 22 22 

mean 27 8.6 91.4 1172 1130.3 1.1 

Stdev. 17 13.1 13.1 369 335 0.3 

CV% 61.7 153.6 14.4 31.5 29.6 24.5 
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Figure 43. Relationship between inlet distance and depth (top), texture (middle), and Pb 

concentrations (bottom). 
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 Sediment samples collected in the upper basin vary from 53% to 100% <2 mm. 

This variation in the upper basin is similar to sampling block trends with coarser material 

being deposited near the inlet and along the outside of the chute as sand and gravel splay 

deposits. This pattern of grain size distribution suggest that flows through the basin 

system usually have enough energy to transport and deposit coarse grained material in the 

upper basin, but not throughout the rest of basin system. This could be due to decreases in 

transport capacity and sediment supply as distance from the inlet increases and 

differences in inundation frequencies for different areas of the basin system.  

Contamination. Of the 22 samples collected from the upper to lower basin, Pb 

concentrations range from 532 ppm to 1,739 ppm with an average concentration of 1,172 

ppm (Table 15). Concentrations of Zn ranged from 610 ppm to 1,792 ppm with an 

average of 1,130 ppm. High concentration of Pb (>1,500 ppm) and Zn (>1,200 ppm) are 

found throughout the entire basin system (Figures 43, 44 and 45). Huggins (2016) also 

found similar concentrations of Pb and Zn in floodplain soils at the site (pre-construction) 

with an average Pb concentration of 1,257 ppm and average Zn concentration of 1,118 

ppm. The ratio of Pb and Zn ranges from 0.6 to 1.7 with an average ratio of 1.1, 

suggesting inputs of mining waste from the Leadwood and Desloge tailings piles and 

possible Elvins tailings pile (Table 3). Overall, concentration of Pb and Zn and Pb/Zn 

ratios are comparable to the concentrations of sampling block samples and suggest that 

highly contaminated sediment is deposited throughout the entire basin system. 
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Figure 44. Concentrations of Pb in samples collected throughout the basin system. 
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Figure 45. Concentrations of Zn in samples collected throughout the basin system. 
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Storage. Together, the upper basin, well-drained flood way, lower basin, and 

poorly-drained flood way cover an area of approximately 22,000 m2 (Figure 46; Table 

16). The volume of contaminated sediment stored in the upper basin (865 m3) has already 

been estimated from repeat surveys. The volume of contaminated sediment stored in the 

rest of basin system is roughly 3,800 m3. However, similar to sampling block 

measurements, the average sediment depths used to calculate sediment storage in these 

areas only measured zero or positive depths and are limited in number, thus, sediment 

storage may be overestimated or not accurately represent storage over the entire area.    

Most areas of the basin system account for 13-25% of sediment stored, beside the 

poorly-drained flood way that only accounts for a small percentage (4.5%) of sediment 

stored (Table 16). This suggests that sediment is being stored throughout the entire basin 

system and not solely in the upper basin, which is important to know when determining 

areas to dredge. Overall, the total volume of sediment trapped in the basin system is only 

a very small percent (0.1%) of the estimated 3,700,000 m3 of contaminated sediment 

stored in the channel of the Big River and 170,000 m3 of contaminated sediment stored in 

the channel of the Flat River.  
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Figure 46. Basin system sediment storage areas.  
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Table 16. Summary of sediment storage in basin system. 

Location ID 
Area 

(m2) 

Avg. Depth 

(m) 

Vol. 

Stored 

(m3) 

Storage 

(%) 

 

RTK Upper Basin 

Boundary 

1 7,100 0.122 865 18.4 

North Upper Basin 2 2,100 0.430 903 19.2 

East Well-Drained Flood 

Way 
3 2,400 0.260 624 13.2 

Well-Drained Flood Way 4 2,900 0.313 908 19.3 

Lower Basin 5 4,800 0.250 1,200 25.5 

Poorly-Drained Flood 

Way 

 

6 2,500 0.085 213 4.5 

Total  6 21,800 
0.243 

(Avg.) 
4,712 100 

 

 

Controls on Longitudinal Deposition Patterns. Typically, the depth of 

floodplain deposits tend to decrease across the floodplain with distance from the channel 

as a function of roughness and decreasing suspended sediment concentrations (Piegay et 

al., 2008; Wohl, 2014). However, due to fluctuations of flood characteristics that control 

the amount of sediment transported and deposited, patterns of floodplain sedimentation 

are variable (Dennis et al, 2009; Sear et al., 2010).  Also, complex topography and 

variable geometry of floodplains contribute to irregular rates and patterns of sediment 

deposition that result from the combination of diffusion, convection, and variations in the 

time and depth of inundation (Lecce and Pavlowsky, 2004). 

Even though the sedimentation basin system is not a typical or “natural” 

floodplain, the same processes control the longitudinal patterns of sedimentation and 

contamination. Generally, cumulative peak stage and duration the basin is inundated 
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controls the amount of sediment transported and deposited, and patterns of sedimentation 

(Figure 38 and 40). Larger magnitude floods tend to inundate the basin system for longer 

periods and have a larger transport competence and capacity that allows more time for 

more sediment to be deposited (Figure 41). They also tend to deposit larger quantities of 

coarse material as splays or chute bars compared to smaller magnitude floods. Thus, 

areas that were more frequently inundated like the upper basin, generally had larger 

sediment depths and coarser sediment deposits compared to the rest of the basin system 

(Figure 42; Table 15). The upper basin is also closer to the channel thalweg of the Big 

River which may be directing coarse material into the primary inlet.  

Irregular deposition patterns and amount of sediment deposited over the entire 

basin system is also controlled by topography and roughness. Differences in topography 

and roughness at certain areas or features in the basin system promote either deposition or 

erosion due to differences in flow velocities. Typically, sediment deposition is quite small 

on basin slopes located alongside of the main flow areas due to higher elevations that 

experience lower flow velocities and are less frequently inundated. On the other hand, 

areas in the floodway that experience increased flow velocities and increased transport 

rates due to local increases in slope, like at sampling sites V10 and V11 where little 

sediment was deposited (Figure 42). While sampling sites V16 and V17, which are 

located in relatively flat areas of the flood way where flow velocities decrease and 

promote deposition, had greater sediment deposition (Figure 42). 
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Study Period Deposition Rates 

Sediment deposition was not uniform over the upper basin. Instead, there are 

certain locations within the upper basin that experience net erosion, such as the bank, and 

areas with both higher and lower deposition rates compared to the entire upper basin 

(Table 17; Figure 47). Since there are distinct differences in the amount and texture of 

sediment deposited, the upper basin was divided into high deposition and low deposition 

areas (Figure 47). Annual deposition rates were calculated for those areas in addition to 

the upper basin as a whole. 

The annual deposition rate for the entire upper basin was estimated to be 10.3 

cm/yr (Table 17).  The high deposition splay area has an average depth of 26.0 cm and 

annual deposition rate of 22.0 cm/yr. The low deposition west area has an average depth 

of 6.2 cm and annual deposition rate of 5.2 cm/yr. Differences in average sediment 

depths and deposition rates can be attributed to more erosion occurring over a larger area 

in the low deposition area compared to the high deposition area. Also, smaller, more 

uniform depths of sediment are found in the west area with very few places where 

sediment deposition is >40 cm.  

 

Table 17. Deposition rates for areas of the upper basin. 

Location 
Length of record 

(days) 

Avg. Depth 

(cm) 
Rate (cm/yr) 

Upper Basin 432 12.2 10.3 

Sampling Blocks (Avg.) 434 28.0 23.6 

High Deposition Area 432 26.0 22.0 

Low Deposition Area 432 6.2 5.2 
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Annual deposition rates were also calculated from sampling block data. Sampling 

blocks measures deposition that occurred over the course of 434 days (May 1, 2015 – 

July 8, 2016). The annual deposition rate estimated from induvial sampling block depths 

ranged from 2.1 to 50.5 cm/yr with an average of 23.6 cm/yr (Table 17). It is important to 

note that only deposition rates calculated from repeat surveys take erosion into account 

when determining the average depth of sediment deposition, which help explain the 

higher average sediment depths for sampling blocks that produce higher sedimentation 

rates. Also, the frequency and magnitude of flooding events varied over the sampling 

block period and survey period, and deposited varying amounts of sediment.  

Most deposition rates estimated for the upper basin are greater than contemporary 

deposition rates estimated for natural floodplains, which range from 0.3 mm/yr to 1.0 

cm/yr (Table 2). The only exception is a deposition rate of 10 cm/yr estimated by 

Florsheim and Mount (2002). However, that deposition rate was estimated for a 

floodplain where the levee was intentionally breached to increase connectivity with the 

channel and enhance sediment deposition. That deposition rate is more likely to compare 

to deposition rates estimated for the upper basin due to the fact that both floodplains were 

modified to enhance sediment deposition by lowering bank height at the primary inlet.  

Contemporary deposition rates estimated for the upper basin are also greater than 

long-term deposition rates estimated from cores collected at the study site prior to 

construction of the basin system (Table 18; Figure 48). The long-term deposition rates 

ranged from 0.1 to 2.5 cm/yr with an average of 0.8 cm/yr. The average long-term 

deposition rate at the site is less than half of the lowest deposition rate estimated for an 

individual sampling block and about five times less than the deposition rate estimated for 
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the low deposition zone. The large differences in deposition rates between natural 

floodplains and pre-construction study site, help confirm enhanced sediment deposition 

in the upper basin  

 

Table 18. Long-term deposition rates at the BRLRS site.   

Core Top Elevation (m asl) 
Total Length 

(cm) 
Post-196 Depth (cm) Rate (cm/yr) 

9 203.32 140 55 1.1 

11 202.23 144 125 2.5 

12 202.03 175 25 0.5 

13 202.66 216 5 0.1 

17 203.66 110 5 0.1 

Avg. 202.78 157 43 0.8 
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Figure 48. Location of cores collected in 2014.  
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Basin Mitigation Effectiveness 

The sedimentation basin system was constructed to allow increased water and 

sediment to enter the basin during high flows compared to a natural floodplain. Since 

construction of the basin in April 2015, there has been enhanced sediment deposition in 

the upper basin. Sediment in the upper basin is being deposited at greater rates compared 

to pre-construction deposition rates. The increase in sediment deposition is due to 

increased connectivity with the channel and the high frequency, magnitude, and duration 

of flooding events that occurred over the study period. This suggests that during the study 

period the basin system is operating as intended. 

Overall, the basin system is trapping mining contaminated sediment. Sediment 

samples collected throughout the entire basin system contained high concentrations of Pb 

and Zn (>1,000 ppm). Also, both highly contaminated fine tailings and chat are being 

trapped in the basin system. As expected due to the location of the inlet above Flat River, 

the Pb/Zn ratio suggests the source of contaminated sediment is likely upstream on the 

Big River from mines at Desloge and Leadwood and not from the Flat River.  

Even though the rates of sediment deposition are relatively high and sediment 

being trapped is highly contaminated, it may not be significant compared to the amount 

of contaminated sediment stored in Big River. Pavlowsky et al. (2010) estimated that 

there is about 3,700,000 m3 of contaminated sediment is stored in the channel and about 

86,800,000 m3 is stored in floodplains. Hill (2016) estimated 170,000 m3 of contaminated 

sediment is stored as channel and bar deposits in the Flat River. Given that total basin 

storage per year is about 4,700 m3, contaminated sediment trapped in the basin system 

represent a very small percent (0.005%) of the total volume of contaminated sediment in 
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the Big River and Flat River. Assuming the rate of deposition remains the same, it would 

take roughly 820 years to just trap all the contaminated sediment stored in the channel of 

the Big River and Flat River, not including floodplain storage. Averages of two sites 

upstream of the study site on the Big River at Leadwood and Desloge results in an 

estimated contaminated channel sediment storage volume of 432,000 m3 (Pavlowsky et 

al., 2010). When just this storage is considered, only 1.1% of the contaminated sediment 

was trapped over the study period and would take roughly 90 years to trap all the 

contaminated sediment stored in the channel of the Big River upstream of the study site.  

However, this study covered an odd period when floods were five times more 

common than an average year. Thus, the deposition rate reported here may be higher than 

expected and will probably be lower in future years, depending on flood frequency and 

stage. Nonetheless, it is not reasonable to expect the basin system to trap all the 

contaminated sediment within the Big River, however, it underscores the long-term 

severity of contamination in the watershed and how difficult it is to remediate.  
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CHAPTER 6 – SUMMARY AND CONCLUSIONS 

 

Historical mining in the Old Lead Belt created a serious contamination within the 

Big River watershed by introducing large quantities of metal-rich sediment to local 

streams. While it is known that sediment in the Big River is contaminated, little is known 

about the patterns and rates of contaminated sediment deposition on floodplains, 

especially those that have been modified for remediation purposes. This studied evaluated 

the influence of flood characteristics and floodplain topography on contemporary 

deposition patterns and rates in a sedimentation basin system constructed within a 

floodplain along the Big River that was designed to trapped contaminated during flood 

events and reduce Pb exposure downstream.  

Sediment traps were used to sample sediment deposited during flooding events 

and to measure sediment deposition. GIS analysis was also used to calculate sediment 

deposition and sediment storage from repeat topographic survey data, and to analyze the 

patterns and rates of sedimentation throughout the basin system. From Sept. 17, 2016 to 

Nov. 22, 2016 sediment deposition ranged from -140.2 to 87.8 cm with an average of 

12.2 cm (negative values indicates erosion). Areas of erosion are associated with the 

expansion of the primary inlet may be the result of a shifting thalweg towards the left 

bank. The surveys covered approximately 7,100 m2 where approximately 865 m3 of 

sediment has been stored. A majority of the sediment is being stored as splay deposits 

near the inlet and chute, leading toward the basin channel. This pattern of sediment 

storage can be observed from both sampling block data and topographic surveys. There is 

approximately 4,700 m3 of sediment stored throughout the basin system (22,000 m2) with 
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a majority of the sediment deposited <2 mm in diameter. These deposits contain high 

concentrations of Pb and Zn (>1,000 ppm). High concentrations of Pb and Zn were also 

found in sediment 2-16 mm in diameter.  

Deposition rates in the upper basin estimated from topographic surveys ranged 

from 5.2 to 22.0 cm/yr with an average deposition rate of 10.3 cm/yr. Average deposition 

rate estimated from sampling block data was 23.6 cm/yr. These deposition rates are 

greater than those of natural floodplains in the U.S and Europe, and of long-term rates 

estimated for floodplains at the study site before construction of remediation structures. 

Even though sediment is currently being deposited at a faster rate and sediment trapped in 

the basin system is contaminated, the volume of contaminated sediment trapped may be 

insignificant compared to the total volume of sediment stored in the Big River watershed.  

 

Key Findings 

The key findings of this study include:   

1) Flooding events have occurred more frequently than a normal year. It is 

expected that an average of 1-3 flooding events occur a year. However, there 

were 15 flooding events over the course of a year and half. NOAA predicts an 

increase in intense rainfall events in the Ozark region in the future which 

suggest this trend in flooding events will continue (Kennedy, 2014; 

Mallakpour and Villarini, 2015). 

  

2) The upper basin is accumulating sediment at greater rates than natural 

floodplains, which typically are no more than a few centimeters per year 

(Piegay et al., 2008; Wohl, 2014). However, deposition rates for the upper 

basin average 10.3 cm/yr. These deposition rates are also greater than long-

term floodplain deposition rates at the study site which range from 0.1 to 2.5 

cm/yr.  

 

3) The duration of inundation of the upper basin had the strongest influence on 

sediment deposition (r2 = 0.80). More sediment was deposited the longer the 

basin was inundated. The duration was largely controlled by cumulative peak 
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stage, which also had a moderately strong influence (r2 = 0.61) on sediment 

deposition. The frequency of flooding had little to no effect on sediment 

deposition. Overall, sediment deposition in the upper basin can be simply 

estimated using the cumulative peak stage of all floods between sampling 

events. 

 

4) There was relatively weak (r2 = 0.43) relationship between sediment depths 

and distance from the inlet. Typically, floodplain deposits tend to decrease 

across the floodplain with distance from the channel as a function of 

roughness and decreasing suspended sediment concentrations (Piegay et al., 

2008; Wohl, 2014). However, due to fluctuations in magnitude and duration 

of flooding events that control the amount of sediment deposited and 

variations in post-construction topography, patterns and rates of sediment 

deposition throughout the basin system is varied. Mixtures of overbank and 

splay deposition may have also clouded this trend. 

 

5) Sediment deposited in the basin system is highly contaminated from historical 

mining activity. The EPA threshold for Pb in soils where children are present 

is 400 ppm. The aquatic PEC for Pb established by MacDonald et al. (2000) is 

128 ppm. Concentrations of Pb average 1,142 ppm, indicating a significant 

threat to human and riparian ecosystem health.  

 

6) Generally, the finest sediment and tailings particles tend to contain the highest 

concentrations of heavy metals (Smith and Schumacher, 1993). However, 

concentrations of Pb and Zn > 1,000 ppm were found in both coarse (2-16 

mm) and fine (<2 mm) sediments. Coarse sediment found in splay deposits 

can account for 29 to 87% of Pb stored and 26 to 72% of Zn stored, indicating 

that chat tailings can provide a significant source of Pb and Zn in Big River 

channel sediment.  

 

7) The sedimentation basin system is only trapping a very small percent (1.1%) 

of the contaminated sediment stored in the channel of the Big River upstream 

of the study site. Over a little more than a year, approximately 4,700 m3 of 

sediment was trapped in the basin system compared to the 432,000 m3 of 

sediment stored in the channel of the Big River upstream of the study site as 

estimated by Pavlowsky et al. (2010).  
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Future Work 

This study provided a detailed analysis of sediment deposition rates and patterns 

within the basin system and the factors that influence sediment deposition. However, it is 

important to discuss the future work that needs to be conducted to better understand the 

current flood regime and associated deposition rates. The flood record over the study 

period shows flooding events occurring more frequently and at larger magnitudes than 

the average expected for a given year. Contemporary sedimentation rates under this 

recent flood record were estimated to be much greater than that of natural floodplains. 

This is due to a combination of the basin system being constructed to enhance deposition 

and an increase in flood frequency and magnitude. Sediment deposition from flooding 

events were studied over a relatively short period so it is uncertain whether this trend in 

deposition and flooding events will continue. However, NOAA and others predict a trend 

in increased intense rainfall events in the Ozark region (Kennedy, 2014; Mallakpour and 

Villarini, 2015). Therefore, it is important to continue monitoring flooding events and 

sediment deposition over a longer period.  

It is also important to assess the design of the basin system and discuss potential 

improvements that could be useful to similar remediation structures. This is one of the 

first basin systems designed as a long-term remediation effort of Pb contamination due to 

historical mining activities. Results of this study suggest that the basin system is 

effectively trapping significant amounts of sediment and that sediment contains high 

concentrations of Pb and Zn. However, the amount of contaminated sediment trapped 

represents only a small fraction of the total amount of contaminated sediment stored in 

the Big River watershed. Also, the bank along the upper basin has gone through episodes 
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of erosion during the study period due to large magnitude floods, which may affect long-

term stability of the bank. The effect of primary inlet expansion due to erosion on basin 

function is not clear. Thus, it may be beneficial for future similar basin systems to be 

designed to handle larger, more frequent flooding events.  Additionally, it is difficult to 

monitor and observe the basin system during flooding events. While there was a USGS 

gaging station in close proximity to the study site, it is difficult understand flow rates and 

patterns through the basin system as a result of various magnitude flooding events. So, it 

might be useful to implement some type of stage monitoring equipment throughout the 

basin system. Exploring these ideas may improve the results of this study by better 

understanding the influences of local flood regime and topography on sedimentation and 

also improve future remediation projects using similar structures.   
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APPENDICES 

 

Appendix A – Photo Log  

 

Upper basin with road cutting through looking upstream (11/21/16).  

 

Upper basin bank looking downstream (9/17/15).  
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Basin inlet looking upstream (12/14/15). 

 

Upper basin chute and splay deposits (7/8/16).  
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Finer-grained splay deposits north of the road in upper basin (12/14/15).  

 

West ponding area in upper basin (12/14/15). 
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Sampling block 25 with erosion around block (9/17/15).  

 

Basin inlet during early flood stages (12/14/15).  
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Erosion of inlet around large woody debris (12/14/15). 

 

Well-drained flood way at upper basin boundary (12/14/15).  
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Headcut within well-drained flood way looking back towards the upper basin (12/14/15).  

 

Lower basin wet all year long (12/14/15).  
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Newberry-type rocked riffle (1/21/16).  

 

Lower inlet in lower basin (12/14/15).  
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Poorly-drained flood way (12/14/15). 

 

Debris jam blocking primary outlet (12/14/15). 
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Primary outlet to Big River from culverts (12/14/15).  

 

Concrete spillway (11/21/16). 
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Appendix B – Sediment Sample Grain Size Distribution 

 

Sample >16 mm 8-16 mm 4-8 mm 2-4 mm <2 mm 

ID (%) (%) (%) (%) (%) 

BR JV 1 - - 1.2 2.4 96.4 

BR JV 2 - 1.9 1.9 1.3 94.9 

BR JV 3 - 1.5 4.5 10.5 83.5 

BR JV 4 4.3 6.2 11.7 11.5 66.3 

BR JV 5 2.1 5.9 9.8 12.1 70.1 

BR JV 6 4.9 6.9 13.0 15.0 60.3 

BR JV 7 - - 0.5 0.5 99.0 

BR JV 8 - - 1.1 1.6 97.3 

BR JV 9 - - - 0.5 99.5 

BR JV 10 - 0.5 0.7 1.6 97.3 

BR JV 11 - - - - 100 

BR JV 12 - - 1.5 1.0 97.5 

BR JV 13 - - - - 100 

BR JV 14 - - 0.6 0.6 98.9 

BR JV 15 - - - - 100 

BR JV 16 - - 1.0 1.9 97.1 

BR JV 17 - - - 1.5 98.5 

BR JV 18 - 0.6 1.7 3.4 94.4 

BR JV 19 - - - - 100 

BR JV 20 - - - - 100 

BR JV 21 - - - - 100 

BR JV 22 - - - - 100 

BR JV 23 - - 0.2 0.2 99.6 

BR JV 24 - - - - 100 

BR JV 25 - 0.3 0.3 0.3 99.1 

BR JV 26 - - - - 100 

BR JV 27 - - - 0.4 99.6 

BR JV 28 - - - 0.3 99.7 

BR JV 29 - - 0.5 0.5 98.9 

BR JV 30 - 0.3 1.0 0.3 98.4 

BR JV 31 - - 0.8 - 99.2 

BR JV 32 2.3 0.2 0.1 0.1 97.4 

BR JV 33 - - 0.4 - 99.6 

BR JV 34 - - - - 100 

BR JV 35 - - 1.0 1.0 98.1 

BR JV 36 - - - - 100 

BR JV 37 - 1.3 - - 98.7 
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Appendix B Sediment Sample Grain Size Distribution 

Sample >16 mm 8-16 mm 4-8 mm 2-4 mm <2 mm 

ID (%) (%) (%) (%) (%) 

BR JV 38 - - - - 100 

BR JV 39 - - 0.5 0.5 99.1 

BR JV 40 - - 1.4 0.5 98.2 

BR JV 41 - - - - 100 

BR JV 42 - 0.6 2.5 5.0 91.9 

BR JV 43 23.9 10.4 7.9 8.2 49.6 

BR JV 44 2.8 5.1 6.9 10.7 74.5 

BR JV 45 - 1.4 2.7 2.9 93.0 

BR JV 46 - - - - 100 

BR JV 47 - - - - 100 

BR JV 48 - - 0.2 0.2 99.6 

BR JV 49 - - - - 100 

BR JV 50 - - 0.3 0.3 99.5 

BR JV 51 - 0.7 0.4 1.1 97.8 

BR JV 52 - - 0.6 3.1 96.2 

BR JV 53 - - - - 100 

BR JV 54 - - - - 100 

BR JV 55 - - - - 100 

BR JV 56 - - - - 100 

BR JV 57 - - - - 100 

BR JV 58 - - - - 100 

BR JV 59 - - - - 100 

BR JV 60 - - - - 100 

BR JV 61 - - - - 100 

BR JV 62 - - - - 100 

BR JV 63 - - - - 100 

BR JV 64 - - - - 100 

BR JV 65 - - - - 100 

BR JV 66 - - 0.2 1.4 98.4 

BR JV 67 - - 1.2 2.6 96.2 

BR JV 68 - - 0.5 0.3 99.2 

BR JV 69 6.2 - 3.7 3.3 86.7 

BR JV 70 8.2 13.9 10.6 9.6 57.7 

BR JV 71 15.8 12.6 13.6 13.0 45.1 

BR JV 72 - - 0.5 1.4 98.2 

BR JV 73 - - - - 100 

BR JV 74 - - - 0.7 99.3 

BR JV 75 - - - - 100 
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Appendix B Sediment Sample Grain Size Distribution 

Sample >16 mm 8-16 mm 4-8 mm 2-4 mm <2 mm 

ID (%) (%) (%) (%) (%) 

BR JV 76 - - - 0.2 99.8 

BR JV 77 - - 0.2 0.5 99.3 

BR JV 78 - - - - 100 

BR JV 79 - - - - 100 

BR JV 80 - - - - 100 

BR JV 81 - - - - 100 

BR JV 82 - - - - 100 

BR JV 83 - - - - 100 

BR JV 84 - - - - 100 

BR JV 85 - - - - 100 

BR JV 86 - - - 1.6 98.4 

BR JV 87 - - - - 100 

BR JV 88 - - - - 100 

BR JV 89 - - - - 100 

BR JV 90 - - - 0.8 99.2 

BR JV 91 - - 0.3 0.8 99.0 

BR JV 92 18.0 9.0 14.8 13.9 44.2 

BR JV 93 23.4 7.2 8.4 9.3 51.8 

BR JV 94 - - 0.5 0.9 98.6 

BR JV 95 - - - 0.8 99.2 

BR JV 96 - - 1.6 3.9 94.5 

BR JV 97 - - 0.4 1.5 98.1 

BR JV 98 - 2.7 2.7 3.4 91.3 

BR JV 99 1.9 1.0 2.6 4.0 90.5 

BR JV 100 - - 0.4 0.4 99.1 

BR JV 101 - - - 0.4 99.6 

BR JV 102 - 0.9 0.9 - 98.1 

BR JV 103 - - 2.0 4.5 93.5 

BR JV 104 - - - - 100 

BR JV 105 - - - 0.4 99.6 

BR JV 106 - - - - 100 

BR JV 107 - - - - 100 

BR JV 108 - - - 0.4 99.6 

BR JV 109 - - - 1.1 98.9 

BR JV 110 - 0.5 0.5 1.2 97.8 

BR JV 111 3.8 0.7 3.8 6.5 85.1 

BR JV 112 - 11.4 17.7 21.5 49.5 

BR JV 113 - 10.7 19.2 21.6 48.5 
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Appendix B Sediment Sample Grain Size Distribution 

Sample >16 mm 8-16 mm 4-8 mm 2-4 mm <2 mm 

ID (%) (%) (%) (%) (%) 

BR JV 114 23.4 9.6 13.1 13.2 40.8 

BR JV 115 14.9 9.8 13.8 14.3 47.2 

BR JV 116 - 0.2 1.0 2.9 95.9 

BR JV 117 - - - - 100 

BR JV 118 - - - 0.7 99.3 

BR JV 119 - - - 0.4 99.6 

BR JV 120 - - 0.1 1.6 98.2 

BR JV 121 - 1.3 4.9 16.8 76.9 

BR JV 122 - - - - 100 

BR JV 123 - - - - 100 

BR JV 124 - - - - 100 

BR JV 125 - - - - 100 

BR JV 126 - - - - 100 

BR JV 127 - - - - 100 

BR JV 128 - - - - 100 

BR JV 129 - - - - 100 

BR JV 130 - - - - 100 

BR JV 131 - - - 0.4 99.6 

BR JV 132 - - - - 100 

BR JV 133 - - - - 100 

BR JV 134 - - - - 100 

BR JV 135 - - - - 100 

BR JV 136 - - - - 100 

BR JV 137 - - - 0.5 99.5 

BR JV 138 - - - 0.5 99.5 

BR JV 139 - - - - 100 

BR JV 140 - - - - 100 

BR JV 141 - - - - 100 

BR JV 142 - - - - 100 

BR JV 143 - 1.3 5.4 9.7 83.6 

BR JV 144 - 6.9 17.7 17.3 58.2 

BR JV 145 - - - - 100 

BR JV 146 - - - - 100 

BR JV 147 4.3 0.9 4.0 7.5 83.2 

BR JV 148 - 0.6 4.4 11.9 83.1 

BR JV 149 11.7 4.9 14.1 22.3 47.0 

BR JV 150 1.6 1.4 2.3 6.8 88.0 

BR JV 151 - 1.5 2.9 8.5 87.1 
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Appendix B Sediment Sample Grain Size Distribution 

Sample >16 mm 8-16 mm 4-8 mm 2-4 mm <2 mm 

ID (%) (%) (%) (%) (%) 

BR JV 152 - - - - 100 

BR JV 153 - 0.7 2.3 3.9 93.0 

BR JV 154 - 0.2 1.5 4.0 94.3 

BR JV 155 - - - - 100 

BR JV 156 - - 2.3 3.8 93.9 

BR JV 157 - 1.5 0.5 0.5 97.4 

BR JV 158 5.3 3.7 9.5 6.3 75.3 

BR JV 159 - - - 0.7 99.3 

BR JV 160 - - - 0.2 99.8 

BR JV 161 - - - - 100 

BR JV 162 - - - - 100 

BR JV 163 - - - - 100 

BR JV 164 - - - - 100 

BR JV 165 21.4 1.4 0.6 0.6 76.0 
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Appendix C – Sediment Sample Geochemistry  

Sample Pb Zn Ca 

ID ppm ppm ppm 

BR JV 1 1,363 1,247 34,558 

BR JV 2 906 1,052 85,491 

BR JV 3 1,399 1,332 32,452 

BR JV 4 702 877 94,724 

BR JV 5 1,416 1,220 51,052 

BR JV 6 678 854 123,634 

BR JV 7 1,527 1,467 36,431 

BR JV 8 792 1,043 99,032 

BR JV 9 1,285 1,442 32,629 

BR JV 10 776 843 84,859 

BR JV 11 1,390 1,311 34,342 

BR JV 12 869 935 113,175 

BR JV 13 1,190 1,151 29,819 

BR JV 14 849 993 83,195 

BR JV 15 1,396 1,337 27,652 

BR JV 16 818 826 98,213 

BR JV 17 1,411 1,385 37,540 

BR JV 18 768 1,081 91,337 

BR JV 19 1,282 1,418 36,596 

BR JV 20 846 925 53,798 

BR JV 21 1,342 1,233 32,819 

BR JV 22 1,306 1,212 33,481 

BR JV 23 868 966 49,899 

BR JV 24 1,440 1,290 31,342 

BR JV 25 909 1,194 52,856 

BR JV 26 1,420 1,304 44,592 

BR JV 27 1,194 1,109 29,543 

BR JV 28 1,318 1,257 22,073 

BR JV 29 1,484 1,440 29,903 

BR JV 30 928 1,153 38,600 

BR JV 31 1,014 934 17,663 

BR JV 32 830 1,697 77,342 

BR JV 33 1,346 1,225 22,568 

BR JV 34 1,324 1,229 34,553 

BR JV 35 1,141 1,227 38,564 

BR JV 36 1,523 1,767 27,364 

BR JV 37 1,241 1,176 34,906 
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Appendix C Sediment Sample Geochemistry 

Sample Pb Zn Ca 

ID ppm ppm ppm 

BR JV 38 1,378 1,356 29,322 

BR JV 39 924 995 92,222 

BR JV 40 828 1,050 93,191 

BR JV 41 677 707 82,403 

BR JV 42 1,167 1,242 40,081 

BR JV 43 896 806 89,851 

BR JV 44 724 1,815 104,983 

BR JV 45 931 1,190 90,204 

BR JV 46 1,508 1,464 49,621 

BR JV 47 1,103 1,414 57,186 

BR JV 48 1,054 1,175 71,305 

BR JV 49 808 955 81,753 

BR JV 50 964 1,705 104,600 

BR JV 51 859 1,103 90,795 

BR JV 52 847 1,406 74,937 

BR JV 53 1,390 1,319 40,860 

BR JV 54 1,352 1,304 34,121 

BR JV 55 1,316 1,133 34,891 

BR JV 56 1,331 1,213 37,197 

BR JV 57 1,359 1,255 38,582 

BR JV 58 1,221 1,068 46,303 

BR JV 59 1,239 1,111 19,310 

BR JV 60 1,246 1,091 20,856 

BR JV 61 1,354 1,177 26,633 

BR JV 62 1,254 1,101 26,495 

BR JV 63 1,283 1,110 18,893 

BR JV 64 1,430 1,518 35,239 

BR JV 65 1,387 1,182 23,604 

BR JV 66 693 1,054 66,253 

BR JV 67 854 1,241 71,219 

BR JV 68 905 1,798 60,823 

BR JV 69 821 778 75,417 

BR JV 70 819 1,079 67,246 

BR JV 71 514 773 78,570 

BR JV 72 914 1,303 57,656 

BR JV 73 1,732 1,855 56,819 

BR JV 74 1,183 1,726 63,266 

BR JV 75 1,168 1,249 57,128 
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Appendix C Sediment Sample Geochemistry 

Sample Pb Zn Ca 

ID ppm ppm ppm 

BR JV 76 630 930 101,373 

BR JV 77 732 929 108,932 

BR JV 78 1,747 1,697 33,247 

BR JV 79 1,629 1,537 35,902 

BR JV 80 2,315 2,605 45,329 

BR JV 81 1,782 1,730 42,220 

BR JV 82 1,652 1,624 24,526 

BR JV 83 1,682 1,668 24,802 

BR JV 84 1,621 1,623 26,023 

BR JV 85 1,369 1,200 32,647 

BR JV 86 1,357 1,494 26,916 

BR JV 87 1,499 1,473 24,605 

BR JV 88 1,532 1,402 41,001 

BR JV 89 1,573 1,539 35,736 

BR JV 90 600 747 123,924 

BR JV 91 925 1,071 110,206 

BR JV 92 1,415 927 143,927 

BR JV 93 829 1,043 160,715 

BR JV 94 479 633 19,473 

BR JV 95 1,865 4,745 37,270 

BR JV 96 1,023 1,258 105,439 

BR JV 97 537 801 95,940 

BR JV 98 759 645 138,500 

BR JV 99 870 765 139,561 

BR JV 100 645 906 81,628 

BR JV 101 811 1,054 95,410 

BR JV 102 1,290 1,134 26,208 

BR JV 103 991 868 89,684 

BR JV 104 797 1,066 86,614 

BR JV 105 859 931 83,067 

BR JV 106 1,138 1,358 41,968 

BR JV 107 929 1,043 73,889 

BR JV 108 654 987 93,502 

BR JV 109 883 1,516 63,074 

BR JV 110 736 779 120,338 

BR JV 111 970 1,053 126,086 

BR JV 112 657 767 102,236 

BR JV 113 1,117 862 98,102 
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Appendix C Sediment Sample Geochemistry 

Sample Pb Zn Ca 

ID ppm ppm ppm 

BR JV 114 964 777 117,408 

BR JV 115 921 726 134,590 

BR JV 116 676 890 94,728 

BR JV 117 2,276 2,466 40,017 

BR JV 118 1,287 1,408 56,099 

BR JV 119 1,462 1,489 46,247 

BR JV 120 739 567 123,017 

BR JV 121 1,246 928 119,217 

BR JV 122 1,243 1,241 42,624 

BR JV 123 1,348 1,222 28,203 

BR JV 124 1,337 1,194 29,610 

BR JV 125 1,417 1,342 31,761 

BR JV 126 1,148 1,248 62,273 

BR JV 127 1,403 1,393 28,805 

BR JV 128 1,303 1,296 22,226 

BR JV 129 1,201 1,069 21,039 

BR JV 130 1,087 944 15,336 

BR JV 131 1,265 1,155 21,427 

BR JV 132 1,100 935 20,432 

BR JV 133 1,038 909 14,318 

BR JV 134 1,148 1,020 16,287 

BR JV 135 1,399 1,313 24,464 

BR JV 136 1,392 1,263 53,920 

BR JV 137 1,471 1,682 30,921 

BR JV 138 1,313 1,533 34,285 

BR JV 139 1,277 1,182 35,002 

BR JV 140 1,178 1,375 29,596 

BR JV 141 1,322 1,148 35,486 

BR JV 142 970 1,081 63,540 

BR JV 143 715 675 104,609 

BR JV 144 880 1,511 86,361 

BR JV 145 1,513 1,517 35,925 

BR JV 146 1,488 1,468 36,290 

BR JV 147 831 990 103,636 

BR JV 148 830 823 77,618 

BR JV 149 1,265 765 149,200 

BR JV 150 1,063 1,095 55,617 

BR JV 151 840 875 104,713 
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Appendix C Sediment Sample Geochemistry 

Sample Pb Zn Ca 

ID ppm ppm ppm 

BR JV 152 1,618 1,343 31,576 

BR JV 153 971 1,165 64,659 

BR JV 154 657 612 158,141 

BR JV 155 1,739 1,792 47,291 

BR JV 156 758 871 84,717 

BR JV 157 1,586 1,549 45,519 

BR JV 158 1,308 1,238 45,831 

BR JV 159 1,130 1,260 60,231 

BR JV 160 532 610 75,020 

BR JV 161 1,507 1,225 30,501 

BR JV 162 888 916 47,923 

BR JV 163 1,626 1,333 35,210 

BR JV 164 1,611 1,255 23,425 

BR JV 165 1,135 654 16,933 
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