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Chapter 1
How sUAS Has Pushed Forward
On-Demand Low Altitude Remote Sensing
in Geography

Quinn Lewis, Kory Konsoer, and Michael Leitner

Abstract Geography has been fundamentally altered by the development, prolifer-
ation, and maturation of small unoccupied aerial systems (sUAS). sUAS range from
ultra-small, low-cost systems that provide simple still imagery used for qualitative
analysis to expensive, technologically advanced systems that provide data with high
spatial, temporal, and spectral resolutions. This chapter introduces and provides a
brief background on how the sUAS revolution has broadly affected Geography.
Background topics discussed include how sUAS fit among allied technologies like
satellite-based remote sensing; the power of sUAS to increase spatial, temporal, and
spectral resolution of imagery and image-derived data; the pros and cons of sUAS
methodology and tools; and legal and practical considerations for sUAS operation.
Book chapter contributions are then examined, before the future outlook of sUAS in
Geography and allied disciplines is discussed. This chapter emphasizes that sUAS
have brought on an era of “personal” or “on-demand” remote sensing, which has
been and will continue to be critical for scholarly and research activities in
Geography.
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1.1 Introduction

Geography is a broad and eclectic discipline, covering topics that include societies,
cultures, economics, politics, ecosystems, climatology, and geomorphology. Despite
the diversity in these subfields, the commonality among them is their inherent link to
spatial data. Whether quantifying the distribution of grain size in small rivers (Reid
et al., Chap. , this volume), assessing tourism activities for analysis of safety and
security (Song and Ko , and assessing the spatial extent of damage following a
natural hazard (Wagner and Doe, Chap this volume), geographers use this lens of
spatial analysis to conduct their research. Spatial data is central to any geographer’s
research, and thus the ways in which spatial data are obtained are a key methodo-
logical consideration within the discipline.

. 2,
2017)
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Traditionally, a trade-off has existed between spatial and temporal data resolution
and areal coverage of data (Goodchild 2011). Geographers must balance the cost of
obtaining data with the required amount of detail necessary to answer their research
questions in terms of money, time, and human resource investment. Often the nature
of questions that can be asked and answered depends on, or is limited by, the quality
and quantity of spatial data that can reasonably be obtained (Lloyd 2014). A study of
grain size distribution on a river point bar requires highly precise data at high
resolution over a small area (Woodget et al. 2018), a study of crowd dynamics and
individual movement requires nearly instantaneous data (Nagrare et al. 2021), and
studies focusing on natural hazards might require a combination both high-
resolution and large-scale data (Giordan et al. 2017). Improvements in technology
can help offset this relationship between data coverage and data resolution, and
geographers have often led this technological advancement with their close work on
and with geospatial technology like global positioning systems (GPS), geographic
information systems (GIS), and online spatial data capture and analysis (Goodchild
1991; Armstrong et al. 2019).

The development and maturation of small unoccupied aerial systems (sUAS)
represent a considerable expansion to the geographer’s toolkit. sUAS can bridge the
gap between large coverage and low detail spatial observation techniques, like
satellite imagery acquisition, with small coverage and high detail methods such as
on-the-ground surveying and close-range photogrammetry (Anderson et al. 2019).
sUAS can directly measure data such as spatial location through GPS or wind speed
and altitude from on-board sensors. When coupled with a high-resolution camera,
sUAS can obtain photographs that can be used for direct qualitative observation or
measurement of geographical data through construction of orthorectified photo-
graphs. Secondary data can be constructed with these images, such as three-
dimensional (3D) models computed with photogrammetric methods (Anderson
et al. 2019) and land cover/land usage information from orthophotograph interpre-
tation (Natesan et al. 2018). In addition, sUAS and sensor technology have
improved, while costs have decreased such that sUAS can be equipped with light
detection and ranging (lidar) and hyperspectral image capturing devices (Lewis et al.
2020). sUAS can also be rapidly employed or used in a variety of roles in a single



study, as they can be used to obtain spatial data on scales ranging from 100 to 103

square meters in a matter of minutes or be used to detect changes with high temporal
resolution. Thus, the combination of low cost, flexibility, ease of use, and variety of
equipped sensors characteristic of modern sUAS has helped to revolutionize the
ways in which geographers obtain and analyze spatial data.
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1.2 Background

Imagery is essential to many subdisciplines within Geography and is the basis for
much innovation provided by sUAS. Aerial photographs have been used to better
understand spatial relationships since the nineteenth century and is still commonly
used as a relatively simple and low-cost way to analyze landscapes and obtain spatial
data (Paine and Kiser 2012). Since the advent and development of orbital and
geo-stationary satellites starting in the 1960s and continuing to the present day
(including the 2021 launch of Landsat 9), geographers have also been able to obtain
imagery over large regions in the visible spectrum and beyond. Thus, as technologies
have improved, our improving ability to collect spatial data across various spatial
and temporal scales has transformed the science of Geography. For example, the
Landsat series of satellites provide remotely sensed data over large spatial extents,
yielding uniform gridded data with spatial resolutions ranging from 1 to 30 m (Lulla
1983; Masek et al. 2020). These satellites acquire different bands of electromagnetic
energy (multispectral), including visible light (blue, green, red), near-infrared (NIR),
shortwave infrared (SWIR), thermal infrared (TIR), and panchromatic. However,
satellites such as Landsat and other commonly used platforms in Geography have
significant drawbacks. Satellites not in a geosynchronous orbit are limited in tem-
poral resolution of the spatial data, which can be a major hindrance to studying many
aspects of geographic research. In addition, some geographic processes and land-
forms of interest change on time scales between seconds to days or on spatial scales
less than 1 square meter, meaning satellites are incapable of obtaining these data.

The spatial and temporal resolution of spatial data recorded with geodetic and
surveying equipment is not as limited as satellite data. Global Navigation Satellite
Systems (GNSS) have allowed researchers to directly collect spatial data in real-
world coordinates (e.g., latitude/longitude), and with the introduction of real-time
kinematic (RTK) and post-processed kinematic (PPK) solutions, these data can
obtain centimetric level accuracy. Traditional surveying techniques such as those
with a rod and level or laser surveying equipment can also achieve high spatial
accuracy, but these methods require direct line of sight between the surveyor and the
object and are thus time-consuming and challenging to use over large or diverse
terrains or in rapidly changing conditions. Terrestrial laser scanning (TLS) more
easily provides numerous data points quickly but also suffers from line-of-sight
requirements and can be prohibitively expensive (Lemmens 2011). Although GNSS,
traditional surveying, and TLS methods allow for highly accurate positional data,
acquisition time and accessibility to areas of scientific interest often limit the ability



to collect positional data over large areas. As a result, surveys of large areas are often
conducted using a sparse density of points or over multiple days or weeks during
which time the conditions of interests may have changed. Lidar- and camera-
equipped airplanes are also useful for obtaining high-resolution topographical infor-
mation over relatively large areas, but acquiring this data can be expensive and unfit
for certain situations, such as measurements of vertical landscape faces or when
details on the order of cm in size are of interest (Carter et al. 2018).
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One of the most important reasons why sUAS has been transformative in
Geography is their ability to bridge the spatial gap between ground-based measure-
ments and large-scale aerial photograph, satellite image, and lidar acquisition. The
major advantage of sUAS is their flexibility: sUAS can fly at altitudes ranging from
only a few meters to thousands of meters above the ground (within legal restrictions)
and can carry a range of sensors. Some sUAS can carry relatively heavy sensors, like
lidar systems complete with inertial measurement units (IMUs) that provide cm-level
accuracy (Lewis et al. 2020), though technological advancement continues to
decrease sensor size and allow for easier integration with light and low-cost systems.
sUAS can be deployed quickly and can be operated manually for a flight of only a
few minutes, which can be important for rapidly developing situations such as
disaster relief and hazard management (Tanzi et al. 2016). Yet they can also follow
detailed pre-planned flightpaths and with extra batteries and a field charging system
can fly for hours a day for many days in a row. This is a considerable advantage over
other methods that attempt to move beyond ground-based measurements, such as
pole photography (Visser et al. 2019), which has a limited altitude and coverage
area, and balloon-based photography (Boike and Yoshikawa 2003), which can be
difficult to finely control. As opposed to the relatively low spatial and temporal
resolution of satellite imagery, sUAS can essentially have an unlimited return period
and can obtain images with spatial resolution limited only by the quality of the
camera and the flight altitude.

There are significant disadvantages to using sUAS, however. These include legal
limits and requirements such as permission required to fly in restricted zones, flight
altitude restrictions, weight limits, flight time limits, the restriction to relatively light
(< about 20 kg) payloads, poor weather or atmospheric conditions, and technological
or piloting failures such as runaways and crashes. sUAS can operate in moderately
windy conditions (up to about 10 m/s), but excessive wind, rain, high elevations, and
shadows and sunlight glare can degrade the ability to fly the sUAS or the quality of
imagery obtained. While most consumer-grade sUAS are equipped with gimbals,
sUAS movement and rolling shutter effects of on-board cameras can also become an
issue for some image-processing techniques (Lewis et al. 2018). sUAS technology is
also still relatively young, so lack of technological support and rapid obsoletion of
systems can be a problem. Regardless of these drawbacks, many subfields of
Geography have benefitted immensely from the proliferation of sUAS (Green 2020).

sUAS are differentiated from “toy” sUAS and military/specialist UAS based on
weight. Toy sUAS (less than 0.55 lbs. in the United States) do not require licensure
to operate and rarely have sensors like cameras. Military-grade and specialist
commercial UAS (greater than 55 lbs. in the United States) require considerable



operational skills and legal permits to operate (Stöcker et al. 2017). Both fixed-wing
and propeller-driven (quad-, hexa-, or octo-copter) sUAS are commonly used for
research in Geography; fixed-wing aircraft generally are capable of longer flights
with heavier sensors than propeller-driven systems. Propeller-driven systems mimic
the advantages of helicopters over airplanes, mainly in their ability to hover and take
off/land in relatively close quarters, although continuing advancements in sUAS
technology have recently seen the development of a fixed-wing aircraft with vertical
take-off and landing (VTOL) capability (e.g., Wingtra; https://wingtra.com/). Both
types of commonly used sUAS can be relatively simple to operate, requiring only a
smartphone on the lower end of cost and on-board technology. On the higher end,
these systems can integrate RTK or PPK GNSS solutions as well as IMU data to
maintain high levels of positional accuracy – these systems are more complicated to
set up and operate and may require a team of researchers to fly and operate sensors
such as lidar or hyperspectral sensors.
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Given the relatively low cost and simplicity of basic sUAS commonly used for
research in Geography, it is not surprising that recreational use by citizens and by
those employed in industry or government is common. Citizens use sUAS for work
such as photography, real estate, and infrastructure monitoring (Lewis and Park
2018; Wood et al. 2021). The low cost of sUAS serves to equip these citizens with
tools that can be used for scientific purposes, and thus sUAS have the potential to
improve the quality and quantity of spatial data obtained from citizen science pro-
jects (Wood et al. 2021). Citizens can be directly involved with data acquisition, and
imagery already obtained by citizens can be used to support geographical research
(Lewis and Park 2018). Citizens equipped with sUAS can be especially helpful for
observation of geographical phenomena that occur rapidly or in difficult-to-access
locations, such as during natural hazards or political upheaval.

Both recreational and commercial/research operations of sUAS are subject to
legal restrictions to certain operations, which often are a significant limitation for
sUAS in Geography. Unless the sUAS is deemed a toy, in most countries licensing is
required to operate the sUAS for research or commercial purposes (Stöcker et al.
2017). Beyond licensure, the specifics of which differ based on country of operation
and sUAS registration, additional legal requirements such as maintaining clear sight
of the system or flying below a height ceiling based on operational airspace must be
followed. Permits are often available to remove or lessen some restrictions, but the
permitting process varies by country, is subject to frequent change, and will require
grounding of the system or limited operation until approved. Even when and where
flight operation of sUAS is legal, care should be taken to limit disturbance to people
or animals. When flying over or near a person’s property, consent should be
obtained, and notice should be given. In the case of a system crash, the operator is
usually required to pay for any additional damage caused beyond the damage to their
own system. Any fouling of the environment by crashes should be eliminated or
limited, for example, by retrieving all plastic and electronic parts of the wreckage.

Finally, since sUAS are still relatively new and rapidly evolving, there has been
some inconsistency in terminology used to describe them. The term “drone” is
commonly used outside of academia but can imply military-style systems which

https://wingtra.com/


could be perceived negatively (PytlikZillig et al. 2018). Authors have called sUAS
both systems and vehicles – we prefer the use of systems to indicate that operation of
sUAS often encompasses more than just controlling the vehicle. Additionally, the
terms “unmanned” and “unoccupied” have been used within the acronym, and
different acronyms such as remotely piloted aircraft/aerial systems (RPAS) have
been used. While “remotely piloted” agrees with the US-required “Remote Pilot
Certification” for government or commercial use (FAA Part 107), here we advocate
that the non-gendered term “unoccupied” should be preferred within the already
widely accepted acronym sUAS. The inconsistent terminology appears to be a
function of the diverse backgrounds of those who use these systems. While this
diversity is a strength, a consistent name could help strengthen the ties among these
diverse users. Thus, we use the term small unoccupied aerial systems (sUAS)
throughout this book.

6 Q. Lewis et al.

1.3 Chapter Contributions

One of the main purposes of this book is to highlight the various ways in which
sUAS are used for research within a diverse discipline such as Geography. In
addition to the chapters in this book presenting the most recent advancements in
the science, they also discuss certain identified constraints, challenges, and
workflows for conducting ethical, geographic research utilizing sUAS in the current
state of the science. Methodological standards and procedures, as well as regulations
and restrictions, are continually evolving as these technologies advance, and thus it
is recommended that geographers are diligent about being aware of any changes to
the operations of sUAS. The following paragraphs outline the organization of this
book and provide an overview of the details included in each of the chapter
contributions. Broadly, the chapters in this book have been organized into three
groupings: (1) sUAS with human dimensions; (2) methods for improved acquisition
and processing; and (3) topical methods within environmental and physical
Geography.

As an introduction into the policies, workflows, and ethical concerns of sUAS,
Chap. 2 focuses on applications to hazard environments. Locations recently
impacted by natural disasters are highly sensitive areas, as many of the communities
are still dealing with clean-up, repairs, relocation, and associated expenses.
Collecting time-sensitive sUAS-based information to assess damage and key data
necessary to evaluate the natural processes related to the disaster (e.g., tornado wind
speed) requires coordination with emergency managers and law enforcement, as
well as permissions from landowners. Obtaining these data also requires tact and
ethical consideration prior to and during sUAS operation (Wagner and Doe, Chap. 2,
this volume). As sUAS technologies improve and costs decrease, the ability of
citizens to engage in the scientific process is rapidly expanding. While citizen
science has been around for many years, the involvement of citizens in the science
typically does not extend beyond the acquisition of the data. Chapter 3 explores



aspects of citizen science as it relates to sUAS, examining different case studies
where citizen involvement varied. The authors found that when community mem-
bers were engaged in collection, processing, and ownership of the results, public
perceptions of the studies were improved and the community members were more
confident in addressing and solving local challenges (Bunting et al., Chap. 3, this
volume). sUAS also have great utility for human-cultural research that can allow for
an interdisciplinary approach of qualitative and quantitative techniques. Chapter 4
presents a geoarchaeological example of using sUAS for rapid site reconnaissance,
site assessment, and repeat monitoring of Native American archaeological sites
within coastal Louisiana (Konsoer et al., Chap. 4, this volume). Through the
examples given in the chapter, the authors discuss the challenges of conducting
geoarchaeological research within coastal wetlands that are being rapidly modified
due to land subsidence, sea level rise, coastal erosion, and direct anthropogenic
alterations and how the use of sUAS can help overcome some of these challenges.
This chapter also discusses the benefits of sUAS for training and educating under-
graduate students in interdisciplinary science, as well as the benefits to engaging and
collaborating with coastal communities and native tribes.
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The continued advancements of sUAS with different payload integrations have
resulted in increasingly larger datasets obtained with higher resolution, requiring
software and methods for processing and visualizing those data to similarly expand
and improve. Photogrammetric techniques such as structure from motion (SfM)
allow for generation of three-dimensional point clouds, digital elevation models,
and orthophoto mosaics. There are currently multiple options (open-source and
commercial) available for such software packages. To evaluate the performance of
these different softwares, the authors of Chap. 5 conduct a systematic investigation
of five software packages using sUAS data acquired from three states within the
United States across various land cover types (Li and McKinney, Chap. 5, this
volume). Their findings revealed that when given identical input imagery, consid-
erable differences were obtained in the final output products from the different
software and that these results varied depending on land cover type. Another
important consideration in achieving accurate sUAS-derived products is the selec-
tion of various flight plan parameters within the mission design. Chapter 6 evaluates
the accuracy of digital surface models (DSM) derived from sUAS-SfM acquired
from various mission designs using different image overlap, flight path orientation,
and image obliqueness (Hostens et al., Chap. 6, this volume). Using a case study for
the North Fork of the White River in south-central Missouri, USA, the authors
demonstrate that relatively simple mission designs, with 80% image overlap and
roughly 20-degree image obliqueness, resulted in more accurate DSM and consid-
erably reduced post-processing time.

The third grouping of chapters starts with an example of how sUAS can be
beneficial in the study and monitoring of oil and gas wells for environmental quality
and compliance. Specifically, Chap. 7 presents examples of how sUAS, as well as
pole aerial photography (PAP), can be used to create orthomosaics, 3D models of
vegetation and elevation, and 360-degree low altitude video to aid in the inspection
and evaluation of oil and gas wellpads on US Forest Service grasslands to determine



necessary remediation efforts (Baynard et al., Chap. 7, this volume). The authors
show how these techniques can improve efficiency in site investigations and provide
improved coordination and planning for regulators, thereby limiting environmental
damage throughout the life cycle of oil and gas wells. Chapter 8 focuses on another
aspect of environmental impacts related to slow-moving landslides and soil erosion
from agricultural lands. The processes of slow mass wasting and soil erosion via rill
formation are often difficult to measure directly over relatively large areas because
the scales of change are often less than a few centimeters (Stumvoll et al., Chap. 8,
this volume). In such cases, the use of sUAS-based lidar measurements can greatly
improve the spatial and temporal resolution allowing for differencing of elevation
models to quantify rates of erosion.
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Perhaps one of the most impacted disciplines in Geography by the proliferation of
sUAS for scientific research is the various subfields of geomorphology. While the
reasons for the quick adoption of sUAS techniques in these fields are apparent,
namely, high-resolution spatiotemporal data and relative ease of acquisition, the
applications and boundaries for sUAS have been and will continue to be pushed
forward. Chapters 9, 10 and 11 provide detailed discussions on the state of the art of
sUAS research in polar and cryosphere environments (Gaffey et al., Chap. 9, this
volume), coastal environments (Smith et al., Chap. 10, this volume), and riverine
environments (Reid et al., Chap. 11, this volume) and present various advantages
and disadvantages, as well as future directions for sUAS in the study of geomorphic
systems. As pointed out in Chaps. 9 and 10, sUAS are now an invaluable tool for
studying rapid changes to glaciers, permafrost, coastal dunes, and vegetation due to
contemporary climate change. Chapter 11 reveals how sUAS provide opportunities
to investigate smaller rivers within densely forested landscapes that were previously
extremely difficult to study but offer tremendous insights into broader landscape
processes and aquatic and riparian ecosystem functioning.

1.4 Future Outlook for sUAS in Geography

Predicting the future of technology is rarely an exercise recalled fondly by those
making the forecast. However, the future of sUAS in Geography should be tied to
recent technological developments and the continuation of current experiments,
policies, and perspectives. Small-scale tests of state-of-the-art equipment and
research might foretell the future of sUAS, and rigorous testing and improvement
of these advancements might lead to widespread adoption within Geography and
allied disciplines. Three avenues of future development we think will be important
are (1) decreasing platform and sensor size, together with decreasing platform and
sensor costs, to increase sUAS capability and flexibility; (2) automating
communication between sUAS and operator and among numerous sUAS deployed
simultaneously; and (3) extension of sUAS to include user-friendly and inexpensive
land- and water-based platforms. All these technological avenues of expansion must



be carried out within the backdrop of changing societal, economic, and political
values and policies.
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One of the reasons why sUAS have become so important in Geography over the
last decade is their small size and inexpensive price. sUAS that could be considered
“pocket-sized” are already able to carry camera sensors that can capture in 4 K
quality and with high frame rates (30+ frames per second (fps)) (Stanković et al.
2021). Although decreasing the size of these sUAS further might make them more
vulnerable to adverse environmental conditions like high winds (Lewis et al. 2018),
it seems reasonable to predict that similarly sized sUAS will continue to become
more affordable. Smaller “microdrone” toy sUAS are common but are rarely
associated with high-quality sensors, yet a sUAS like the DJI Mini 2 can obtain
4 K 30 fps imagery even though it is less than 250 grams and thus not subject to
regulations that most sUAS must adhere to (Stanković et al. 2021). The future ability
of these very small UAS to have high-resolution sensors would be a significant
advancement in locations where it is difficult to operate the current generation of
sUAS such as mines, buildings, or dense forests (Shahmoradi et al. 2020). Another
way to increase the ability of sUAS is to bring down the size and cost of alternative
or additional sensors such as lidar and multi- or hyperspectral cameras or to increase
the cost-to-lifting power ratio of sUAS. Both developments would significantly
increase the ability of geographers to obtain novel landscape data. Finally, improve-
ments in battery capacity and recharging speed should continue.

A recent development in sUAS is the deployment of “drone swarms” that allow
for simultaneous control of numerous sUAS (Chen et al. 2020). These deployments
have become somewhat common for entertainment, such as for light shows during
events and celebrations (Waibel et al. 2017). While pre-programming sUAS swarms
is clearly already successful, current and future research is focused on using auto-
mated communication among sUAS and between operators to help in situations like
disaster relief (Chen et al. 2020). It is encouraging to envision a sUAS swarm that
can quickly and without cumbersome user input or operation search a large area and
alert first responders to the locations and condition of people in need. In general, it is
reasonable to predict that attempts to automate sUAS and sensor operation will
follow a path similar to the rapid expansion of road vehicles that actively assist the
driver and can even operate fully autonomously (Martínez-Díaz and Soriguera
2018). sUAS that can fly and obtain data with minimal input would be an important
advantage for situations that are difficult to pre-program and can change quickly
such as studies of severe weather such as tornadoes or floods, animal or human
tracking, or landslides.

The sUAS revolution in Geography has mostly taken place in the air. However,
unoccupied systems that traverse the land, water surface, or underwater (autonomous
underwater vehicles, AUVs) have been developed and could prove a useful tool in
Geography and allied disciplines (Wynn et al. 2014; Bimbraw 2015; Petillot et al.
2019). Remotely operated land systems could help obtain samples in difficult-to-
access locations, for example, samples in unstable soil on the verge of mass
movement. However, proliferation of unoccupied land-based systems might be



limited due to a relatively high cost compared to the relatively few situations where
they are needed. Water surface systems and AUVs can easily obtain water samples,
and sensors aboard these systems could allow for measurements that range from
simple (e.g., temperature) to complex and data-rich (e.g., high-resolution bathymetry
obtained with multibeam echo sounding) (Lucieer and Forrest 2016). However,
when it comes to photographic imagery, on- and in-water unoccupied systems
have a more limited use than sUAS because turbid waters and minimal light
conditions yield smaller fields of view. In addition, these systems (with
hydroacoustic sensors for bathymetric mapping) remain relatively costly and can
be challenging to operate due to the possible need to be tethered to the operator or the
potential to be affected by debris or hidden vegetation within the water (Wynn et al.
2014). While non-aerial systems may have a narrower application use than sUAS,
geographers can no doubt use these cutting-edge technologies to improve under-
standing of the natural and human environment.

10 Q. Lewis et al.

Finally, all predictions or expectations of how sUAS and similar technology
might develop are inextricably bound to political, economic, and social changes –
which are nearly impossible to predict. Policy governing the use of sUAS is subject
to rapid change and is inconsistent among countries. A prediction such as the
continued decrease in sUAS cost might be undermined by supply chain issues
such as those caused by the ongoing COVID-19 global pandemic (Sarkis 2020).
In contrast, the need to physically distance and other restrictions brought on by the
pandemic could also invigorate certain sUAS-based advances such as sUAS-based
package or food delivery (Kim et al. 2021). Ultimately, the future of any technology
will be based on the current state of the art while also being controlled to a large
extent by broad changes to society.

1.5 Conclusion

Small unoccupied aerial systems (sUAS) have provided geographers and those in
allied disciplines a cutting-edge and highly flexible platform from which to explore
new and exciting research. The ability to obtain imagery and imagery-derived data at
a spatial and temporal resolution controlled by the needs of the researchers is
unprecedented. While some technological, legal, and practical boundaries remain,
the proliferation of sUAS into Geography has brought on the era of “personal” or
“on-demand” low altitude remote sensing. The sUAS is now an essential part of the
geographer’s toolkit and will continue to support research into topics, processes, and
landscapes previously too complex or costly to characterize. A generation of under-
graduate and graduate students has also been trained in the use of sUAS, so a
formalized and rigorous approach to research with sUAS is both timely and neces-
sary. This book highlights the various ways sUAS are used in the study of diverse
subdisciplines within Geography.
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Chapter 2
UAS Policies, Workflows, and Challenges
in Hazard Environments

Melissa A. Wagner and Robert K. Doe

Abstract Disaster areas are highly sensitive and stressful areas that require coordi-
nating with emergency managers and law enforcement in order to successfully
operate and collect UAS-based damage information. Coordinating UAS operations
with government officials is key to (1) assisting these officials and other agencies
with regard to their specific needs, (2) gaining access to these highly sensitive areas,
and (3) staying up-to-date on airspace restrictions and other emergency operations.
This chapter discusses navigating UAS policy and operations (workflows) for
disaster monitoring and recovery and the challenges in the field based on years of
experience. We discuss the logistics needed to successfully perform sUAS-based
damage surveys in these highly sensitive areas. We present a robust workflow, which
includes preflight planning, flight operations, and data processing and dissemination,
for successful data collection in hazard environments. This workflow considers
sUAS operations and data collection in urban and rural environments as well as
the scale of operations. In rural environments, sUAS multispectral platforms are
better suited to assess high-wind and hail damage to vegetation based on spectral
response. Therefore, we include procedures for collecting and analyzing multispec-
tral data in remote locations. We present solutions for data suitability, curation,
formats, and distribution that are also cognizant of local, state, and federal agencies’
needs. Disseminating this knowledge is vital to both the transferability of method-
ology and the replication of data collection in the ever-changing landscape of policy,
legislation, and technology. We discuss the multiple challenges and limitations
experienced in post hazard environments.

Keywords sUAS · UAV · UAS workflow · UAS operational management · Data
collection · Natural hazards · UAS planning · Damage assessment

M. A. Wagner (*)
Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman,
OK, USA
e-mail: mawagner@ou.edu

R. K. Doe
School of Environmental Sciences, University of Liverpool, Liverpool, UK

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Konsoer et al. (eds.), sUAS Applications in Geography, Geotechnologies and the

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01976-0_2&domain=pdf
mailto:mawagner@ou.edu
https://doi.org/10.1007/978-3-031-01976-0_2#DOI


14 M. A. Wagner and R. K. Doe

2.1 Introduction

The last decade has seen exponential growth in the usage and application of sUAS/
UAV/sUAV (small unpiloted aerial systems/unpiloted aerial vehicles/small
unpiloted aerial vehicles) in (natural) hazard environments. For the context of this
chapter, we adopt the term sUAS meaning not only the sUAV platform itself but the
crew (e.g., pilot, visual observers (VO)) and connecting systems (e.g., flight mission
software, ground control station). We reserve the use of UAS to discussions on
policy and sensor-derived products even though the workflow presented here can be
applied to both UAS and sUAS. The uptake of sUAS is reflected not only in the
variety of technology available but the multitude of environments it can now be
applied to, including hazard environments. The development of micro-sensors for
monitoring, multi-band cameras, high pixel resolutions, as well as increased payload
capabilities, has led to this growth. More importantly, technological advancement,
increased vendor choice, and economies of scale have created relative affordability
especially for those on restrictive budgets. The appeal for the applied geographer has
therefore become greater, especially for those seeking to integrate such technology
within fieldwork/research or student field methods classes.

There are additional benefits, and one of these is customization. While some
equipment comes “plug and play” or “ready to go,” others are easily customizable to
the specific needs of the user or even open to further experimental innovation. Lastly,
the appeal to the applied geographer should be seen as ease of use. While we would
not say adopting sUAS-based fieldwork should be taken lightly, and it does present a
learning curve with some complexity, this is not too prohibitive to the novice. The
intuitive nature of this progressive technology allows one to learn quickly, but
standards, policy, and regulations discussed in this chapter should be adhered to in
the first instance.

There is certainly no “one size fits all” approach to using sUAS in the field, but on
the other hand, there is no end of possibilities for the applied geographer. There are
clear benefits in taking on a sUAS-driven approach to fieldwork, research, or in situ
experiments. The benefits include (1) gaining access to impassable or remote
locations that otherwise would have been very difficult; (2) identifying hazards
that would have been otherwise unobservable by ground or via the coarse resolution
of satellite imagery; (3) being able to cover large surface areas at high spatial and
temporal resolutions in a short time; (4) providing corroboration to ground-based site
investigations; (5) acquiring data for digital outputs for measurements and model-
ling, for example, structure from motion (SfM); and (6) providing assistance for the
management of hazard/emergency situations (Wagner et al. 2019).

There is much within the literature on the use of sUAS in monitoring and
management of natural environmental hazards. Some of this is documented by
Giordan et al. (2017), extending sUAS for search and rescue operations for missing
people (Jurecka and Niedzielski 2016), and including multipurpose sUAS for
mountain rescue operations (Silvagni et al. 2016). The use of sUAS has also been
applied to 3D reconstruction of structures, in particular for infrastructure and
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monuments after devastating earthquakes (Cabuk et al. 2007; Lambers et al. 2007;
Sauerbier and Eisenbeiss 2010; Remondino et al. 2011). Lastly, in more recent years,
there has been vital applications for sensing and assisting in wildfires (Akhloufi et al.
2021), to name but a few valuable examples.
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We write this chapter with a strong narrative, based on experience, multiple
fieldwork campaigns, successes, and failures. As with all experimental science, we
are always learning and developing, and this learning is enhanced as technology
improves. We write this to share experience and knowledge in the hope that other
geographers looking to start sUAS-based fieldwork in hazard environments for the
first time find inspiration to embrace this technology. As early adopters of sUAS for
multispectral tornado site investigations and customizing our own equipment for
fieldwork, we had a steep learning curve. This learning curve was related to
equipment selection, site logistics (see Fig. 2.1), devising new workflows, opera-
tional procedures, calibration techniques, as well as establishing the specific data
needed for storage, analysis, and a holistic result-driven approach.

This chapter examines, among other things, policy considerations and, for those
new to sUAS operations, development of workflows. A defined workflow is of
critical importance not only for safety but optimum efficiency, transferability, and
standards. Understanding how to develop your own workflow will undoubtedly lead
to successful application. Working in hazard environments can be stressful and
requires a degree of sensitivity in navigating these spaces. There will be many
challenges. We hope this chapter addresses a few of them and that, after reading it,
the reader will have confidence to tackle their own hazard research using UAS or
sUAS.

2.2 Policy

A feasibility study is required to assess whether the location in which you plan to
operate a UAS is viable based on the policy of operation for the country/region and
also airspace regulations. Country, regional, and local policies are well-documented
on the Internet, and some examples of these are included in the references. Airspace
policy is governed by aviation authorities and air traffic control. In the USA, the
Federal Aviation Administration (FAA) oversees national airspace regulations
including those governing UAS operations. Recent changes in federal UAS policy
require individuals who stand to gain any benefits from UAS operations (e.g.,
commercial use, research) to become certified remote pilots (FAA Part 107). Part
107 pilots can operate in class G airspace following FAA guidelines but will require
additional waivers and/or training to operate in restricted airspace (Fig. 2.2) o
outside FAA guidelines (e.g., UAS operations above 400 ft., nighttime flying).

While airspace can be checked using aeronautical navigational charts (e.g.,
Skyvector) and other online platforms (Federal Aviation Association (FAA) visual-
ize it), airspace regulations may be best approached via app-based information. Apps
like AirMap, Hover, B4UFLY (USA only), and Drone Assist (UK only) are a few



examples of the best way to identify airspace restrictions both in advance and on the
day of deployment (see useful web resources). For example, in the USA, some apps
(i.e., AirMap) may also include Low Altitude Authorization and Notification Capa-
bility (LAANC) authorizations, which automate the application and approval pro-
cess for authorizations in controlled airspace. These apps can streamline the
application process in LAANC-participating airports with rapid approvals when
operating below ceiling height restrictions.
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Fig. 2.1 Versatility of UAS technologies. (a) Robert Doe operating a high-resolution RGB UAS
for damage modelling at Shiloh Baptist Church in Longview, Texas, 2017, after tornado impact. (b)
Melissa Wagner operating at fixed-wing UAS equipped with visible and multispectral cameras for
vegetation damage assessment following the 25 March 2021 Sawyerville, AL, tornado. (c) Melissa
Wagner performing aerial videography reconnaissance to better delineate a tornado track and
determine a flight planning strategy. (All images depict and are copyright the authors: © Wagner/
Doe)

Special waivers may be required for real-time or near-real-time disaster response.
Obtaining authorizations to operate in restricted airspace could take days or weeks in
the case of non-LAANC-participating airports or other special use airspaces, espe-
cially following high-magnitude events. In the USA, UAS operators can apply for
Special Government Interest (SGIs) waivers (previously known as an Emergency



Certificate of Authorization (COA)) to quickly gain access in restricted airspace.
SGIs are approved by the FAA System Operations Support Center (SOSC) usually
within 1 hour or less from submission (FAA 2020). To qualify for this waiver, UAS
operations must support emergency response operations or a similar effort that
addresses exigent circumstances for public good. For example, SGI waivers can be
used to collect critical damage information via UAS, which can be shared with local
emergency managers to assist in their disaster response and recovery. These waivers
also help researchers collect data shortly after an event better addressing the perish-
able nature of disaster imagery as people are quick to clean up (Womble et al. 2018).
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Fig. 2.2 Airspace guidance for small UAS operators. (Courtesy US Department of Transportation,
Federal Aviation Administration. Airspace 101 – Rules of the Sky. Accessed 12 March 2021:
https://www.faa.gov/UAS/recreational_fliers/where_can_i_fly/airspace_101/)

In addition to airspace compliance, UAS operators must adhere to agency-
specific policies. Most agencies have institutional mandates to ensure safe and
efficient UAS operations that protect both the operator and public and establish a
code of conduct. For example, the National Oceanic and Atmospheric Administra-
tion (NOAA) Uncrewed Systems (UxS) has their own set of procedures for
obtaining approval to procure, operate, and maintain UAS (NOAA 2020). These
procedures require additional steps to mitigate potential risks and ensure safe
operations and apply to any UAS operations within or sponsored by NOAA. As
with any agency, these guidelines establish code of conduct for UAS operations that
protect both the operator and institution. Agencies may have additional requirements
with regard to UAS operations in disaster environments given the sensitive nature of
these areas. Therefore, UAS operators must adhere to their agency’s policies and
work with their institutions to understand disaster management protocol.

2.3 Equipment Considerations

Common sUAS platforms in disaster management include multi-rotor copters and
fixed wings (Fig. 2.3), with the former used more commonly for quick assessments
and small-scale mapping. Multi-rotor copters can be equipped with visible,

https://www.faa.gov/UAS/recreational_fliers/where_can_i_fly/airspace_101/


multispectral, or thermal cameras depending on the objective (see Table 2.1 and
Fig. 2.3a). These platforms traditionally carry single payloads but may handle dual
payloads.

18 M. A. Wagner and R. K. Doe

Fig. 2.3 UAS platform example of (a) quadcopter DJI Phantom 4 Pro and (b) fixed-wing Quantum
Trinity F90+. (Images (a) © Wagner/Doe and (b) © James Murnan)

Table 2.1 List of sensors commonly used on UAS and applications in disaster management and
research

Sensor Sensor specification Utility

Visible RGB True color imagery, videos

Multispectral RGB, red edge, near-
infrared

Vegetation mapping (detect vegetative stress/damage,
monitor health)

Thermal Infrared Thermal mapping; search and rescue detect humans and
animals

LiDAR Pulsed LiDAR 3D mapping, structural assessments, plant structure

Fixed-wing platforms are better suited to map large areas. These platforms can
cover significantly larger areas due to the longer battery life (45–90 min vs. 20–30-
min) and additional motors on board, leading to a more complete survey of the
event. For example, the Quantum Trinity F90+ is a fixed-wing platform that can map
up to 700 hectares at 120 m above ground level (AGL) during a single sortie (see
Fig. 2.3b). Fixed-wing platforms with vertical take-off and landing (VTOL) capa-
bilities can be especially advantageous in disaster-affected areas because they (1) are
easier to operate than traditional fixed-wing sUAS platforms, (2) can be deployed
with fewer limitations, and (3) do not require additional FAA waivers. Additionally,
fixed-wing platforms are better equipped to handle dual payloads, permitting dual-
data collections.

In addition to sUAS platforms, portable communication platforms are often
needed to support sUAS operations in disaster-affected areas. Mapping disaster-
affected areas requires an Internet connection to access aerial imagery used in
mission planning. Wi-Fi signals needed for mission planning, however, can be
weak or, depending on cellular service provider, non-existent. While Wi-Fi hotspots
(e.g., Jetpacks) may be sufficient to provide stable Internet connection, signals can
be especially problematic in remote locations or where existing communication



networks have been disrupted. Instead, portable communication platforms such as
the Plumcase can provide satellite communication needed to connect equipment in
areas of weak or limited signal as well as Internet connection for mission planning
operations. These platforms can also facilitate the secure transfer of high-wind
damage imagery in a timely manner (depending on bandwidth) to assist emergency
managers with disaster response and recovery.

2 UAS Policies, Workflows, and Challenges in Hazard Environments 19

2.4 Workflow

2.4.1 Preflight Planning

Figure 2.4 shows a simple but robust workflow of stages necessary for effective
operation and results. Stage 1 begins with site identification, permissions, and legal
compliance. The main points to consider with site identification are how safe it is to
get on site and how safe it is to operate while on site. While some planning can be
done before heading into the field using pre-event aerial imagery, site characteristics
can change rapidly, so a visual assessment in situ is recommended. When
establishing the site for take-off, landing, and flight operations, there should be
enough clearance to safely navigate any potential obstacles directly in or surround-
ing the flight path. For example, it is highly recommended to factor in an additional
horizontal distance in areas of tall vertical obstacles (e.g., forested areas, power lines)
to account for wind gusts or changes in wind direction during take-off or landing.
This is especially important with fixed wing with VTOL capabilities as these
platforms require sufficient clearance to transition from vertical to horizontal flight
and vice versa. In addition to visual assessments, you should also consult aeronau-
tical navigational charts for any potential obstacles such as cellular towers or other
communication antennas that could lie within or close to your flight path. Lastly, it is
important to choose a site in which the remote pilot in command (PIC) and VOs can

Fig. 2.4 Author defined UAS workflow beginning with site identification and permission (top left)
and concluding with results (bottom middle). (Workflow and images: © Wagner/Doe)



always maintain visual line of sight (VLOS) with the sUAS platform, unless
operating under a beyond visual line of sight (BVLOS) waiver, as well as a safe
distance from existing emergency operations.
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Working in collaboration with authorities is also a vital part of flight planning and
operations. Local authorities (e.g., emergency managers, first responders, law
enforcement) can provide guidance on the most effective site identification and
placement strategy for your mission. More importantly, coordinating with emer-
gency managers and other authorities can guide you toward a responsible data
collection strategy while also identifying their needs. Emergency managers can
provide access into sensitive or restricted areas as well as keep you up to date on
airspace restrictions or other emergency management operations (Wagner et al.
2019). For example, airspace regulations can change rapidly as a result of search
and rescue operations or aerial surveys that involve top government officials.
Additionally, emergency managers are overloaded with incoming information
while executing their operations (Wagner et al. 2019). Therefore, operating in hazard
environments also requires a degree of sensitivity to safely navigating these stressful
environments.

Other legal considerations include permission from landowners. If your site is on
public land, you do not need permission. However, you will need permissions from
property owners if taking-off or landing on their property. It is highly recommended
to obtain permissions via written consent from the property owner as a means of
documentation for you and the property owner. While you do not need permissions
to fly over disaster-affected property, it is important to let property owners know of
your objectives when feasible, given the high stress and emotional conditions
associated with these sites. Informing those affected by the disaster can also establish
trust especially in rural communities and ensure operations are not impeded (Wagner
et al. 2019).

Working in hazard environments, safety must be of utmost consideration, and
measures you take to mitigate risk are vital. It might be that you cannot position
yourself to effectively perform flight missions needed. This could be from issues
relating to VLOS to positional interference with the equipment or active emergency
operations. Additionally, it may be that you cannot receive the permission of the
landowner to operate from your selected site. The golden rule for this first stage of
the workflow is to (1) make sure you have permissions, (2) coordinate with emer-
gency managers, and (3) follow your safety checklist. Without these steps, you could
be operating illegally.

2.4.2 Flight Planning and Operations

Stage 2 of the workflow looks at flight planning. It is recommended to use a formal
flight plan to ensure all important checks are covered and therefore should be part of
your standard flight checklist. An example of a flight plan can be seen in the useful
web links section. Essentially, a flight plan is designed to perform the chosen runs



safely, with the aid of dedicated software and in accordance with VLOS monitoring
in order to achieve the results needed for the area of interest. For example, there is
much in the literature on workflow and best practices. Tmuši´ et al. (2020) present a
detailed review of a data collection workflow for environmental studies. In this
review, they examine two key challenges related to harmonizing and standardized
guidance for data collection as well as establish protocols that are applicable across a
broad range of environments and conditions.

2 UAS Policies, Workflows, and Challenges in Hazard Environments 21

Fig. 2.5 Example of flight planning for the Quantum Trinity F90+ using QBase 3D software.
Green lines, referred to as legs, show the specified trajectory of the Trinity F90+. (Qbase © Quan-
tum-Systems)

Careful strategic decisions are needed to ensure the flight plan is achievable in the
prevailing conditions. Figure 2.5 shows an example flight plan driven by operating
software. Santamaria et al. (2008) present a concise explanation of such a plan as
follows: “A flight plan specifies the path followed by the aircraft. Each flight plan is
composed of a sequence of stages, such as take-off, departure procedure and others,
which must come in correct order. Each flight plan stage is made up of a structured
collection of legs. The leg concept is . . . used to specify the trajectory followed by
the aircraft to reach a given waypoint from the preceding one. In the simplest case
this trajectory will be a straight line. All flights require a single main flight plan, but
additional emergency plans may be present. Emergency flight plans are partial plans,
i.e. they lack some initial stages, whose purpose is to provide alternative courses
when an emergency situation occurs.”

Indeed, the “emergency situation” plan is critical here, as, before any takeoff, it
should be established what the procedure would be in an emergency situation and
whether there are more than one viable alternative landing points should a mission
have to be aborted quickly. These additional procedures are extremely important in



disaster-affected areas given potential air traffic in these environments. Some flight
planning software such as QBase 3D integrates live air traffic with flight plans,
which can help increase operational awareness.
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Flight plans can also be tailored to specific data collection needs for disaster
assessments. Mapping products and 3D models are frequently used to examine
structural failure and vegetative damage. To achieve these 3D modeling capabilities,
imagery should be collected using front and side overlaps of 70% or greater. While
near-nadir camera angles may be sufficient for orthomosaics, it is highly
recommended to set the camera angle to 70% for detailed 3D modeling assessments
(Westoby et al. 2012; Carrivick et al. 2016). This oblique angle maximizes feature
information collected by minimizing data loss normally obscured by shadows or
with near-nadir angles (Milas 2017). There is much in the literature on flight
planning and software-driven approaches. Links are included at the end of the
chapter.

2.4.3 Calibration

Stage 3 of our workflow relates to calibration of the equipment and is an important
part of equipment checks, maintenance, and data quality. Critical applications
require the highest level of accuracy that is achievable; therefore it is important to
regularly calibrate any sensor used for data collection (Yamamoto et al. 2015).
Calibration of UAS equipment should follow the guidelines set by the manufacturer.
Compass or magnetometer calibrations are an important part of equipment mainte-
nance and function because they align the UAS platforms to magnetic north. These
calibrations are usually conducted if it is the equipment’s first flight, you have moved
locations, or it has been a few weeks since your last flight. Equipment calibrations
may also address operating errors observed during flight operations.

Depending on your camera, it may be necessary to calibrate these settings.
Figure 2.6a shows the author flying a modified DJI Phantom 3 Advanced that
records red and near infrared only (full specifications top left of image). For multi-
spectral imagery, a reflectance calibration target should be used prior to, and
following, each flight for radiometric corrections (see inset in lower right of
Fig. 2.6a). Post-hazard such a technique is useful for identifying damage in rural
areas as well as vegetation damage and health assessments. The goal of radiometric
calibrations is to account for different illumination conditions with each flight by
applying a correction factor based on a luminance value for each band (Tmuši´ et al.
2020). Ideally, multispectral imagery should be collected under uniform illumination
conditions (i.e., full sun or overcast skies) (Tmuši´ et al. 2020). However, in post-
disaster environments, it may be difficult to collect data under these conditions
without also losing valuable information as clean-up occurs. Therefore, illumination
conditions may vary for individual images due to environmental conditions (e.g.,
partly cloudy skies).
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Fig. 2.6 Examples of equipment used in UAS damage surveys. (a) Custom multispectral camera
used to survey tornado damage of the 30 April 2017 Canton, TX, tornado (inset top left camera
specifications; inset bottom right camera calibration mat). Survey equipment (b) Trimble Geo7x
and (c) Propellor AeroPoints used to collect ground control points. (Images depict the authors
© Wagner/Doe)

While most software packages offer radiometric calibration as part of image
processing, there is much literature on the techniques that can be applied depending
on the camera and application. For example, Guo et al. (2019) detail radiometric
calibration for multispectral cameras for different imaging conditions. Mamaghani
and Salvaggio (2019) examine sensor calibration in using an end-user laboratory
method for computing both the vignette correction and radiometric calibration



function that produce lower errors in radiance imagery. Nonetheless, it is important
to understand how illumination conditions and corrections can affect data quality.
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In addition to flight operations, ground control surveys should be conducted to
ensure geospatial accuracy of data. Ground control points (GCP) obtained from
ground surveys are used to georeference UAS imagery to remove positional distor-
tions, resulting from errors in camera global positioning system (GPS) location
(Johnson et al. 2014). GCP positional information can be collected using traditional
survey equipment (see Fig. 2.6b) or via AeroPoints propeller mats (see Fig. 2.6c).
Survey targets (GCP) should be distributed throughout the area of interest and at
different elevations (Zimmerman 2020). Although UAS platforms equipped with
post-processing kinematics (PPK) or real-time kinematics (RTK) have a higher
degree of accuracy compared to standard sUAS platforms, it may still be necessary
to obtain one or more GCP if precision mapping is required for your application.

A final word on equipment should be what we view as technological versatility.
As with all technology, sUAS have a lifespan. As innovation develops, the user
needs to embrace the fast-changing pace with an inquisitive and open mind as the
benefits of new technologies can solve the limitations of its predecessors. For
example, Fig. 2.1 shows the authors trying to solve two separate problems with
two different technologies. In Fig. 2.1b, the author is collecting data for modelling
and measuring structural tornado damage to a church at high resolution using a
sUAS. In Fig. 2.1b, the author is using a fixed-wing sUAS to map large portions of
the tornado track for research and assist in damage classification as measured by the
Enhanced Fujita (EF) scale (see Doswell et al. 2009).

2.4.4 Data

Stages 4–7 of the workflow are dedicated to data. When using sUAS for research, the
primary focus is on quality, consistent, data acquisition with a vision for optimal data
processing (and thereby results). Therefore, data management is of critical impor-
tance. Without a data management plan, this will lead to problems as sUAS collect
large volumes of data (big data). Depending on image resolution and research
objective, volumes of data can range from tens of megabytes with aerial shots to
tens of gigabytes with individual runs for photogrammetric analysis. In the case of
multiple runs, the volume of data can increase substantially (e.g., hundreds of
gigabytes) with hundreds to thousands of images collected in a single run. Video
formats can also increase file size significantly. Collecting data in real time presents
another consideration, especially how these data are stored with confidence “on the
fly.” Working in a hazardous environment adds another layer of complexity as
locational backups will be needed, sometimes fast, so a plan for this should be in
place. Management of large complex datasets can be expensive and time-
consuming. A data management plan is required in order to allow for sufficient
backup (both on site and later to chosen location(s)), storage, processing, and
ongoing sustainable access. Figure 2.7 is one example that shows the complex



relational approach to sUAS data management. This example acknowledges the
importance of establishing a data center for data preservation. This data center
should meet your specific requirements whether these are cloud-based access or
local, but most importantly, these should be easily discoverable and sustainable for
the future. There is no “one size fits all” approach, and there are numerous cost-
effective options available whether you are a researcher beginning your first field
experiments or a seasoned user.
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Fig. 2.7 Data management workflow and considerations. (Graphic courtesy of NOAA Unmanned
Aircraft System (UAS) Data Management Plan (v3.0, September 2015))

2.4.5 Data Management

In the case of disaster management, a cloud-computing infrastructure is often needed
to simplify data processing and share time-sensitive UAS damage information.
Image processing in the cloud can significantly reduce processing time with access
to multiple virtual machines and user-defined computing configurations. Post-
processed products can be shared securely via VPN connections and other measures
with other registered users (e.g., emergency managers, government agencies). These
security measures may better address Federal Risk and Authorization Management
Program (FedRAMP) requirements and facilitate rapid data dissemination for visu-
alization and/or further analysis. Improving data accessibility and visualization
through cloud services would not only benefit the research community, but the
same data could also enable officials to better understand the extent and magnitude



of damage in a shorter time frame, which could facilitate better allocation and
coordination of resources.
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Regardless of your data management plan, it is vital your choice is sustainable.
By this we mean that it should have continual, viable, and shareable access if costs
are involved. If funds are lost, and data storage fees are not sustained, valuable data
could be lost. Lastly, and most importantly, you should always consider data
protection and privacy policy related to your location. Data collection via sUAS
platforms has the potential to introduce significant privacy concerns, especially in
areas impacted by storm-related structural damage where wind-strewn debris could
contain personally identifiable information (PII). PII, as defined by the US Office
and Management (OMB) policy number Memorandum 07–16, is any information
that can be used to distinguish or trace an individual’s identity, such as name, Social
Security number (SSN), biometric records, etc., alone or when combined with other
personal or identifying information, which is linked or linkable to a specific indi-
vidual, such as date and place of birth, mother’s maiden name, etc. PII can also
reveal location information, raising concerns of geospatial privacy. Most govern-
ment agencies prohibit the intentional collection of PII and require any accidental or
“inadvertent” PII collected to be obscured or deleted. Policies, however, do vary
given the complexities of PII and other sensitive information and according to
agency regulations. Cifaldi (2018) looked at the key issues in detail, from the
individual’s fundamental rights, privacy policy, and data protection legislation
both in Europe and the USA. Before collecting any data, it is recommended you
fully understand your location’s Privacy and Data Protection which can be found via
your relevant governing agency’s website.

2.4.6 Data Processing

Stage 5 of the workflow relates to data processing. There are several software
packages available for processing sUAS imagery, which vary according to cost,
processing algorithms, and user options. All sUAS processing software utilize SfM
to produce 2D modeling products (e.g., orthomosaics) and 3D modeling products
(e.g., Digital Surface Models (DSMs), point clouds), which contain geographic
coordinates and elevation information, from overlapping two-dimensional
(2D) imagery (Westoby et al. 2012; Carrivick et al. 2016). This approach is a cost-
effective alternative to Light Detection and Ranging (LiDAR) (Westoby et al. 2012;
Johnson et al. 2014) and has been used in estimating fault line movement (Heredia
et al. 2009; Johnson et al. 2014) as well as assessing typhoon (Ezequiel 2014; Chen
et al. 2020) and tornado damage (Wagner et al. 2017; Womble et al. 2018).

Image corrections should be performed where applicable. Color corrections may
be needed to balance brightness values if illumination conditions vary considerably.
For multispectral imagery, orthomosaics should be calibrated using known albedo
values from a reflectance panel to correct for radiometric conditions (Tmuši´ et al.



¼

2020). Depending on the application, it may be necessary to convert digital numbers
to reflectance values (0–1).
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2.4.7 Data Analysis

Stage 6 of our workflow examines data analysis. There are a multitude of analyses
that can be used in sUAS hazard assessments, and this versatility is one of the key
benefits of such technologies. Visual assessments using stills, videos, or
orthomosaics can be used to identify damage extent and variability. Figure 2.8
shows the extraordinary level of detail that can be achieved over a variety of different
resolutions, providing different scales of information ranging from the tornado path
through a forest (Fig. 2.8a) to a downed grove of trees (Fig. 2.8c,d). In particular, the

Fig. 2.8 This series of images depict the impact of the 29 April 2017 Canton, TX, tornado at
different resolutions: (a) 1.48 inch-pixel (3.75 cm) collected at 260.15 ft. (79 m) AGL, (b) 0.74
inch-pixel (1.87 cm) collected at 149.70 ft. (49 m) AGL, (c) 0.98 inch-pixel (2.48 cm) collected at
129.24 ft. (39 m) AGL and (d) 0.48 inch-pixel (1.21 cm) collected at 87.06 ft. (26 m) AGL on a
rural environment. [1 acre 4046 m2] (Images © Wagner/Doe)



1.21 cm-pixel resolution shown in Fig. 2.8d highlights that even the smallest level of
damage cannot only be identified but accurately measured post-event during desktop
analysis.
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Fig. 2.8 (continued)

To assess vegetation damage, multispectral analysis is commonly used due to the
high spectral contrast of vegetation in the red edge and near-infrared (NIR) bands
(Kingsfield and de Beurs 2017; Womble et al. 2018). While single-band analysis
may provide some information on vegetation health, band ratios such as normalized
difference vegetation index (NDVI), normalized difference red edge (NDRE), and
enhanced vegetation index (EVI) can better depict damage to vegetation. These
indices range from �1 to 1 with values close to 1 indicating dense, healthy
vegetation; values close to 0 indicating bare soil or urban areas; and negative values
indicating water (Carlson and Ripley 1997; Xue and Su 2017). Damaged or stressed
vegetation will have lower index values (Yuan et al. 2002; Myint et al. 2008;
Womble et al. 2018; Wagner et al. 2019). NDVI analysis, proven widely effective
in disaster research, has been especially useful in detecting vegetation damage that
would be otherwise undetected (Magsig et al. 2000; Yuan et al. 2002; Myint et al.
2008; Wagner et al. 2012, 2019). NDRE, however, may better reveal variations in
vegetative health in part due to the red edge’s sensitivity to measuring chlorophyll
content (Gitelson et al. 1996).

Detailed 3D modeling assessments can be especially useful in examining struc-
tural damage and treefall patterns. In addition to 3D models, change detection can



quantify the magnitude of land cover change by differencing pre-event and post-
event data (Singh 1989; Yuan et al. 2002; Myint et al. 2008; Womble et al. 2018).
This method can be applied to UAS imagery where high-resolution pre-event is
available as well as to point cloud data. Data must be resampled to match the coarsest
spatial resolution and then properly aligned to ensure direct comparisons. The ability
to quantify land cover change, however, is contingent on the resampled spatial
resolution of the data.
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2.4.8 Data Interpretation and Results

Stages 7 and 8 our workflow look at the data interpretation leading to results. Much
can be inferred from the data interpretation, whether these are measurable,
converted, stitched, or modeled, to name but a few examples. sUAS can be an
invaluable tool, especially in storm damage assessments and improving our under-
standing of severe storm dynamics. Storm damage assessments utilizing sUAS
platforms provide better access in remote or obstructed areas. These systems can
be deployed almost immediately after a storm, allowing for capture of perishable
data prior to extensive clean-up, and obtain very high-resolution (e.g., centimeter)
data needed for a more complete damage assessment (e.g., assigning EF-scale
ratings; distinguishing between tornadic and straight-line winds) (Womble et al.
2018; Wagner et al. 2019). In addition to visible imagery, UAS multispectral
imagery can better detect vegetation damage because of the centimeter-scale spatial
information and spectral response of vegetation in the red, red edge, and near-
infrared (NIR) bands (Wagner et al. 2019). This section presents a few examples
of the advantages of sUAS technologies in tornado damage surveys.

The very high spatial resolution of UAS (i.e., centimeter scale resolution) imag-
ery may better resolve the type of land cover impacts compared to ground surveys
and satellite-based damage assessments. For example, Fig. 2.9 shows a section of
tornado damage path from the 30 Apr 2017 Canton, Texas, tornado captured by
(a) Landsat Thematic Mapping imagery (30-m resolution), (b) satellite imagery
courtesy of RapidEye (5-m resolution), (c) UAS imagery (1.2-cm spatial resolution),
and (d) ground survey. The comparison between (a) and (b) clearly shows the
benefits of the high-resolution satellite imagery and what appears to be denuded
vegetation within the tornado track. However, in (c) we can see that sUAS detected
this as distributed bales of hay. In fact, the top section of the track (b) was hay, and
the bottom section below the water feature was a denuded track feature. Given the
distance involved, this could only be established via the sUAS, as the ground survey
(d) made this very hard to establish due to the perspective. Such detailed information
can also help with the identification of damage indicators (DIs), which are used to
rate tornado intensity based on the EF scale, as well as better understand the role of
land cover in damage patterns (e.g., forested area, elevation changes) (Wagner et al.
2019).
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Fig. 2.9 Tornado damage information captured in (a) Landsat TM normalized difference vegeta-
tion index imagery (30-m resolution) (NASA/USGS), (b) RapidEye high-resolution imagery (5-m
resolution) (Planet Lab), (c) UAS true color imagery (1.2-cm resolution) (Wagner/Doe), and (d)
ground photo of the 30 Apr 2017 Canton, TX, tornado (Wagner/Doe). White box shown in (a)
corresponds to the spatial extent of (b). Yellow boxes in (b) correspond to the spatial extent of (c)
and (d)

The next example highlights how UAS multispectral imagery can better capture
high-wind impacts to vegetation. Figure 2.10 shows a portion of the 28 May 2019
Tipton, KS, tornado in (a) UAS NDVI and (b) UAS visible imagery. In Fig. 2.10a,
the dirt road (top of the image) and metal structure (bottom right) are displayed in red
hues with NDVI values close to zero. Healthier vegetation is shown in green hues
with NDVI values varying between 0.50 and 0.70. Damaged vegetation can be seen
in yellow and orange hues with NDVI values less than 0.35. Debris and tree trunks
from downed trees can be seen in the darker orange/red values with NDVI values
close to 0. Interestingly, canopies of the downed trees still have high NDVI values
and appear to blend into the healthier grass. Just south of the downed trees, there is
noticeable vegetation damage with NDVI values close to 0.20 that is not easily
discernible in the visible imagery (Fig. 2.10b). Multispectral imagery can also be
used to calibrate high-wind impacts to vegetation from satellite imagery or radar-
indicated damage (Skow and Cogil 2017).

3D modeling products, such as point clouds or digital surface models, can provide
detailed information on high-wind impacts to structures and land cover. Figure 2.11
shows roof damage to the Shiloh Baptist Church and downed trees from the 11 May
2017, White Oak, TX, tornado. Damage to the front of the church can be seen where
the steeple had been located (Fig. 2.11a). The DSM model, although it captures the
steeple damage, really highlights the downed trees to the right of the church with the
lower elevation values relative to nearby trees and the detailed spatial resolution
(Fig. 2.11b). What appears to be damage near the back of the building (Fig. 2.11a) is
actually an artifact from the SfM process due to insufficient data coverage associated
with near-nadir angles. Therefore, it is important to collect additional data using



oblique viewing angles to fill in potential data gaps. With sufficient data coverage
and viewing angles, SfM products can provide detailed information needed to better
understand the role of construction, structural variability, and land cover character-
istics with high-wind impacts.
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Fig. 2.10 (a) UAS normalized difference vegetation index (NDVI) (8-cm) and (b) UAS true color
imagery (2-cm resolution) of a portion of the 28 May 2019 Tipton, KS, tornado. Green hues show
healthier vegetation; yellow and orange hues show damaged vegetation; red hues correspond to bare
soil and structures (metal building). (Images © Wagner/Doe)

Change detection via point cloud differencing can highlight the amount of land
cover change relative to wind interactions. This example uses USGS LiDAR data
and resampled sUAS point cloud data obtained following the 01 May 2018 Tescott,
KS, tornado. In Fig. 2.12, the geographic extent of a portion of the tornado track can
be seen as a long thin linear feature crossing from the lower left to the upper right of
the image. While overall land cover changes are relatively small (0.10 meters or
less), there are some areas of maximum change ranging from 0.28 to 0.40 meters (see
Fig. 2.12c). In fact, these areas of maximum erosion and scour coincide with areas of
local maximum elevation (see Fig. 2.12a), pointing to enhanced scour with exposed
features (check Wagner et al. 2021). Some of this land cover change, however, could
be attributed to erosion based on geomorphic processes (e.g., wind patterns).

Ground surveys will always have a place in storm damage assessments and
examining the role of construction variability. Complementing these surveys with
sUAS technology will improve these efforts as this technology enables quick
assessment of high-wind damage, better captures wind damage at the lower level
of the EF scale and from non-tornadic events (e.g., straight-line winds and hail



damage), as well as serves as a more cost-effective and time-saving alternative to
current rapid response surveys (Wagner et al. 2019). Additionally, it may provide a
better understanding of high-wind damage at the macro-level that can improve our
understanding of tornado climatology, especially in rural and agricultural areas,
where damage indicators are limited (see Snyder and Bluestein 2014). This infor-
mation can be disseminated to local, state, and federal agencies to aid in disaster
response and recovery.
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Fig. 2.11 (a) 3D model generated from Structure fromMotion (SfM) and (b) digital surface model
(DSM) of tornado damage from the 11 May 2017 White Oak, TX, tornado. The 3D model shows
roof and tree damage to the right of Shiloh Baptist Church. DSM depicts fallen trees and roof
damage based on detailed elevation information. (Images © Wagner/Doe)
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Fig. 2.12 UAS information of a portion of the 01 May 2018 Tescott KS tornado survey captured in
(a) true color composite and (b) digital surface model. In (c), results from point cloud differencing
using USGS LiDAR data and resampled unpiloted aerial system (UAS) point cloud data are shown.
Small land cover changes are displayed in blue hues, while larger land cover changes are shown in
red hues. (Images © Wagner/Doe)

2.5 Hazard Management, Sensing, and Verification

Post-event damage surveys utilizing sUAS technologies can help hazard manage-
ment, sensing, and verification with overlapping benefits to multiple end-users
(Fig. 2.13). In hazard management, sUAS technologies can improve disaster
response and community awareness in part due to rapid deployments and access to
obstructed areas or remote locations. Aerial coverage and detailed information
provided by sUAS technologies can provide a more complete/accurate assessment
of the societal and environmental costs associated with an event. In regard to hazard



sensing, UAS-based sensors (e.g., UAS multispectral camera) can also improve
detection of low-magnitude events or events in remote locations that would other-
wise go undetected (Wagner et al. 2019). This enhanced monitoring would lead to
better documentation and, consequently, improve climatological records, increasing
hazard awareness. Hazard verification via UAS technologies may also increase the
efficiency of damage surveys by decreasing the time and resources needed to assess
the event.
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Fig. 2.13 Venn diagram from SCOUT (Severe Convective Post-Storm Observations utilizing
Unpiloted Aerial Systems (UAS) based Technologies) (Wagner and Doe 2017) examining the
relational elements of hazard management, sensing, and verification. (Image © Wagner/Doe)

Improved efficiency, enhanced detection, and machine learning algorithms can
help multiple agencies such as emergency managers, NOAA agencies, and
researchers with their objectives. Accurate and timely information is critical to
emergency manager operations and can better inform decision-making and planning
with regard to disaster response and recovery planning. Government agencies such
as NOAA National Weather Service need verification of warned events to improve
training and decision-making criteria with future hazard events. Researchers,
whether affiliated with academic or government institutions, could develop machine
learning algorithms to improve damage detection and classification. UAS damage



information, when combined with other observational datasets, may help researchers
better understand dynamics of these events. The critical overlap of benefits to
end-users, here, is facilitated by visualizing and analyzing UAS damage data to
better help delineate critical information more accurately.
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2.6 Challenges

There will undoubtedly be challenges when using UAS in hazard environments,
especially when practiced in what could also be stressful conditions post-event. Each
location and hazard type will present its own set of challenges. These challenges
range from those connected to the equipment itself, to environmental extremes, and
to total awareness for the assistant(s)/VLOS. If we examine the environment itself,
such challenges can range from hazardous damage to temperature and wind
extremes, which affect UAS performance. It is well-documented that heat, cold,
and wind speed affect battery life and performance. If wind speeds are too high,
flight operations should be suspended until they can be performed safely. The
operator also needs to be mindful of local nature, especially considering nesting
birds and annoyance to livestock as an example.

Other challenges include the quality of data collection, site considerations and
accessibility, and concurrent sUAS operations. To obtain the best image quality, one
needs consistent daylight, avoiding varying illumination conditions (i.e., partly
cloudy skies) and times of the day when shadows may protrude on features of
interest (Tmuši´ et al. 2020). This is not always possible, especially when multiple
flight operations will need to be conducted within a limited time frame. Siting
considerations could be constrained by permissions, terrain, or size of kit. Obtaining
permissions for landing and take-off on private property can be quite the challenge
considering landowners may not be present following the disaster. This can become
frustrating especially when time is very limited. In the case of remote environments
and varied terrain, accessibility may not be possible; therefore, traversing remote
areas with a heavy kit also needs consideration. Lastly, you need to be cognizant of
other concurrent sUAS operations. Following a disaster, the skies could be
congested with other sUAS operations given damage severity and media coverage
of the event. Therefore, you need to keep a keen eye to the sky to watch out for other
sUAS operations.

2.7 Summary

This chapter has outlined both the usefulness and complexities in sUAS deployment
in hazard environments. With exponential usage and multiple applications, the
results obtained can be highly innovative, valuable, and quick. In the future, the
application of equipment, workflows, and methodology will become even more



streamlined, but significant challenges will exist, for example, the ever-changing
complex international policy and governance landscape.
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We have shown that a robust workflow is essential before any operation. Whether
you devise or modify your own workflow, a successful workflow is always based
around safety. Working in hazard environments themselves can be unsafe, so your
plan and formal procedures need extra-special attention. A robust workflow might
require coordination and collaboration with multiple agencies and provide specific
information either publicly or not publicly available. Therefore, we have shown a
coordinated approach can be fruitful, especially for highly localized events.

The future is clear; the use of autonomous vehicles in hazard environmental
assessments, rescue, or monitoring fieldwork will become the norm. The reason is
the benefits outweigh time, costs, and spatial coverage in comparison to what a
human can perform on the ground, in what are often harsh conditions. What such
vehicles can do, on multiple levels, is bring new data insights, and with these insights
comes the value needed to justify the learning curve, initial investment, and main-
tenance costs. There will always be challenges, firstly as each hazard environment is
unique and then there is, with increased adoption, managing a crowded low-level
airspace under a multiple operator environment. We hope the reader has found our
concise journey to date useful, especially the applied geographer seeking sUAS
fieldwork experience in hazard environments for the first time. We end the chapter as
we started, reiterating the words; there is certainly no “one size fits all” approach to
using sUAS in the field, but on the other hand, there is no end of possibilities for the
applied geographer.
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EU Regulations 2019/947 and 2019/945 set the framework for the safe operation of drones in
European skies (EU and EASA Member States): https://www.easa.europa.eu/domains/civil-
drones-rpas

Information and links to US Department of the Interior Bureau Aviation Policy Documents as well
as links to FAA Policy for the use of Unmanned Aircraft Systems (UAS): https://www.doi.gov/
aviation/UAS/policy

Regulations & Policies of the U.S. Department of Transportation, Federal Aviation Administration:
https://www.faa.gov/regulations_policies/

UAS Policy Resources from the National Oceanic and Atmospheric Administration (NOAA):
https://UAS.noaa.gov/Policy

A knowledge portal dedication to the actual operation of a UAS, see section 5.2 Flight planning:
https://www.stars-project.org/en/knowledgeportal/magazine/UAS-technology/flight-planning/

Useful flight planning manual of UAS standard flight procedures prepared by the UAS program
office of North Carolina Department of Transportation: https://connect.ncdot.gov/resources/
Aviation%20Resources%20Documents/NCDOT_UAS_SOP.pdf

Airmap: Visualize real-time airspace information, including official aeronautical data, regulations,
dynamic restrictions, weather, and ground obstructions, on an easy-to-use digital map https://
www.airmap.com/

B4UFLY (USA): Drone Safety & Airspace Awareness, check airspace and local advisories stay
compliant and contribute to safer national airspace by making yourself aware of advisories and
restrictions in the airspace and local advisories around you: https://www.faa.gov/UAS/
recreational_fliers/where_can_i_fly/b4ufly/

Drone Assist (UK): safety app from NATS, the UK’s main air traffic control provider presents users
with an interactive map of airspace used by commercial air traffic so you can see areas to avoid
or in which extreme caution should be exercised, as well as ground hazards that may pose safety,
security or privacy risks https://dronesafe.uk/safety-apps/

Hover – Drone & UAS pilot app, features include: no-fly zone map, flight logs, weather data, flight
readiness indicator, and industry news feed. http://www.hoverapp.io/

UAS Flight Planning powered by ArcGIS, you can use this application to check for No Fly Zones
(US Only) and also to check for differences in elevation between your "Home Point" and your
Area of Interest: https://www.arcgis.com/apps/Viewer/index.html?appid¼021e985e6e2d42
a694db71ce4ba54312

Presentation detailing the Privacy and Data Protection Implications of the Civil Use of Drones from
the Policy Department Citizen’ Rights and Constitutional Affairs, European Parliament: https://
www.europarl.europa.eu/cmsdata/85184/Drones-%20formatted.pdf

Unmanned Aerial Vehicles for Geographic Data Capture: A Review by Hanna Gustafsson and Lea
Zuna. EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVE-
RIGE 2017:https://www.diva-portal.org/smash/get/diva2:1116742/FULLTEXT01.pdf
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FAA Aviation Handbooks and Manuals: a detailed resource of texts: https://www.faa.gov/
regulations_policies/handbooks_manuals/aviation/

UAS Forecast: A useful tool to forecast wind/gust/cloud cover and with visibility and a predictor as
to whether it is good condition to fly https://www.UASforecast.com/

https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/
https://www.uavforecast.com/
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Chapter 3
sUAS-Based Citizen Science Studies
in Geography

Erin L. Bunting, Ethan J. Theuerkauf, and Lucas Rabins

Abstract Small unoccupied aerial systems (sUAS) are powerful tools for geo-
graphic research given their flexibility and rapidity in data collection. Combining
sUAS platforms with citizen science creates an opportunity to combine data collec-
tion, education, and outreach. This approach is particularly valuable for mapping
large areas, documenting changes across those areas, and integrating stakeholders in
the research process to promote science-based decision-making. Although numerous
examples exist where sUAS are incorporated into citizen science projects, this
approach is still in its infancy. In this chapter, we will explore several case studies
of crowdsourced implementation of sUAS data collection and analysis. We will use
these case studies to explore best practices for incorporating sUAS into citizen
science projects. Additionally, we will explore public perception of sUAS in the
context of scientific research through a case study in Michigan, USA, and explore
how participation in a sUAS-based citizen science project impacts those perceptions.
Finally, we will explore how sUAS-based citizen science can empower communities
to identify hazards and solve challenges.
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3.1 Introduction

We live in an ever-changing world that is shaped and altered by increased climate
variability/change and human disturbance. With escalating loss of biodiversity
(Butchart et al. Chapin et al. Dobson et al. , land use change/
landscape fragmentation, and socioenvironmental vulnerability, there is an urgent
need for better landscape monitoring (Pocock et al. . Through intensive
monitoring of landscape processes, patterns, and trends, we can start to understand
and assess impacts and environmental change, evaluate policy and management
effectiveness, and develop models to better understand local- to global-scale vul-
nerability. One way to accelerate the pace and scale of monitoring is through the
adoption and expansion of new technologies. One such technology, unoccupied
aerial systems (UAS, aka drones), has been a catalyst for rapid changes in research,
monitoring, and management of lands around the world. In 2016, there were
approximately two million drones, but that number more than doubled by 2020
according to the Federal Aviation Administration (FAA; Garrett and Anderson

This lightweight equipment is now collecting data on every continent on
Earth.
2018).

2018)

2006)2000;2010;

42 E. L. Bunting et al.

Purely having the technology is not sufficient. Personnel and work hours are
needed to utilize the technology including data collection, processing, analysis, and
interpretation. Engaged citizens have long been a workforce in collecting spatiotem-
poral data and in monitoring landscapes through citizen science programs. As new
technologies, such as UAS, come online and better platforms are created for
managing citizen-collected data, the popularity of the citizen science approach is
growing worldwide. However, a recent review of the literature conducted for this
chapter (through 2019) found only a handful of studies that engaged citizen science
in direct data collection using UAS.

UAS technology is being adopted across multiple fields and industries as these
systems have great potential for assisting in landscape monitoring and management.
Geographers, however, are particularly well-equipped to adopt, innovate, and
expand the use of such systems given the long tradition of critical scholarship on
the “view from above” (Garrett and Anderson 2018). With such a spatial perspec-
tive, as seen in the development and expansion of remote sensing and geographic
information systems (GIS), applied research in the fields of physical and human
geography has resulted in innovative methodologies and mapping with drones.
However, as previously mentioned, to conduct such applied work, substantial
human hours are needed, which can make operational usage of this technology for
large-scalemonitoring challenging. Within the geographic discipline, there are
countless examples of participatory GIS in terms of both crowdsourcing and citizen
scientist involvement.

This chapter assesses the small but rapidly growing body of literature on the use
of drones in citizen science exploring the fields of study, regions, scales, and the way
in which the citizen was utilized in the work. We focus particularly on the geo-
graphic discipline given the history of spatial sciences, geographic technologies, and



participatory GIS. In the closing portion of this chapter, we look to the future and
assess how putting drones in the hands of citizens influences both its application and
various fields of study.
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3.1.1 Drones

UAS or drones are increasingly being utilized in a variety of sectors including
recreation, business, military, and academia (Choi-Fitzpatrick 2016; Cummings
et al. 2017b). Within academia drones are being applied in a range of disciplines
including geography, geology, ecology, agriculture, atmospheric science, as well as
urban and regional planning (Chahl 2015; Garrett and Anderson 2018; Wargo et al.
2014). One facet helping to drive the expanded use of drones is their ability to host a
large and very expanding variety of sensors including cameras collecting informa-
tion from the electromagnetic spectrum, meteorological sensors including tempera-
ture and pressure gauges, or more specialized sensors that can detect gasses or
radioactive material (Boudergui et al. 2011; Collin et al. 2019; Cummings et al.
2017b; Jordan 2019; Li et al. 2017). This diversity of sensors has given researchers a
new toolset for data collection. For example, in geology, drones have been used to
survey volcanic gases during eruptions (Jordan 2019). In ecology, cameras
collecting infrared and red edge imagery have been used to improve classification
of reef ecosystems (Collin et al. 2019). In the atmospheric sciences, drones equipped
with ozone-detecting sensors have aided in troposphere pollution assessment
(Li et al. 2017).

The employment of various types of drones is dependent on the situation, field of
study, and parameters to be collected. Due to increased usage in military, civil, and
scientific research operations, significant efforts have been devoted to improving
drone flight endurance and payload capacity. Understanding these two criteria is key
when adopting such technology as they dictate the scale at which data can be
collected and how agile a data collection effort is. Expanded usage and increased
drone engineering have also resulted in various system configurations and sizes,
though fixed-wing and multirotor (e.g., quadcopter, octocopter) are the present
industry standard (Gupta et al. 2013; Fig. 3.1). With both drone types, there are
capabilities to mount a camera or sensor in order to collect various types of high-
resolution remotely sensed data. Such cameras and sensors, which range in size,
weight, and price, can collect unique properties on the ground including thermal,
LiDAR, hyperspectral, and multispectral, examples of each are seen in Fig. 3.2.

3.1.1.1 Satellite vs. UAS

Outside of drones, sources of aerial imagery have long relied on occupied aircraft
and, most commonly, satellites. There are distinct differences between drone- and
satellite-developed datasets requiring the user to understand the pros and cons of
each. Satelliteimagery varies in both spatial resolution (the ground footprint of a



single pixel observed by a sensor) and temporal resolution (the minimum time
between successive image acquisitions of the same area). For instance, the
MODIS (Moderate Resolution Imaging Spectroradiometer) satellite has a temporal
resolution of 2 weeks and a spatial resolution of 250–500 m. Such data coverage and
spatial resolution enable us to answer regional to landscape level questions of land
cover, ecosystem heath, and other similar questions. At a finer resolution than
MODIS and potentially the most utilized satellite data, the USGS Landsat missions
1–9 have a multispectralresolution of 30 m (Landsat—Earth Observation Satel-
lites . This resolution, while ideal for land cover and vegetation mapping, is
still too coarse for many applications such as crop disease detection or wildlife
monitoring (Rey et al. Wiesner-Hanks et al. ). Additionally, the temporal
resolution of a satellite limits the utility of its imagery for certain applications. More
specifically, the temporal resolution, or time between acquisitions, is based on the
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DJI Matrice 100 multi-rotor drone

AeroVironment Quantix VTOL drone
Headwall Photonics VNIR-SWIR Co-Aligned +
LiDAR (Coming Fall 2019)

DJI Phantom Pro multi-rotor drone

Fig. 3.1 Examples of fixed-wing and multirotor drones

Fig. 3.2 Examples of common sensors mounted to drones



satellite orbit and not the event being monitored, meaning that the time of day and
time between image collections might not be ideal for certain events. For example, in
monitoring ecosystem health, a 2-week or monthly temporal resolution is sufficient,
but with coastalmonitoring of water level, the changes can occur on a finer scale.
While satelliteimagery is available for broad geographic areas, the highest-
resolutionsatellites, such as WorldView-3, are only capable of ~0.3 m ground
sampling distance (WorldView-3 Data Sheet, 05/14). Among these satellites the
temporal resolution ranges from daily or less (WorldView-3) to weekly (Landsat),
biweekly (MODIS), and monthly. This temporal frequency combined with the long
life of these platforms and consistent global coverage dating back to the 1980s
makes satelliteremote sensing ideal for long-term time series analysis.

3 sUAS-Based Citizen Science Studies in Geography 45

Beyond the spatial and temporal coverage, there are additional pros and cons to
satellite image utilization. For instance, such imagery is not always usable for
analysis as a satellite’s ability to collect imagery is limited to the time the satellite
is overhead and may be obscured by clouds on any given day (Ruwaimana et al.
2018). Ordering satelliteimagery can also be expensive and may require substantial
pre-processing to derive usable products. Currently, most moderate to coarse
resolutionremote sensing archives, from AVHRR (Advanced Very-High-Resolution
Radiometer), MODIS, and Landsat, are freely available to the public through
platforms developed by NASA and the USGS in addition to the Google Earth
Engine platform. Finer-scale satelliteimagery, such as WorldView, have variables
costs ranging from $14 to $58 per square kilometer depending on the date and type
of imagery requested (SatelliteImagery Pricing 2018). The costs associated with
satelliteimagery are further compounded when considering the time invested in
pre-processing such datasets. Unlike drone imagery, satelliteimagery often requires
several critical corrections including atmospheric and topographic corrections to
compensate for the satellite position and distance the reflected energy travels (Young
et al. 2017). While there are essential pre-processing steps involved in drone image
utilization, the steps for RGB and multispectralimagery are typically laid out in a
straightforward manner when using off-the-shelf software.

Occupied aircraft photography presents a scale of data collection between satellite
and drone imagery. Image collection with aircraft can provide a higher spatial
resolution than satelliteimagery but is labor-intensive and may be expensive
depending on proximity to airports and the data products desired. Additionally,
aerial photography is limited in temporal coverage as it requires occupied missions
that cannot continuously or regularly be conducted over the same region. Therefore,
aerial imagery typically does not have a consistent or standard temporal resolution,
making monitoring of dynamic processes, such as coastal change, difficult.

3.1.1.2 Understanding Drone-Based Remote Sensing

Considering the limitations with traditional remote sensing methods, drone imagery
can be a useful alternate source of imagery. Although drones provide an efficient
means of generating high spatial and temporal resolution datasets, mission



requirements must be critically evaluated as there are costs, training requirements,
and historical data limitations with drones. Unlike satellite and occupied aircraft
imagery, drone imagery can be collected at extremely high resolution as they can fly
just above the ground. It should be noted however that local laws may restrict drone
flight operations in some cases. In the United States, there is a maximum drone flight
height of 400 feet above the tallest object in proximity (https://www.faa.gov/uas/
commercial_operators/). Drone temporal resolution can also be higher than satellite
and occupied aircraft as there is rarely a limit to how often a drone can be flown over
an area (Cummings et al. 2017b). Constraining this observation is the person hours
needed to be in the field collecting such data. Unlike satelliteimagery, drone flights
require staff to be physically present during each flight which can pose a challenge
for large-scalemonitoring in remote areas. Additionally, while the volume of single
images can be similar between drones and satellites, each drone flight consists of
hundreds of substantially overlapping image captures that when developed into a
time series represent a large volume of data that needs to be processed and analyzed.
This contrasts to satelliteimagery, which is more easily processed, due to well-
established workflows. Given the long history of satelliteremote sensing, there are
well-established processing steps with proprietary and open-source software options
including R packages, open-source software (Quantum Geographic Information
System, QGIS), and industry standard software (Earth Resource Data Analysis
System or ERDAS Imagine and Environment for Visualizing Imager or ENVI).
Considering the novelty of and diversity of sensors used with drones (multispectral,
Light Detection and Ranging or LiDAR, thermal, hyperspectral, etc.), workflows for
pre-processing and analyzing such data are still being developed, especially for
advanced sensors such as thermal and hyperspectral. Additionally, the software
employed for such pre-processing (e.g., Pix4D and Agisoft Metashape) is substan-
tially different than the aforementioned programs and, as of now, is rather expensive.
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3.1.2 Citizen Science

Citizen science has existed for hundreds of years and is widely used today in many
fields including astronomy, ecology, and archeology (Silvertown 2009). Broadly
defined as the engagement of volunteers for collecting or analyzing data as part of a
scientific inquiry, today citizen science has grown, in many instances, into a collab-
oration between the public and researchers in order to address real-world challenges
(Silvertown 2009). This type of collaboration can be seen in the State of Washington
where volunteers are responsible for periodically monitoringcoastal habitats for
invasive green crabs (Grason et al. 2018). Engaging citizen scientists in this way
can prove mutually beneficial for both the researchers and the community at large.
Typically, during these projects, researchers will train the citizen scientists who then
collect data and provide it to the researchers. The research team then analyzes these
data and reports their finding back to the citizen scientists and the community at
large. Citizen science can take other forms as well including citizens working by

https://www.faa.gov/uas/commercial_operators/
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themselves without institutional support, for example, an amateur astronomer inde-
pendently observing the cosmos in their backyard and reporting their findings
online. Additionally, citizen science can include cases where the citizens unknow-
ingly volunteer information to researchers not originally intended for a study. For
example, researchers may scrape social media websites like Facebook and Twitter
for posts that aid in their analysis. In ecology, Barve (2014) demonstrated the utility
of this technique by utilizing geotagged posts to map occurrences of monarch
butterflies and snowy owls over a broad geographic area.
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The community-engaged format of data collection, monitoring, and analysis is
now mainstream with millions of people contributing to an ever-growing array of
citizen science projects (Callaghan et al. 2019). There are large advantages to such
an approach including obtaining community support for research through engage-
ment, potentially more spatially comprehensive data, and the ability to collect high-
resolution field data when the research cannot be on site. However, there are also
disadvantages or complications associated with citizen science including spatial and
temporal bias in data collection and potential redundancies (Callaghan et al. 2019).
Such citizen science programs are developing massive datasets that can be used to
develop models and statistics to understand trends in ways not previously under-
stood, but with such massive data comes data management and storage needs.
Overall, from the local, state, and country to global scale, there are numerous
interdisciplinary citizen science programs that represent data collection that is robust
and community centric and stretches the limits of what a single researcher or team
can accomplish. Citizen science represents an effective means to communicate and
engage community members in research through focus groups, surveys, training
events, and public presentations. As a result, research can transcend the academic
and begin to impact and educate the community from which it originates.

3.1.3 Citizen Science and Drones

Currently, there are few publications involving direct interaction of citizen science
and drones. As seen in the literature, there are three ways citizen science and drones
can be used together.

1. Usingcitizen sciencecollected datasets. In this case researchers could use existing
citizen science datasets or scrape social media sites like Facebook and Twitter for
data including photos, geotagged locations, and descriptions of events. In the
latter, these data can be used to inform drone pilots where to focus efforts. For
example, reports of disaster areas uploaded to social media can be aggregated and
used to guide drone surveys in disaster relief situations as seen in Ramchurn
et al. (2016).

2. Having citizen scientists assist with on-the-ground data collection. Through
direct interaction with the drones, citizen scientists can collect data in various
locations and settings to assist in research. This could mean citizen scientists
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acting as drone pilots, field assistants, or visual observers to support drone mis-
sions. For example, the “Dronebird” group in Japan is a dispersed network of
drone owners who voluntarily gather aerial imagery in disaster zones and release
data to aid relief efforts (“Drone Bird Disaster Rescue Squad,” 2020). This can
also mean citizens assisting with on-the-ground data collection without piloting
drones. For example, community members could be deployed along with drone
pilots to provide local knowledge to guide drone use as outlined in Larrain et al.
(2020). Further, examples of citizen scientists aiding in ground data collection
include collecting field samples, placing ground control points for drone image
pre-processing, and GPS data collection for key landscape characteristics.

3. Having citizen scientists assist in data processing. Data processing, especially
when using UASdata, can be complex and time-consuming typically involving
numerous images that need to be mosaiced and then georeferenced using ground
control data. Citizen scientists can play a significant role when the volumes of
data produced by drone flights are too large for researchers to realistically process
themselves. Data processing activities can include citizen scientists in multiple
fashions including (1) helping to identify regions where UAS data collections
should occur and where are the idea locations to place ground control points,
(2) identifying objects of interest in imagery or video collected, (3) collecting
field data including ground control points with high-resolution GPS units, and
(4) assisting with post image capture data management and pre-processing.

While the opportunities for citizen science and drone usage are broad, there
are several barriers that may inhibit more widespread adoption of such an approach.
For citizens to be drone pilots, they must be trained in drone operation and,
depending on local laws, must obtain a license to pilot drones. For example, in the
United States, FAA (Federal Aviation Administration) regulations, persons looking
to fly a drone for non-recreational purposes must become certified under Part
107 rules (https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId¼22615).
Certification requires one to understand airspace, climatology and atmospheric
science, emergency protocol, rules/guidelines, and other such critical information.
Additionally, an exam must be taken, at a cost, to receive certification. This initial
investment in certification may dissuade citizens from joining a citizen science
program as a pilot. It should be noted though that the FAA certification does not
actually teach one how to fly a drone. Instead, citizens need hands-on training in
drone operation as well as preflight planning and post flight data quality assessment
to effectively collect data. Certification and training of citizens are only one of the
barriers to the development of citizen science drone programs. Not only are drones
costly and prone to damage by amateur pilots; there are also a litany of potential
hazards associated with drone use (Gettinger and Michel 2015) which may dissuade
researchers from putting them in the hands of citizen scientists. Such hazards
include regulatory compliance, adverse weather conditions, equipment failure (e.-
g., lost link to base station, bad batteries, engine failure, obstacle avoidance), and
unfavorable public perception.

Once these challenges are overcome, coupling drones and citizen science has
distinct advantages including the following:

https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22615
https://www.faa.gov/news/fact_sheets/news_story.cfm?newsId=22615
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1. Many drones used for scientific purposes are small and portable which are
conducive to citizen science deployment. Indeed, many of the drones used by
researchers are the same models used for recreation and are not prohibitively
complex or expensive to operate.

2. Drone flights can produce large amounts of data, especially when flights are
frequently repeated. Large groups of citizen scientists can be employed to collect
and process these data as seen in Rey et al. (2017).

3. Hobby and personal drone usage have increased in recent years (Choi-Fitzpatrick
2016) leading to an increase in drone ownership and pilot skills in the general
population that can be utilized for citizen science.

Applications of drone usage with citizen science are not only ripe with opportu-
nity but a growing trend in scientific research. Utilizing drones as research tools is
still relatively new, and as adoption continues, one would expect the citizen science
engagement to expand. However, as of now the full range of these applications is
unexplored. This chapter will illustrate the current use of citizen science and drones
through a comprehensive review of the literature (through 09/2020).

3.1.4 Literature Review Methods

In this review, all academic journal publications including both Citizen Science and
Drone terms were downloaded and synthesized using the Web of Science database
(Fig. 3.3). Web of Science was selected over other databases (Google Scholar and
EBSCO) due to its commonality of use and sophisticated filters. Variations on the
drone term included in the search (UAV, UAS, unoccupied aerial vehicle, unoccu-
pied aerial system, etc.) are largely synonymous and are used interchangeably in
many applications. Citizen science terms on the other hand have more differentiation
in their meaning, and choosing which variations to include will yield different search
results. This review included the following citizen science terms or variations
thereof: Citizen science, Crowd sourcing, Community science, Amateur scientist,
Public participation, Participatorymonitoring, Participatory action research, Vol-
unteer, Citizen involvement, Public involvement. Our initial search yielded
94 records, of which we removed 18 that were either books, datasets, patents, or
reports (Fig. 3.3). The remaining records included journal articles and peer-reviewed
conference papers. The authors assessed each article to determine if it included both
a citizen science element and drone element and should be included in the review.
Articles in question were determined by consensus among the authors. Of these
75 publications, only 18 were used in our final analysis (Fig. 3.3; Table 3.1). A large
portion of the removed articles fell into one of two categories: (1) non-English
publications and (2) publications related to the medical field. In both cases sUAS
(which in our case means small unoccupied aerial systems) are common abbrevia-
tions. For instance, suas is a possessive pronoun in the Portuguese language. Articles
including citizen science terms (such as volunteer) in the publication, but not
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Fig. 3.3 Literature review methodological approach and decision-making process
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Table 3.1 Final 18 publications included in the literature review highlighting the author, year
published, title, journal, and scale of field site

Authors
Year
published Article title Journal

Citizen science
program scale

Alex et al. 2015 Crowdsourcing, for
Search of Disaster Vic-
tims: A preliminary
Study for Search and
Rescue

Proceedings of the 20th
International Confer-
ence on Engineering
Design

NA (project
done with
existing data)

Attari et al. 2017 Nazr-CNN: Fine-
Grained Classification
of UAV Imagery for
Damage Assessment

2017 IEEE International
Conference on Data
Science and Advanced
Analytics

Country
(Vanuatu)

Bowley
et al.

2019 An Analysis of Altitude,
Citizen Science and a
Convolutional Neural
Network Feedback
Loop on Object Detec-
tion in Unmanned
Aerial Systems

Journal of Computa-
tional Science

Region
(Wapusk
National Park,
Manitoba
Canada)

Cardil et al. 2017 Assessing Pine
Processionary Moth
Defoliation Using
Unmanned Aerial
Systems

Forests Local (experi-
mental plot)

Chirayath
and Li

2019 Next-Generation Opti-
cal Sensing Technolo-
gies for Exploring
Ocean Worlds—NASA
FluidCam, MiDAR, and
NeMO-Net

Frontiers in Marine
Science

Local (Ameri-
can Samoa,
Specific Sites
not Country
Wide)

Choi and
Dyke

2020 CrowdLIM:
Crowdsourcing to
Enable Lifecycle Infra-
structure Management

Computers in Industry Local (Purdue
University)

Cummings
et al.

2017a, b Developing a
UAV-Based Monitor-
ing Program with
Indigenous Peoples

Journal of Unmanned
Vehicle Systems

Local (village
in Guyana)

Gülch et al. 2016 BEESMART – A
Crownsourcing Project
with Smartphones

International Archives
of the Photogrammetry,
Remote Sensing and
Spatial Information
Sciences

Country
(Germany)

Kaam and
Reed

2019 Use of Visible Spec-
trum sUAS Photogra-
phy for Land Cover
Classification at Nest
Sites of a Declining
Bird Species (Falco
sparverius)

Remote Sensing in
Ecology and
Conservation

Region
(Massachusetts)



Authors Article title Journal
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Table 3.1 (continued)

Year
published

Citizen science
program scale

Larrain
et al.

2020 Participatory Mapping
and UAV Photogram-
metry as Complemen-
tary Techniques for
Landscape Archaeology
Studies: An Example
from North-Western
Argentina

Archaeological
Prospection

Local (Santa
Mario,
Argentina)

Lin et al. 2020 Quantifying Flood
Water Levels Using
Image-Based
Volunteered Geo-
graphic Information

Remote Sensing in
Ecology and
Conservation

Local (Taipei
City, Taiwan)

Ofli et al. 2016 Combining Human
Computing and
Machine Learning to
Make Sense of Big
(Aerial) Date for Disas-
ter Response

Big Data NA (project
done with
existing data)

Ramchurn
et al.

2016 A Disaster Response
System based on
Human-Agent
Collectives

Journal of Artificial
Intelligence Research

Local (Port Au
Prince, Haiti)

Rey et al. 2017 Detecting Animals in
African Savanna with
UAVs and the Crowds

Remote Sensing of
Environment

Region
(Kuzikus wild-
life refuge)

Salisbury
et al.

2015 Real-time Opinion
Aggregation Methods
for Crowd Robotics

Procedia Engineering NA (method
detailed, no
location)

Salisbury
et al.

2016 CrowdAR: A Live
Video Annotation Tool
for Rapid Mapping

Proceedings of the 14th
international Confer-
ence on Autonomous
Agents and Multiagent
Systems

NA (method
detailed, no
location)

Scher et al. 2019 Drone-Based Photo-
grammetry for the Con-
struction of High-
Resolution Models of
Individual Trees

Trees Local (single
trees)

Wiesner-
Hanks et al.

2019 Millimeter-Level Plant
Disease Detection from
Aerial Photographs via
Deep Learning and
Crowdsourced Data

Frontiers in Plant
Science

Local (individ-
ual fields)



incorporating any citizen science element in their study, were also excluded from the
literature review.
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To review publications, we completed an article evaluation survey in Qualtrics
for each article (https://msu.co1.qualtrics.com/jfe/form/SV_3VhTBjplL8rnTsp).
Survey questions, which had been vetted and tested prior to the study, included
field of study, type of drone used, use of drone in study, role of citizen scientists,
study environment, as well as benefits, drawbacks, and general notes about the
article. Like the decision to include articles in the analysis, difficult survey responses
were decided by group consensus.

3.2 Results and Discussion

3.2.1 Purpose of the Citizen Scientist

The articles analyzed highlight citizen science efforts, from around the world, that
utilize drone technology in some capacity (Fig. 3.4; Table 3.2). We found such
programs on every continent except Australia. These programs can be local in scale,
for instance, Cardil et al. (2017) and Wiesner-Hanks et al. (2019) whose articles
presented work at the individual field and plot level. Altogether, 9 of the 18 articles
(50%) were local in scale including villages (Guyana), cities (Argentina, Taiwan,
and Haiti), universities, and small islands. Regional scale programs, those at the state
to province level, and those that occurred across national parks and wildlife refuges
represent 2 of the 18 analyzed articles. At the country scale, 2 of the 18 articles had

Fig. 3.4 Location of reviewed citizen science program field sites. Field sites indicate where data
was collected during a study. Articles where researchers used preexisting datasets or authors did not
specify field site locations are omitted. Scale indicates the geographic unit of the field site used for
data collection. Specific locations can be found in Table 3.3

https://msu.co1.qualtrics.com/jfe/form/SV_3VhTBjplL8rnTsp
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Table 3.2 Details of the 18 publications included in the literature review including a synopsis of
the citizen science component and drone usage in the study

Authors Use of Drone Use of Citizen Science

Alex et al.
(2015)

Drone used to stream live video of
disaster areas

Citizens watch live drone footage and
identifying disaster victims in real time

Attari et al.
(2017)

Drone used to collect imagery of
infrastructure.

Citizens identifying and categorizing
infrastructure damage in drone imagery
to be used as training dataset for image
classification

Bowley
et al.
(2019)

Drone used to collect imagery of
wildlife

Citizens identity wildlife from drone
imagery to be used as training dataset
for image classification

Cardil et al.
(2017)

Droned used to collect imagery of and
model forest habitats using
photogrammetry

No citizen scientists included in study

Noted potential for citizen scientists as
drone pilots in future

Chirayath
and Li
(2019)

Drone used to host specialized sensors
capable of imaging marine
environments

Citizens used to generate training data
to be used for image classification

Choi and
Dyke
(2020)

Drone used to model infrastructure
using photogrammettry

Images uploaded on social media used
to monitor infrasture condition

Cummings
et al.
(2017a, b)

Drone used to collect imagery of
cropland

Citizens used as drone pilot

Gülch et al.
(2016)

Drone used to collect imagery of bee
habitat

Citizens document bee habitat with
mobile app

Kaam and
Reed
(2019)

Drone used to collect imagery of bird
species habitat

Citizens scientists used to identify hab-
itat types from drone imagery to be
used in image classification

Noted potential for citizens to be used
as drone pilots in future

Larrain
et al.
(2020)

Drone used to survey and model
archeological sites using
photogrammetry

Citizens identify archeological sights to
survey with drones

Lin et al.
(2020)

Drones used to survey and model flood
succeptable Uran areas using
photogrammetry

Images uploaded to social media are
used to document water level during
flood events

Ofli et al.
(2016)

Drone used to collect imagery of wild-
life (as a proxy for objects of interest in a
disaster scenario)

Citizens identify wildlife from drone
imagery to be used as training dataset
for image classification

Ramchurn
et al.
(2016)

Drone used to investiate reports of
disaster areas

Social media posts are used to identify
potential disaster areas

Citizens classify social media posts for
more effective usage

Rey et al.
(2017)

Drone used to collect imagery of
wildlife

Citizens identify wildlife from drone
imagery to be used as training dataset
for image classification

Salisbury
et al.
(2015)

Wide range of potential uses Crowd of citizens collectively piloting
drone using input aggregation platform



projects that were developed across all of Germany and Vanuatu. None of the
articles analyzed occurred at the global scale. It should be noted that five articles
could not be directly tied to a specific scale. For instance, Ofli et al. (2016) and Alex
et al. (2015) utilized secondary or already existing data not pinpointed to a specific
region (Table 3.3). Further, Salisbury et al. (2015, 2016) proposed or tested a
methodology for citizen science with drones. Both articles did not test the method-
ology at a specific location.
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Table 3.2 (continued)

Authors Use of Drone Use of Citizen Science

Salisbury
et al.
(2016)

Drone used to stream live video of
disaster areas

Citizens watch live drone footage and
classify objects of interest in real time

Scher et al.
(2019)

Drone used to model individual trees
using photogrammetry

No citizen scientists included in study

Noted potential for citizen scientist
adoption of methods in future

Wiesner-
Hanks et al.
(2019)

Drone used to collect imagery of
cropland

Citizens identify lesions on plants from
drone imagery to be used as training
dataset for image classification

While there is diversity in the application of drone-based citizen science, the
utilization of citizen scientists can be divided into three main categories: (1) data
collection, (2) data extraction, and (3) data mining.

3.2.1.1 Direct Citizen Scientists-Drone Interactions Through Data
Collection

Of the publications assessed, only 4 of the 18 involved the citizen scientists with
drone operation and data collection directly.

Two of these publications describe similar methods for disaster relief where
citizen scientists watch live drone feeds and tag objects of interest such as victims
in need of aid (Alex et al. 2015; Salisbury et al. 2016). In one of these publications, a
crowd of observers outperformed both single observers and a computer identifica-
tion algorithm in almost all cases (Alex et al. 2015). While citizen scientists may be
uniquely suited to these disaster relief scenarios due to their ability to identify objects
of interest in cluttered environments, there are drawbacks to citizen involvement. In
particular, there may be ethical and legal concerns that must be considered, such as
showing images of gore and death to citizen scientists (Alex et al. 2015). Another
hurdle for using real-time citizen science in high-stakes scenarios, such as these, is
the inconsistent response of volunteers to different disaster occurrences (Salisbury
et al. 2016). Salisbury et al. (2016) address this concern by proposing the use of
crowdsourcing marketplaces such as Amazon Mechanical Turk to supplement active
observers when public participation is low. These crowdsourcing marketplaces
allow customers to post tasks that cannot be easily automated, which are then
fulfilled by online users of the platforms in exchange for small payments, typically



Authors Article title Field
Study area land
cover/use

Table 3.3 Field of study and the study area land cover/use for the 18 publications included in the
literature review

Alex et al.
(

(continued)

56 E. L. Bunting et al.

2015)
Crowdsourcing for Search of Disaster Vic-
tims: A preliminary Study for Search and
Rescue

Post Disaster
Management

Mostly urban
but other land
covers too

Attari et al.
(2017)

Nazr-CNN: Fine-Grained Classification of
UAV Imagery for Damage Assessment

Post Disaster
Management

Mostly urban
but other land
coven too

Bowley
et al. (2019)

An Analysis of Altitude, Citizen Science
and a Convolutional Neural Network
Feedback Loop on Object Detection in
Unmanned Aerial Systems

Ecology Bogland/
Peatland

Cardil et al.
(2017)

Assessing Pine Processionary Moth Defo-
liation Using Unmanned Aerial Systems

Ecology Forest

Chirayath
and Li
(2019)

Next-Generation Optical Sensing Technol-
ogies for Exploring OceanWorlds—NASA
FluidCam, MiDAR, and NeMO-Net

Ecology Aquatic
Systems

Choi and
Dyke
(2020)

CrowdLIM: Crowdsourcing to Enable
Lifecycle Infrastructure Management

Infrastructure
Management

Urban

Cummings
et al.
(2017a, b)

Developing a UAV-Based Monitoring
Program with Indigenous Peoples

Agriculture Cropland

Gülch et al.
(2016)

BEESMART – A Crownsourcing Project
with Smartphones

Ecology Multiple land
covers

Kaam and
Reed
(2019)

Use of Visible Spectrum sUAS Photogra-
phy for Land Cover Classification at Nest
Sites of a Declining Bird Species (Falco
sparverius)

Ecology Grassland

Larrain
et al. (2020)

Participatory Mapping and UAV Photo-
grammetry as Complementary Techniques
for Landscape Archaeology Studies: An
Example from North-Western Argentina

Archeology Scrubland

Lin et al.
(2020)

Quantifying Flood Water Levels Using
Image-Based Volunteered Geographic
Information

Post Disaster
Management

Urban

Ofli et al.
(2016)

Combining Human Computing and
Machine Learning to Make Sense of Big
(Aerial) Date for Disaster Response

Post Disaster
Management

Mostly urban
but other land
covers too

Ramchurn
et al. (2016)

A Disaster Response System based on
Human-Agent Collectives

Post Disaster
Management

Urban

Rey et al.
(2017)

Detecting Animals in African Savanna with
UAVs and the Crowds

Ecology Savanna

Salisbury
et al. (2015)

Real-time Opinion Aggregation Methods
for Crowd Robotics

Remote Sensing
Method
Development

Multiple land
covers

Salisbury
et al. (2016)

CrowdAR: A Live Video Annotation Tool
for Rapid Mapping

Post Disaster
Management

Mostly urban
but other land
covers too



Authors Article title Field

several cents per task (Ipeirotis 2010). While crowdsourcing platforms themselves
are not citizen science, the methods they employ are analogous to those of citizen
science and can indicate direct potential for citizen science expansion. In the other
two articles with data collection, the citizen plays the role of the pilot, albeit in very
different circumstances. One publication (Salisbury et al. 2015) investigates methods
for allowing workers taken from crowdsourcing marketplaces (Amazon Mechanical
Turk) to collectively pilot a drone through an online interface. This crowdsourced
piloting allows professional drone operators to focus on the sensors while the drone
is remotely controlled. This reduces strain on pilots who would traditionally have to
monitor sensors while simultaneously piloting the drone. This method is applicable
for any task where drone piloting cannot be automated, for example, infrastructure
monitoring or drone-based parcel delivery (Salisbury et al. 2015). One major
drawback of drone-centric citizen science noted in this article and other similar
ones is the potential of nefarious actors among the crowd. People setting out to
manipulate or sabotage data collections are nothing new. The problem of nefarious
actors with the Amazon Mechanical Turk Platform was also observed in Wiesner-
Hanks et al. (2019) when some workers seemed to identify lesions on plants
seemingly at random within images. In this article the authors note that the cost
for the Amazon Mechanical Turk workforce is quite low and annotation quality
might increase if payment for these workers were to increase (Wiesner-Hanks et al.
2019). It is also possible that if these paid workers were to be replaced with
volunteers, the occurrence of these malicious actors may decrease as participants
are more invested in the success of the project.
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Table 3.3 (continued)

Study area land
cover/use

Scher et al.
(2019)

Drone-Based Photogrammetry for the
Construction of High-Resolution Models of
Individual Trees

Ecology Multiple land
covers

Wiesner-
Hanks et al.
(2019)

Millimeter-Level Plant Disease Detection
from Aerial Photographs via Deep Learn-
ing and Crowdsourced Data

Agriculture Cropland

The only other publication where citizen scientists are used as drone pilots and the
only paper where citizens are directly trained to collect data is Cummings et al.
(2017a). In this article researchers introduce drones to remote indigenous commu-
nities in Guyana to empower the community with improved methods of natural
resource management. This program provided training for community members in
all aspects of drone use from construction and maintenance to mission planning and
data collection. While the initial introduction of the program in the communities
involved help from the researchers, the long-term goal of this program was to allow
these communities to conduct drone surveys independently. This project was largely
successful with multiple lasting benefits to the community. For instance, when local
community members conduct their own aerial survey, they are the first ones to have
access to the data and can chose to share and use it how they please. This is not



possible when surveys are conducted by external entities. The aerial imagery
generated by these flights also influenced the relationships of the communities
with the surrounding flora and fauna by allowing them to observe previously
unknown ecosystem functions. Most importantly the new perspective this drone
imagery provides allows managers in these communities to track landscape changes
and make more informed natural resource management decisions. This paper dem-
onstrates that with an initial investment by programs like this, communities with no
prior drone experience can establish beneficial drone programs. Considering the
success in implementation and data collection with this program and the utility of
drones in communities lacking the ability to collect aerial imagery, we see a great
deal of potential to expand these types of projects to communities around the world.
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To recap, of the 18 articles analyzed, only 4 (22%) involved citizen scientists in
the data collection phase of the research. Only one article (5.5% of the sample) put
the drone in the hands of the citizen scientists for the data collection efforts.
Furthermore, 2 of the 18 (11%) solely utilized Amazon Mechanical Turks as their
“crowd” instead of true volunteers.

3.2.1.2 Indirect Citizen Scientists Drone Interactions Through Data
Extraction and Mining

In the remaining articles, 14 of 18, the citizen scientists have no interaction with the
drone itself but were instead utilized in data extraction and mining activities
(Fig. 3.5). In 7 of 18 articles, 39%, the citizen scientist extracts model training
data from drone imagery for object identification algorithms (Attari et al. 2017;
Bowley et al. 2019; Chirayath and Li 2019; Kamm and Reed 2019; Ofli et al. 2016;

Fig. 3.5 Examples of citizen science and drones. Using citizen science-collected datasets: image of
hotspots of emergencies generated from emergency reports uploaded to the web after the Port-au-
Prince 2010 Earthquake taken from Ramchurn et al. 2016 (left). Using citizen scientists to assist
with on-the-ground data collection: image of community members participating in mapping
activity, during which community members identified previously undocumented archeological
ruins taken from Larrain et al. 2020 (center). Having citizen scientists assist in data processing:
animals identified in drone imagery (surrounded by red identifying circles) by citizen scientists
taken from Ofli et al. 2016 (right)



Rey et al. 2017; Wiesner-Hanks et al. 2019). Given the high resolution of drone
imagery, species-level vegetation mapping is a common classification approach.
Such classifications are completed using object identification algorithms. These
algorithms, such as convoluted neural networks and other machine learning
approaches, require large training datasets which can be developed by citizen
scientists. Such training data development is vastly important to model and classi-
fication accuracy, but drones are capable of producing extremely large datasets,
typically from multiple flights and/or time periods, requiring an enormous amount of
labor to process and ultimately extract data from (Nature Conservation in Namibia –
Drone Adventures 2014; Ofli et al. 2016). Multiple publications utilized volunteers
in such a way for image-based training data development.
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In 2 of 18 articles (11%) where citizen scientists had indirect interaction with the
drone, the citizens acted as local experts and assisted in fieldwork in a variety of
fashions including imagery verification and field-based training sample collection. In
one study, citizens were tasked with collecting ground-based imagery of bee habitats
through a mobile app on their cellphones. Drones were also used to collect similar
imagery, but for more broad-scale classification as the imagery was not of high
enough resolution to see individual flowers important to the study (Gülch et al.
2016). In this case, it is unlikely the citizen science was aware of the use of drones for
the study. In the other study, an educational workshop led community members with
their firsthand knowledge of the area to identify archeological sites previously
unknown to researchers. These sites were then able to be rapidly mapped and
documented by researchers using drones. In this case, the discovery of the new
site was not planned and highlights the utility of local spatial knowledge gained by
engaging community members directly. This study saw the benefit of increasing
community engagement with the interpretation and enhancing management of the
community’s cultural heritage. Incorporating drones in this example also produced
documentation of these archaeological sites that will stay in the community as
educational resources for time to come (Larrain et al. 2020).

In 3 of 18 publications, where the citizen scientists had no direct interaction with
the drone, the researchers employed data mining approaches to gather pictures and
descriptions of events from social media to be used in tandem with drones (Choi and
Dyke 2020; Lin et al. 2020; Ramchurn et al. 2016). In one example, social media
reports of disasters were used to guide drone surveys in support of disaster relief
(Ramchurn et al. 2016). In this example, citizen scientists were also used to further
classify social media posts for more effective usage of the dataset. In the other
publications, photos uploaded to social media were used to compare against baseline
surveys conducted with drones to quantify flood hazards (Lin et al. 2020) and track
infrastructure condition (Choi and Dyke 2020; Ramchurn et al. 2016).

Two publications in the review did not have any citizen science element but
explicitly state that the methods developed could be used for citizen science in the
future (Cardil et al. 2017; Scher et al. 2019). In Cardil et al. (2017), researchers
outline the utility of drones to observe and quantify destructive insect defoliation in
pine trees. The authors suggest similar methods could be adopted by drone-owning
citizens to establish citizen science forest health monitoring programs. In Scher et al.



(2019), researchers demonstrate the ability of drones to be used for high-resolution
modeling of individual trees. In this case, the authors state that all equipment and
software used, as well as study methodology, are readily available to the public and
can be adopted by citizen scientists. Additionally, Kamm and Reed (2019) describe
the use of drones to classify bird species habitat. The authors note methods devel-
oped can be utilized by citizen scientists in the future. This article however also
utilizes citizen scientists to create training datasets for land cover classification and
thus is included as part of the Indirect Citizen Scientists Drone Interactions category
of citizen science. The hypothetical role of the citizen scientists in both of these
articles is that of the drone operator, should they be adopted for use with citizen
scientists. This gives a small insight into the direction of future uses of citizen
scientists and drones.
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3.2.2 Study Field

Based on the literature review, citizen science and drones are used most often in the
fields of ecology (seven articles, 38.8%) and post-disaster management (six articles,
33.3%). The majority of the publications in ecology fell into the data collection
category (see Sect. 3.2.1.2). Many of these publications have similar methodologies
and involve citizen scientists identifying objects of interest, training data, from drone
imagery. This takes advantage of the capability of citizen scientists to quickly
process large amounts of data. For instance, in the field of wildlife ecology, the
volume of drone imagery needed to detect animals is quite large when animals are
geographically dispersed. This volume of data combined with the miniscule propor-
tion of an image that animals typically occupy leads to slow and resource intensive
object identification ideal for citizen scientists (Bowley et al. 2019; Rey et al. 2017).

The disaster management articles involved both direct and indirect drone inter-
actions. Processing a large amount of data is especially challenging in this field,
when trying to distinguish and classify objects is time sensitive. Like ecology,
several publications in post-disaster management utilize citizen science to generate
training data for object identification algorithms. In fact, Ofli et al. (2016) utilize the
same wildlife ecology drone image dataset as Rey et al. (2017) to evaluate its
platform. Unlike the field of ecology, post-disaster management often necessitates
rapid data processing of drone imagery, especially when imagery is being used to
allocate aid and search for disaster victims. Two similar studies addressed this
problem by having citizen scientists identify objects of interest within disaster
areas in real time through a web application (Alex et al. 2015; Salisbury et al. 2016).

Other fields of study utilizing drones and citizen science include agriculture (two
articles), infrastructure management (one article), and archeology (one article). As
the use of drones and citizen science is still evolving, many of these articles are
focused on developing methods for future work, rather than evaluating the success of
methods employed in real-world scenarios. For instance, in Ofli et al. (2016),
researchers developed a platform to incorporate citizen science and drones for



disaster response using existing drone imagery datasets. However, at the time of
publication, the platform had not been deployed in actual disaster relief scenarios.
Consequentially while these methods are typically developed for specific fields of
study, their applicability beyond that field is often broad and will likely be adopted
for work beyond their original scope.
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While geographers embrace the spatial science, geographic technologies, and
development of participatory GIS, they are not the leaders in linking citizen science
with UAS technology. In fact, only 5 of the 18 articles analyzed as part of this review
involved a researcher who identifies themselves as a geographer or is affiliated with a
geography department. Instead, most researchers identified or were affiliated with
computer science or engineering. Those articles that did involve geographers more
heavily focused on participatory mapping efforts.

3.2.3 Study Area Land Cover/Use

Many publications took place entirely within a single land cover/use including
cropland (Cummings et al. 2017a; Wiesner-Hanks et al. 2019), forest (Cardil et al.
2017), savanna (Rey et al. 2017), urban (Choi and Dyke 2020; Lin et al. 2020;
Ramchurn et al. 2016), and aquatic (Chirayath and Li 2019). Other publications were
applicable to multiple environments, for example, Scher et al. (2019) which devel-
oped a method to create high-resolution models of single trees using drones and is
applicable to any environment where trees are found. Further, several articles did not
take place in any specified environment and were instead focused on developing
methods that could be used in multiple environments, for example, Salisbury et al.
(2015) which took place entirely in virtual environments online or Alex et al. (2015)
that used archival drone data to conduct its experiments. Overall, of the 18 articles,
13 (72.2%) were conducted in specific environments.

Urban environments were the most commonly observed among all publications
(7 of 18). Of these publications three took place entirely within urban environments
with two being in the field of post-disaster management (Lin et al. 2020; Ramchurn
et al. 2016) and one being in the field of infrastructure management (Table 3.2). The
four additional publications (Alex et al. 2015; Attari et al. 2017; Ofli et al. 2016;
Salisbury et al. 2016) did not take place specifically within urban environments but
were in the field of post-disaster management and thus highly applicable to urban
areas. Citizen science and drones used for disaster management in urban environ-
ments are a logical crossroads for several reasons. Citizen science may be more
realistic in urban environments in general due to the abundance of people residing in
these areas. This is especially relevant when the form of citizen science includes
utilizing social media posts to guide drone usage. For example, Ramchurn et al.
(2016) researchers used crowdsourced data from social media to identify disaster
hotspots and allocate drone reconnaissance resources more effectively. This sort of
method may not be applicable to non-urban environments where the volume of
social media posts available to guide resources is insufficient. Of all the examples we



see of citizen science and drones in urban environments, none has examples of
citizens piloting the drones. This could be in part because of the regulations and
safety concerns with citizens flying drones over persons or vehicles not involved in
the flight which is more likely to happen in urban environments.
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The remaining five articles (27.7%) highlighted citizen science research engage-
ment that could take place in multiple environments. For example, Gülch et al.
(2016) developed a method to monitor bee habitat through smartphones and drones.
Such work is applicable anywhere bees are found, and while the extent of the article
is limited, methods like these could be expanded globally.

3.2.4 Drone Types

The most common type of drones observed in citizen science drone programs was
multirotor helicopter style drones with ten publications (Cardil et al. 2017; Chirayath
and Li 2019; Choi and Dyke 2020; Cummings et al. 2017a; Kamm and Reed 2019;
Larrain et al. 2020; Lin et al. 2020; Ramchurn et al. 2016; Salisbury et al. 2015;
Scher et al. 2019). One of these ten publications, Ramchurn et al. (2016), did not
specify the drone used, but was likely a helicopter style based on its described ability
to hover. Of these ten publications, eight specified a quadrotor format, while
Cummings et al. (2017a) specified a hexarotor format and Chirayath and Li (2019)
an octorotor format. In studies where there was direct interaction between the citizen
scientist and the drone (Sect. 3.2.1.1), helicopter-type drones were used exclusively.
This could be in part because helicopter-style drones are much more agile, control-
lable, and responsive, which make them ideal for inexperienced pilots. For example,
in Salisbury et al. (2015), drones are cooperatively controlled based on the collective
input by multiple volunteers. In this case the ability to respond to rapidly changing
flight control inputs is much more suited to helicopter-style drones. Additionally,
these types of drones can be lower in cost; therefore, putting the drone in the citizen’s
hands is not as risky. While helicopters, particularly quadcopters, were most com-
mon in citizen science engagement, it should be noted that fixed-wing and other
classes of drones have been expanding their target audience to include the general
public.

Only three publications used fixed-wing drones (Bowley et al. 2019; Gülch et al.
2016; Rey et al. 2017). All of the instances of fixed-wing drone use were in cases
where citizen scientists were being used to assist in data processing, for example,
identifying objects of interest in previously collected drone images. In these cases,
the citizen has no interaction with the drone, and the type of drone used is irrelevant
to the citizen scientist. Using fixed-wing drones in this case would decrease the
ability of the drone to respond to rapidly changing crowd input in real time.
Additionally in cases where citizens are assisting with image and video processing
in real time, for example, in Alex et al. (2015) and Salisbury et al. (2016), the ability
to slow down and hover may be helpful for the image and video acquisition and is



not possible with fixed-wing drones (Adams and Friedland 2011; Ollero and Merino
2004).
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Three publications (Attari et al. 2017; Salisbury et al. 2016; Wiesner-Hanks et al.
2019) did not specify the type of drone although based on its use we can infer drone
type. In both publications (Attari et al. 2017; Salisbury et al. 2015), the drone is used
to assess damage from disasters. These missions would be best suited for a
multirotor drone due to increased control and maneuverability that would allow
the pilots to divert course and hover in order to easily investigate and identify
objects. In Wiesner-Hanks et al. (2019), the drone is used to collect images of
crops. Given the size and simple dimensions of many crop fields, fixed-wing drones
may be the most effective as they can cover large areas with minimal maneuvering,
although helicopter-style drones can be applicable in this case as well.

The remaining two publications did not use drones but used previously collected
drone imagery and video to develop methods to be used with drones in the future.
Alex et al. (2015) used footage from the VIRAT (Video Image Retrieval and
Analysis Tool) aerial footage database and did not specify the type of drone used
to collect the imagery. Ofli et al. (2016) used the image dataset collected by Rey et al.
(2017) which was collected through a fixed-wing drone.

3.2.5 Purpose of Drone

In 16 of 18 publications reviewed, drones were equipped with mounted sensors for
collecting natural color (RGB) imagery or video. In eight of these publications, these
RGB imagery and video were used to identify objects of interest such as animals or
disaster victims by citizen scientists (Alex et al. 2015; Attari et al. 2017; Bowley
et al. 2019; Kamm and Reed 2019; Ofli et al. 2016; Rey et al. 2017; Salisbury et al.
2016; Wiesner-Hanks et al. 2019). The use of RGB in these cases, as opposed to
multispectral data, is appropriate for citizen scientists who might not be trained in
interpreting imagery from outside the natural color spectrum. In five publications
RGB imagery was used to build 3D models and orthomosaics using photogramme-
try software (Cardil et al. 2017; Choi and Dyke 2020; Larrain et al. 2020; Lin et al.
2020; Scher et al. 2019). In the remaining three articles using RGB imagery, the
imagery was interpreted by researchers (Gülch et al. 2016; Ramchurn et al. 2016) or
by community members (Cummings et al. 2017a). This narrow use of sensors in
citizen science studies is notable given the wide range of sensors capable of being
mounted on drones. The absence of citizen science programs engaging multispectral,
LiDAR, thermal, and non-image base sensors (e.g., temperature probes) can be the
result of sensor cost, training to understand the sensor mechanics, and/or the fact that
drone technology is expanding and citizen science has not caught up. The fact that
natural color cameras/sensors are the most used is not surprising as there are drones
that, for a reasonable price, come equipped with this. Conversely, the use of
specialized sensors involves increased complexity including new preflight planning
steps and flight considerations. As previously discussed, most articles with active



drone-based citizen scientist participation look to incorporate them to accelerate
tedious object identification tasks or assist with rapid image collection and
processing. These sorts of tasks cannot be easily automated and often require
human assistance to complete. Such tasks are typically more easily completed with
the use of natural color imagery; this is not necessarily the case with multispectral
data as the general public is not familiar with visualizing and interpreting trends from
the electromagnetic spectrum.
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Of all publications reviewed, there were two not strictly utilizing drones to collect
RGB imagery. Chirayath and Li (2019) outline the use of two specialized sensors for
aquatic remote sensing: FluidCam which can obtain refraction-free imagery of
aquatic systems and MiDAR which uses active remote sensing to observe aquatic
systems in light-limited environments. Salisbury et al. (2015) do not use any drones
in its study but instead simulate drones in a virtual environment to test methods of
citizen scientists collectively piloting the drone. Should this method be put into
practice in the field, the drones used would be equipped with live video to relay back
to citizen scientists controlling the drone; however additional sensors for environ-
mental monitoring could be utilized on the drone as well.

3.2.6 Future Drone Use

Of the relatively few publications utilizing citizen science and drones, there are even
fewer utilizing the citizen scientists as the drone pilot. Given the success and
community benefits of direct involvement of citizens in drone operation (e.g.,
Cummings et al. 2017a) as well as the high potential for expansion of this approach
(e.g., Cardil et al. 2017; Scher et al. 2019), there will likely be an increase in future
projects utilizing citizens as the drone operator.

In addition to the citizen benefits, this form of citizen science has tangible benefits
to the researchers. For example, having a network of geographically dispersed
citizens capable of operating drones without the assistance of researchers allows
for rapid and contemporaneous data collection across multiple areas in response to
events. An example of such a network is the “Dronebird” Disaster Drone Rescue
Team in Japan. This network of drone owners rapidly deploys to collect drone
imagery of disaster areas and uploads maps of their findings online for the public
and first responders to use (“Drone Bird Disaster Rescue Squad,” 2020). Addition-
ally, in Australia the Victorian CoastalMonitoring Program (VCMP) has embraced
the use of citizen-operated drone data collection (Pucino et al. 2021). This work was
published after the literature review was conducted for this chapter; however, this
program represents a key advancement in citizen science and coastal change science.
VCMP developed a citizen science program centered around mapping coastal areas
with consumer-grade drones in order to support adaptation planning by providing
communities with information on coastal hazards and potential future impacts to
coastal landscapes. This is a community-focused project aimed at empowering the
residents to actively monitor and predict beach movement in response to changing



environmental conditions and management interventions. This program uses con-
sumer drone technology (i.e., Phantom 4 Pro quadcopter drone) and cloud data
processing to engage citizen scientists in the collection, processing, and analysis of
sand movement along Victoria’s beaches (Pucino et al. 2021).
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A similar program has been developed independently in the United States by the
authors of this chapter. The program, Interdisciplinary Citizen-based CoastalREmote
Sensing for AdaptativeManagement program (IC- CREAM), is led byMichigan State
University (MSU) and aims to empower small communities along the Great Lakes of
North America to collect their own coastal change data and infuse these datasets into
proactive coastal management. The IC-CREAM citizen scientists are trained to
become FAA Part 107 pilots and collect shorelineimagery in their community sea-
sonally as well as in response to storm events or management actions. While this
program, which is funded by the National Science Foundation, just began in January
2020, initial results from one of the participating communities indicate that highly
accurate data can be generated from citizen-based drone monitoring, similar to the
findings of VCMP. Additionally, these data can be used to document patterns of
erosion and accretion associated with fluctuating lake levels and storms as well as
provide important information on coastal hazards to decision-makers. For example,
data gathered in Marquette, Michigan, from June 2020 through November 2020
documented the geomorphic impacts (e.g., erosion, accretion) on a sandy beach
from a large coastal storm with significant wave heights in excess of 4 m (Fig. 3.6).
These data not only provided the research team with a high-quality pre- and post-
storm dataset that can be used to gain insight into coastalgeomorphic processes but
will also be used by the City of Marquette to develop a management plan.

3.3 Conclusion

As drones become more cost-efficient and commonplace, the potential for citizen
science and drones will inevitably increase. Currently the majority of publications
utilizing drones and citizen science have little to no interaction between the citizen
scientists and the drone. Instead, the citizens are generally used as either the data
processor for drone imagery or to unknowingly generate data through social media
that will be used in conjunction with drones. The few examples of citizen science
interaction with drones we do see generally consist of citizens viewing live drone
footage via web application and either tagging the imagery or collectively piloting
the drone through aggregated crowd inputs. We found only one example of citizen
scientists being responsible for all aspects of the drone operation. This direct
interaction provided several benefits to the community unseen in other studies. For
example, allowing communities to collect and own their own data increases engage-
ment of community members with their surroundings as well as empowering
communities with state-of-the-art data for improved decision-making.

Given the benefits to both researchers and the local community when the drone is
in the hands of the citizen scientists, the lack of studies utilizing this intersection of



drones and citizen science is surprising. This method is applicable in virtually all
environments where drones can safely be flown, and with a near limitless need for
geospatial data and imagery in communities, we see this use of citizen science to be
ripe for development in the coming years. Monitoring for coastal change, landslides,
floods, agriculture, traffic, and other fields of study and practice where remotely
sensed imagery is used will be greatly enhanced by the spatial and temporal coverage
afforded by citizen scientists equipped with drones. Of course, these benefits are not
realized without great care to ensure flights are conducted safely and legally; thus
training must be a principal focus of future projects that enlist citizen scientists to fly
drones. The success of citizen-based drone monitoring projects such as VCMP and
IC-CREAM proves that citizens can be trained to successfully operate drones for
specific research and management applications.
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Fig. 3.6 Rapid coastal erosion documented with drones in Marquette Michigan. Top: mosaiced
imagery of coastline generated from drone flights on June 29, 2020, and November 22, 2020.
Center: digital elevation models for the coastlines across both dates. Bottom: difference in elevation
observed between the drone flights indicating substantial change (erosion) over the period

3.3.1 sUAS-Based Citizen Science Studies in Geography

Improvements and expansion of UAVs and associated sensors and hardware are
transforming the geographic discipline. From biogeography to geomorphology,



economic geography, cultural geography, and climatology, we can see countless
examples of newly developed datasets, maps, and methodologies. However, in the
merger of citizen science and UAVs, there are very few programs with origins in the
geographic discipline. This lack of geography-centric UAV citizen science programs
could be due to several factors including the following:
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1. The collaborative nature of the discipline. Geography is highly collaborative by
nature, and we can see the trends of collaboration and methodological sharing in
the articles associated with this literature review. Thus, while a program is not led
by a traditional geographer or based in a geography department, the ideals of
participatory mapping, GIS, remote sensing, and spatial science are still associated.

2. Department identity is not self-identity. In this review we looked at the author
department affiliation to highlight the presence of geography in UAS-based
citizen science. However, given the interdisciplinarity of geographic training, it
is highly likely for geographers to be associated with differing named depart-
ments such as environmental studies and computer sciences.

UASs offer new ways of seeing, sensing, and sharing powerful landscape data. As
this technology continues to grow, so will its use within citizen science programs.
Geography, which in many ways is at junction of data science, ecology, and social
science, is posed to not only embrace but greatly expand the utility of UAS-based
citizen science. From the authors’ personal experience, given our development of the
IC-CREAM program, such expansion includes (1) the fusion of historical aerial
imagery with drone-based data to develop robust time series imagery, (2) development
of time series statistics in order to analyze landscape change in a statistically robust
manner, and (3) the coordination of batch data processing given large data volumes.

Drones have a clear role in the spatial sciences by bridging the temporal gap
between satelliteimagery or through high-resolution output. The future of UAS
usage, even beyond citizen science, will incorporate drone swarms, new sensors
(e.g., full waveform LiDAR), and large payload or long flight time drones all of
which have data outputs strongly grounded in remote sensing science. Therefore,
given the spatial perspective, data science, and remote sensing premise, there will
long be a critical role for geographers not only in the use of UAS but in its
application within citizen science.
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Chapter 4
Using sUAS to Map and Quantify Changes
to Native American Archaeological Sites
Along Coastal Louisiana Due to Climate
Change and Erosion

Kory Konsoer, David Watt, Mark Rees, Macy Linton, Tad Britt,
and Sam Huey

Abstract The risks and challenges to archaeology and cultural resource manage-
ment planning in wetland landscapes are not unique to the north-central Gulf Coast.
Similar challenges are being experienced in deltaic and estuarine landscapes across
the globe, where erosion and relative sea level rise demand rapid and effective
responses to catastrophic and widespread impacts on living populations and cultural
resources. Sites at risk from the dire consequences of anthropogenic climate change
are being adversely affected at a faster rate than can be satisfactorily mitigated by
traditional data recovery. Implementing actionable and cost-effective strategies of
investigations and survey methodology utilizing small unoccupied aerial systems
(sUAS) technology will be critical in balancing research potential and the multifac-
eted value of cultural resources. The research presented in this chapter highlights the
use of sUAS in ongoing efforts to monitor, study, mitigate, and preserve a record of
Native American archaeological sites in the coastal wetlands of Louisiana. Discus-
sions include the benefits and challenges of operating sUAS in alluvial landscapes
and how these technologies can be implemented in interdisciplinary research and
used as educational/training tools and for public outreach and engagement.
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4.1 Introduction

Louisiana’s coastal lands are being lost at an alarming rate due to a combination of
sea level rise, land subsidence, and coastal erosion (González and Törnqvist 2006;
Penland and Ramsey 1990). This land loss is further exacerbated by human-induced
climate change and anthropogenic alterations to the Mississippi riverine landscape,
including numerous dams within the upper portions of the watershed (Kemp et al.
2016), levees along the Mississippi River and its delta distributary channels (Kessel
1989, 2003), and navigation canals cut throughout the Mississippi deltaic plain
(Fearnly et al. 2009). Since the 1930s, Louisiana has lost roughly 4900 square
kilometers and is predicted to lose over 10,000 square kilometers in the next
50 years (Barras et al. 2008). While the rates of land loss for Louisiana’s coastal
zone (CZ) have varied through time (Couvillion et al. 2010), current rates are
estimated at over 42 square kilometers per year, driven by climate change, relative
sea level rise, and erosion (Figs. 4.1 and 4.2). These rates, commonly stated as one

Fig. 4.1 Projected rates of land subsidence for southeastern Louisiana and the Mississippi River
Delta. Green stars indicate approximate locations of Native American archaeological sites presented
herein



football field per hour, are faster than anywhere else in the USA (Anderson et al.
2017).
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Fig. 4.2 Projected increase in sea level of 30 cm (~1 ft) for southeastern Louisiana by 2050. Green
stars indicate approximate locations of Native American archaeological sites presented herein

Contained within Louisiana’s deltaic plain are thousands of Native American
archaeological sites, culturally and historically significant landscapes, and traditional
cultural properties (TCPs) representing millennia of human habitation in this
dynamic coastal zone (Britt et al. 2020). Although various restoration and mitigation
efforts have been planned and applied to reduce the rates of coastal land loss, led
primarily by the Coastal Protection and Restoration Authority (CPRA), these irre-
placeable sites are being rapidly destroyed, inundated, and/or rapidly buried. Once
these sites are lost, the cultural and ecological history contained within them is
similarly lost. As such, there is an urgency to map, monitor, and study these unique,
culturally significant places to preserve and mitigate the loss of scientific information
and ongoing obliteration of cultural heritage. Utilizing an interdisciplinary approach
that combines methods from physical geography, geomorphology, climatology, and
archaeology can provide a means for studying these important sites through rapid
reconnaissance and new remote sensing technologies during the current time-
sensitive, perilous conditions of coastal land loss in Louisiana.

Archaeological investigations in coastal Louisiana began intermittently during
the early twentieth century, but the cumulative effects of human actions on cultural
resources were not recognized until mid-century (Collins 1927; Howe et al. 1935;



Kniffen 1936). McIntire (1954, 1958) performed the first large-scale coastal survey
of Louisiana, demonstrating the need for regional data to address connections
between landforms, settlement patterns, site distributions, and chronology. Drawing
on Fisk’s (1944) geological study of the lower Mississippi River and earlier archae-
ological studies (Kniffen 1936, 1938; Phillips et al. 1951), McIntire’s culture
chronology and classification of sites were correlated with deltaic progression,
subsidence, and site submergence. Studies by Gagliano (1963, 1967) and Saucier
(1963, 1974, 1981) further examined the connections between geomorphology and
chronology in the Mississippi River Delta (MRD) and helped lay the groundwork for
culture-historical syntheses, geoarchaeology, and understanding of human adapta-
tions in the MRD and CZ (see also Gagliano 1984; Gagliano and van Beek 1970;
Gagliano et al. 1981).
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Archaeological research substantially increased in the 1970s following the pas-
sage of legislation for the management of historic properties and the human envi-
ronment (e.g., Davis et al. 1978; Gagliano et al. 1975, 1976, 1977, 1978, 1979, 1982;
Gibson 1978; Neuman 1970, 1973, 1974, 1975a, b, 1977a; Wiseman et al. 1979).
Five decades later, the anthropogenic causes of coastal erosion, climate change, and
sea level rise are widely recognized, along with the immediate and long-term
impacts on cultural resources (Anderson 2017; Britt et al. 2020; Dawson et al.
2020; Hale 2017; Jones 2014). Despite growing recognition of this unmitigated
disaster (Watt et al. 2020), a majority of the sites within the MRD and CZ have not
been scientifically investigated. Many of the sites recorded decades ago are rarely
revisited, and the challenges remain unaddressed. Attempts to revisit coastal sites are
often unsuccessful, revealing deeply subsided landforms, deteriorating marsh, or
open water at the locations of formerly terrestrial sites (Cloy and Ostahowski 2015).
Unknown numbers of sites along Louisiana’s coast have already been lost, and
hundreds more are vulnerable and at imminent risk (Britt et al. 2020).

One of the challenges limiting recurring site monitoring and intensive scientific
investigation of Native American archaeological sites within coastal Louisiana is the
dynamic aspect of the deltaic landscape. Sites that were previously miles away from
the shoreline and accessible by land are now surrounded by shallow coastal waters
and sinking into the Gulf of Mexico. Sites along shorelines and on barrier islands are
inundated, eroded, and redeposited by wave action and storm surges intensified by
climate change. Anthropogenic processes are augmenting and accelerating long-
term and cyclic changes in sea level, subsidence, and deltaic progression that
occurred throughout the Holocene (Gagliano 1984: 11–24).

These conditions make site access increasingly difficult, requiring shallow-draft
watercraft for sites connected to open bays and channels, while other interior,
inundated wetland sites may be accessible only by amphibious vehicle or on foot.
Reaching inaccessible coastal sites for pedestrian survey is consequently very time-
consuming and costly. Neuman (1977b) demonstrated the use of the helicopter and
aerial photography for visiting and documenting sites on Louisiana’s coast, at the



time finding it to be more expedient and as cost effective as a survey by watercraft.
High-altitude aerial photography has also been used to identify visually prominent
sites with shell midden and earthen mounds, based in part on shoreline exposures of
midden and discernible differences in vegetation from the surrounding marsh
(Neuman and Byrd 1981). These techniques are less effective, however, for densely
wooded landforms and swamps (Neuman and Byrd 1981: 107). Nor does aerial
photography yield imagery of sufficiently high resolution to discern smaller or less
visible, subsided sites or allow for close-up and frequent monitoring of changing site
conditions due to deteriorating landforms and relative sea level rise. Neuman and
Byrd (1981: 108) further suggested: “lower altitude imagery will be very useful in
actual surface mapping of the sites, particularly mound sites where the spatial
configuration has cultural significance.” Such technology, however, was mostly
nonexistent 40 years ago.
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The advent of small unoccupied aerial systems (sUAS) presents an opportunity
for substantial improvements in acquiring high-resolution imagery and data for
Native American archaeological sites and assessing geomorphic change within
inaccessible coastal wetlands. sUAS provide both a cost- and time-efficient method
for capturing photographs, video, and other multispectral imagery depending on the
sensors included in the payload. Using post-processing photogrammetric methods,
such as structure-from-motion (SfM), high-resolution three-dimensional point
clouds, and digital elevation models (DEMs), is easily produced. Additionally, as
long as visual contact with the sUAS is maintained (per FAA Part 107 regulations),
surveys can be conducted on sites that are unreachable by watercraft or foot.
Utilizing sUAS in geoarchaeological research thus allows for rapid site reconnais-
sance and revisits for continued monitoring of at-risk Native American archaeolog-
ical sites, historically significant places, and TCPs.

This chapter aims to highlight the recent use of sUAS in the ongoing efforts to
monitor, study, and, where possible, mitigate and preserve a record of Native
American archaeological sites within Louisiana’s coastal wetlands. These efforts,
known as the Mississippi River Delta Archaeological Mitigation (MRDAM), are
being conducted by a consortium of universities and federal and state agencies, in
partnership with Native American tribes and coastal communities. This consortium
consists of an interdisciplinary team of scientists from disciplines including archae-
ology, geomorphology, physical geography, climatology, civil engineering, and
geology. In this chapter, we will focus on selected sites that are being damaged by
coastal dynamics and anthropogenic processes, such as erosion, subsidence, rapid
burial, and redeposition. We discuss the benefits and challenges of operating sUAS
in coastal wetlands and compare sUAS application in coastal environments to inland
archaeological sites through examples from the literature. Lastly, we discuss how the
use of these technologies can be used to train and educate undergraduate students in
interdisciplinary research while also raising awareness among the general public.
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4.2 Study Area and Methods

The MRD and CZ encompass 20 parishes across south Louisiana (Figs. 4.1 and 4.2).
During fieldwork conducted in late summer and early fall of 2019, rapid reconnais-
sance and site assessments were performed at 27 different sites throughout the CZ,
and 15 of those sites included sUAS surveys. Field sites were accessed either via a
small boat rented from the Louisiana Universities Marine Consortium (LUMCON)
in Cocodrie, LA, or by a truck when accessible. sUAS surveys were conducted using
a DJI Phantom 4 quadcopter. GPS track flight plans were prepared in the lab before
fieldwork for all sites using DJIFlightPlanner software and integrated into the
fieldwork using Litchi UAS App. The GPS flight plans were prepared based on an
estimated area of interest surrounding the coordinates (latitude and longitude) for
each site, using a forward overlap of 70% and side overlap of 60%, an altitude of
22 m or 30 m, and camera time-lapse rate of 2 Hz. Depending on site location,
weather conditions, and accessibility determined upon arrival to each site, sUAS
surveys were performed using either a pre-designed flight plan or manual operation.
When site conditions allowed, ground control targets were placed within the survey
region and were surveyed using a Trimble R8s RTK-GPS with a local-based station
providing subcentimetric accuracy.

The sUAS surveys resulted in high-resolution video and photographs for each
site. For most sites, over 200 individual photographs were acquired. These photo-
graphs were post-processed in the Louisiana State University (LSU) Geomorphol-
ogy Lab using Agisoft Metashape, a program that semi-automatically performs a
structure-from-motion (SfM) technique to produce high-resolution three-dimen-
sional point clouds, DEMs, and orthorectified mosaics (orthomosaics). The
RTK-GPS ground control points (GCPs) were integrated into the SfM processing,
and the resulting orthomosaics had a positional error on average of 2–6 centimeters.
Processing time for each site ranged between 30 min to 12 h depending on the aerial
extent of the site and the number of photos.

For each site, aerial photographs ranging in date from the 1950s to 2019 were
acquired from the LSU Cartographic Information Center housed within the Department
of Geography and Anthropology. These printed aerial photographs were made digital
using a high-resolution large-scale scanner and were georeferenced using ArcMap and
vectorized maps of shorelines. Cultural site extents were digitized and used to estimate
rates of land erosion and subsidence. For this chapter, we focus the results on five sites
that are undergoing different processes of site obliteration. The five sites are (1) Adams
Bay (16PL8), located in Plaquemines Parish; (2) Magnolia Mounds (16SB49), located
in Saint Bernard Parish; (3) and (4) Cheniere St. Denis (16JE2) and Bayou Cutler
(16JE3), located in Jefferson Parish; and (5) Chain Bowl Point (16SMY27), located in
Saint Mary Parish (Figs. 4.1 and 4.2). The geographic coordinates are not being
released to protect these sites from unauthorized visits and looting.
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4.3 Results

4.3.1 Adams Bay (16PL8) – Coastal Erosion, Land
Subsidence, and Storm Surges

Adams Bay was once a multi-mound complex (Hale 2017; Mehta et al. 2020), first
documented in 1936 with three mounds exhibiting topographically diverse vegeta-
tion around a plaza (Kniffen 1936). The earthen mounds, or at least Mound
1, appears to have been constructed during the latter part of the Barataria phase
(1200–1550 CE) of Plaquemine culture, with evidence for earlier Cole Creek
influence and subsequent interactions with Bayou Petre phase Mississippian culture
to the east (Hale 2017: 92; Mehta et al. 2020: 27). As recently as 1977, the three
mounds still existed; however, only one mound (Mound 1) remains today. The US
Geological Survey topographic maps from 1892 show that the Adams Bay earthen
mounds were over 350 meters from the nearest shoreline (Fig. 4.3). Throughout the
twentieth century, coastal erosion resulted in the progressive loss of the wetlands
surrounding the mounds. The sUAS survey conducted in 2019 revealed nearly half
of the eastern portion of Mound 1 has been destroyed and the land around the mound

Fig. 4.3 (Left) USGS topographic maps from 1892 showing the location of Adams Bay (red dot)
surrounded by coastal wetlands. (right) Progression of land erosion at Adams Bay derived from
aerial photographs and sUAS 2019 survey. Extent of 3b shown in 3a by black box



has been reduced to an approximately 35-m-wide area of rapidly deteriorating marsh
(Fig. 4.4). The sUAS photos show a clear distinction between vegetation, with the
higher elevation mound being covered in trees, while the surrounding lower eleva-
tions are covered in wetland grass. The photos also reveal evidence of rapid site
destruction, with the presence of trees in the water (white arrow in Fig. 4.4) that were
originally on the mound delineating the approximate extent of the original
constructed mound. On the southern side of the mound, coastal wetlands have
been eroded over 2.5 km since 1892, with nearly 5 km2 of land loss occurring
since 1952 (Fig. 4.3). This substantial loss of land has increased the fetch length and
made the Adams Bay site particularly susceptible to wave erosion. The most recent
site destruction came from storm surges that removed vegetation and trees, further
accelerating erosion (Mehta et al. 2020: 25).
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Fig. 4.4 Oblique sUAS photograph showing the last remaining mound (tall trees by the boat) of
Adams Bay. The white arrow shows the approximate original extent of the mound shown by the
presence of the trees eroded in the water

4.3.2 Magnolia Mounds (16SB49) – Land Subsidence
and Sea Level Rise

Magnolia Mounds represents a multi-mound complex located within the coastal
wetlands on the southeastern extremity of Lake Borgne (Gagliano et al. 1982;
McIntire 1958: 65–66). This complex is by far the largest in southeastern Louisiana,
consisting of 12 or more earthen mounds. The earthworks are located on the western



natural levee of the La Loutre-Mississippi River course, laid out roughly in the shape
of an oval following the levee landform. The central portion of the site may have
served as a communal plaza that is now lower than the surrounding levee sediments
and inundated. The site is believed to have been initially occupied during the late
Marksville period (200–400 CE) and reoccupied during the late Coles Creek
(1000–1200 CE) and Mississippi (1200–1400 CE) periods (Gagliano et al. 1982:
22), when the natural levee was situated along the still flowing La Loutre-Mississippi
channel. The site was affected by land subsidence as the active channel was replaced
by the slow-moving Bayou la Loutre, gradually creating the familiar backswamp
landscape and marshlands found there today.
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Unlike Adam’s Bay, Magnolia Mounds has more than 15 km of patchy wetlands
separating the site from the Gulf of Mexico. These wetlands help to buffer storm
surge and wave action, limiting the amount of direct erosion to the earthen mounds.
Instead, this site is being lost due to land subsidence and inundation from sea level
rise (relative sea level rise). Aerial photographs from 1952 show only a small portion
of open water (~10,000 m2) within the immediate region of the archaeological site
(Fig. 4.5). Aerial photographs from subsequent decades reveal an increasing amount
of water area with most of the central portion of the complex being inundated by
2019 (Fig. 4.5). The rates of site loss due to relative sea level rise have varied since
the 1950s, with lower rates measured at ~192 m2/year during the 1980s and 1990s
and current rates increasing to ~770 m2/year estimated from the 2019 sUAS survey
(Fig. 4.6 and Table 4.1). As relative sea level rise continues at this site, access to
high-resolution sUAS surveys will be even more important as the mounds continue
to subside and become submerged.

4.3.3 Cheniere St. Denis (16JE2) and Bayou Cutler (16JE3) –
Anthropogenic Damage, Shoreline Erosion,
and Storm Surge

Cheniere St. Denis and Bayou Cutler are located approximately 1.8 km apart along
the northeast bank of Bayou St. Denis. The Bayou Cutler site is now bisected by
Bayou Cutler, an artificial shipping channel that connects Lafitte, LA, to Barataria
Bay (Fig. 4.7). Cheniere St. Denis consists of two shell and earth mounds, shell
midden, and a surface scatter of unmodified faunal remains, lithic materials, and high
densities of indigenous ceramics, both on the surface and within the mounds and
shell midden, dating from the Coles Creek (700–1200 CE) period and potentially the
Baytown (400–700 CE) period (Cropley et al. 2020: 64–65). Bayou Cutler is an
extensive shell midden previously described as a mound complex and the basis of
Kniffin’s (1936: 415–416) Bayou Cutler Complex. The shell midden consists
primarily of Rangia and oyster shells with faunal and human remains, lithics, and
high densities of indigenous ceramics both within the shell midden matrix and as
wave-worn deposits along the shoreline. The cultural materials date from the
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Fig. 4.5 Aerial photographs of Magnolia Mounds from 1952 aerial photograph (top left) and sUAS
orthomosaic (top right). (Bottom) Progression of inundation at Magnolia Mounds. Site boundaries
encompass the area shown that includes mounds and plaza



Marksville period (1–400 CE) through the Mississippi period (1200–1700 CE)
(Cropley et al. 2020: 65–66).
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Fig. 4.6 The increasing extent of water area at Magnolia Mounds

Table 4.1 Land area, water
area, and % change of site
inundated at Magnolia
Mounds

Land area (m2) Water area (m2) % change

1952 234,242 10,003 4

1979 222,478 21,767 9

1989 220,541 23,704 10

1998 219,405 24,840 10

2010 208,958 35,287 14

2019 202,040 42,205 17

While nearly all archaeological sites within coastal Louisiana have experienced
some degree of damage due to anthropogenic alterations of the landscape, these two
sites exhibit direct and extensive damage due to canal dredging and heavy shipping
traffic. Construction of the Barataria Waterway destroyed a central portion of the
Bayou Cutler site and left the remainder of the site more susceptible to erosion. It
also facilitated and increased traffic to the sites. As boats and vessels pass near these
sites, the wakes produce repeated wave action and erosion, causing channel widen-
ing and shoreline retreat. Both sites are consequently also more susceptible to
erosion from storm surges. A major portion of the Bayou Cutler site is now
redeposited and submerged. Future impacts to these sites might include accelerated
erosion and site burial from the proposed Mid-Barataria Sediment Diversion, as part



of ongoing coastal protection and restoration efforts (G.E.C. 2021). The photographs
from the sUAS surveys prove highly useful at distinguishing between shell midden
and damaged wetland vegetation (Fig. 4.8), allowing for accurate mapping of
extensive shell midden along ~2 km of shoreline from Cheniere St. Denis on the
west to Bayou Cutler on the east.
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Fig. 4.7 (Left) Oblique sUAS photograph showing Bayou Cutler archaeological site. The site
includes the land in the foreground and the island in the background. (Right) Oblique sUAS
photograph (location given by white arrow in the photo on the left), showing extensive shell
midden along the shoreline

Fig. 4.8 (Left) Oblique sUAS photograph of Cheniere St. Denis earthen mound (trees along the
shoreline by boat). (Right) sUAS photograph acquired during GPS flight path survey showing
differences between shell midden along the coast and damaged wetland vegetation in the central
portion of the photo. Location of photo given by white arrow in the photo on the left
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4.3.4 Chain Bowl Point (16SMY27) – Rapid Deposition
and Burial

Chain Bowl Point is located in one of the few places in Louisiana’s CZ that are
experiencing deposition and the creation of new subaerial lands, the Wax Lake
Delta. This river-dominated delta began forming in 1942 when the US Army Corps
of Engineers dredged the Wax Lake Outlet from the Atchafalaya River to alleviate
flooding in Morgan City, LA (Roberts et al. 2003). Since the first emergence of
subaerial land in 1973, Wax Lake Delta has developed over 100 km2 of new deltaic
land (Roberts et al. 1997, 1998).

Chain Bowl Point consists of shell midden first identified by researchers in 1952
on the shore of Atchafalaya Bay west of Belle Isle. At this time, the site was visible
as an exposed shell midden with wave-washed pottery sherds along the shoreline
(Smith et al. 2006: 36). By 2005, the site could not be relocated or mapped, as there
was no evidence of midden or cultural materials on the surface. Although investi-
gators attributed this to subsidence or erosion (Smith et al. 2006: 45), the Wax Lake
Delta has transformed the landscape where the site is located. With the artificial Wax
Lake Outlet carrying 38.4 Mt./year of sediment to the delta (Kim et al. 2009), Chain
Bowl Point is now located over 80 meters inland from the current shoreline
(Fig. 4.9). The 2019 sUAS survey clearly shows the paleoshoreline and approximate
location of the archaeological site, despite the accretion of land. Detailed inspection
of sUAS photographs and additional video from this site, however, did not reveal
evidence of the shell midden, suggesting the site might be completely buried
(Fig. 4.10).

4.4 Discussion

As demonstrated by the five selected examples, sUAS surveys along with site
assessments show that there are at least six interrelated processes in which archae-
ological sites within coastal Louisiana are being damaged, destroyed, and lost:
(1) coastal and shoreline erosion; (2) storm surges; (3) land subsidence; (4) sea
level rise; (5) sediment deposition and burial; and (6) direct human alteration of
landscapes and waterways. For most sites in the MRD and CZ, these mechanisms are
interrelated and not mutually exclusive, although site destruction can be often
attributed to one or more dominant forces. For example, Adam’s Bay has been
losing land surrounding the mound site at an alarmingly rapid rate predominantly
due to shoreline erosion and storm surge (Fig. 4.3). In contrast, Magnolia Mounds is
located within the interior of marshland southeast of Lake Borgne and is thus mostly
sheltered from erosion by wave action, yet is being adversely impacted by land
subsidence and sea level rise (Fig. 4.5). In fact, most of the sites in the marshes of
St. Bernard Parish are being adversely affected by subsidence, with relatively less
damage from shoreline erosion.
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Fig. 4.9 Aerial photograph from 1957 showing the location of Chain Bowl Point along the
shoreline and progressive deposition of sediment within Wax Lake Delta until the 2019 sUAS
survey

Sites that exhibit the greatest damages from direct human intervention are
primarily located adjacent to levees, roads, and channelized waterways. The two
examples shown above, Cheniere St. Denis and Bayou Cutler, are being damaged in
part due to boat traffic producing wakes that contribute to the erosion of the shoreline
and channel widening (Figs. 4.7 and 4.8). Throughout the MRD, countless shipping
channels and pipeline canals cut across the wetlands and through Native American
archaeological sites (Jones 2014; McLain 2014). These artificial waterways not only
bring unwanted wave damage due to boats but also provide pathways for storm
surges, the Mississippi River Gulf Outlet and the Hurricane Katrina storm surge of
2005 being the most notorious example (Freudenburg et al. 2009: 91–98). Oil and
gas extraction has also been associated with increased land subsidence, further
contributing to relative sea level rise (Morton et al. 2006). Additionally, oil and
gas platforms within the Gulf of Mexico and the MRD are prone to leaks and spills



that adversely affect the archaeological record and shoreline vegetation that protects
sites from erosion (Rees et al. 2018). The myriad forces of site destruction in
Louisiana’s MRD and CZ are interrelated and increasingly anthropogenic.
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Fig. 4.10 Oblique photograph from sUAS showing the location of Chain Bowl Point archaeolog-
ical site (white arrow) and recent rapid deposition within the Wax Lake Delta

Archaeological sites within the Wax Lake Delta (Chain Bowl Point) and the
neighboring Atchafalaya Delta are primarily affected by the rapid deposition of
sediment. As high sediment loads from the Atchafalaya River reach these outlets, the
deltas exhibit active progradation, covering older land surfaces and building new
land. These sites are at risk of complete burial, and in the case of Chain Bowl Point,
sUAS surveys suggest complete burial has already occurred. Observations from
continued monitoring of sites around the Wax Lake and Atchafalaya deltas can
inform an understanding of the adverse effects of planned sediment diversions from
the Mississippi River into Barataria Bay and Breton Sound (Cropley et al. 2020).
Endangered sites within the areas of potential effect of those and other planned
coastal restoration efforts should be regularly and frequently monitored through the
use of sUAS.

The use of sUAS to conduct surveys of archaeological sites within the coastal
wetlands of Louisiana proved highly successful. The surveys assisted in rapid site
reconnaissance while in the field, aiding in site location and identification. Many of
the sites visited during the Fall 2019 field campaign had not been visited in decades,
and the coordinates for their locations were often hundreds of meters away from the



actual location. While this may not seem a challenge for inland landscapes, travers-
ing inundated marshy wetlands by foot can be extremely difficult and dangerous.
Access to sites is complicated by the terrain in terms of access and site visibility and
is often cost prohibitive. Furthermore, many of the sites located in subsiding
wetlands are hundreds of meters from the closest waterway, and sUAS can provide
a quick aerial perspective for locating sites in topographically limited environments.
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Another advantage of sUAS for archaeological sites in coastal wetlands is
detailed repeat mapping and rapid monitoring of sites. sUAS surveys provide
high-resolution photographs and video that can be used to readily distinguish
between exposed shell midden and damaged wetland vegetation. Photographs of
the sites can also be used to distinguish between subtle elevation changes based on
differences in vegetation type, where earthen mounds typically exhibit small trees
and shrubs while the surrounding lands contain wetland grasses. The orthomosaics
produced from the SfM processing then allow for easy site delineation over rela-
tively large areas, and repeat surveys can be used to monitor changes and damage to
the site through time. Rapid site monitoring is critical after major storms and
hurricanes to assess the potential damages from storm surges, often involving
hundreds of sites. sUAS can provide this capability more efficiently and cost
effectively than a conventional survey by watercraft or helicopter and with greater
resolution than high-altitude aerial photography.

Despite the many advantages of sUAS for coastal geoarchaeological surveying,
there are a few challenges. One of the main challenges is related to the positional
accuracy of the sUAS and the resulting post-processed products, such as three-
dimensional point clouds, DEMs, and orthomosaics. In coastal lands covered in
wetland grass, it can be difficult to place ground control targets throughout the
survey area. These challenges arise from difficulties traversing the entire survey
area, as well as putting control targets on the actual ground surface. Wetland grass
can be quite dense and tall, and control targets large enough to be visible in the
photographs often cannot be placed on the ground without damaging the vegetation.
This becomes even more challenging when the site is surrounded by shallow water
and control targets represent the water surface rather than the ground. In some cases,
it may be possible to conduct the sUAS survey without the use of ground control
targets and rely directly on the onboard GPS. However, this depends on the sUAS
model, whether real-time kinematic (RTK)-GPS is available for the survey area, and
the accuracy required for the survey based on the spatial scale of the site.

The challenges associated with dense ground vegetation, shallow waters sur-
rounding survey sites, and potential limitations with ground control points and
onboard GPS make accurate elevation models difficult for coastal archaeological
sites. While sUAS surveys can be very useful for mapping and monitoring the areal
extent and changes to sites, direct estimates of subsidence can be problematic.
However, for sites that exhibit earthen mounds without dense tree cover, three-
dimensional point clouds and DEMs can be easily obtained from SfM, as shown by
an example of the LSU Campus Mounds (Fig. 4.11). Mapping coastal wetland sites
with total stations and hand-held GPS can be difficult, time-consuming, and often
hazardous, especially in marshlands frequently overgrown with dense stands of



roseau cane. Similar limitations apply in mapping sites inundated by shallow water.
A possible alternative for accurate elevation mapping would be to utilize sUAS-
LiDAR, which might allow for the mapping of surface features underneath dense
vegetation as well as subsided and partly inundated sites. Targeted utilization of
sUAS-LiDAR for at-risk sites with earthen mounds or shell midden would mitigate
the need for traditional mapping techniques.
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Fig. 4.11 (Top left) Satellite image of the LSU Campus Mounds. (top right) Satellite image with a
sUAS-derived DEM showing elevations of the mounds. (bottom right) Oblique view of the sUAS-
derived three-dimensional point cloud (looking north). (Bottom left) Ground photograph (looking
north) showing LSU Campus Mounds

Another promising application of sUAS for coastal archaeological surveys is the
use of multispectral imagery. Multispectral sensors on sUAS capture specific wave-
length ranges of the electromagnetic spectrum, typically four to five bands including
blue, green, red, near-infrared, and thermal. These bands can be combined in
different ways to produce false-color images that can provide more insight into
landscape characteristics than true-color images (i.e., blue, green, red). The normal-
ized difference vegetation index (NVDI) has long been used to differentiate between
types of vegetation and healthy and unhealthy vegetation from Landsat-derived
imagery (e.g., Tucker 1979; Townshend et al. 1984). With multispectral sensors
included in sUAS payloads, it is now possible to map and monitor variations in
vegetation at a much higher resolution than the 30-m satellite imagery, and it is now
becoming commonplace to apply these principles to investigate coastal vegetation



dynamics (Chabot et al. 2018; Yang et al. 2019). sUAS-derived multispectral
imagery has also recently been applied in archaeological studies to enhance the
detection of features of interest (Agudo et al. 2018; Hill et al. 2020; Abate et al.
2021). The use of these approaches for archaeological sites within coastal wetlands
would immensely improve site identification and mapping. It would allow for
continued, periodic monitoring to determine subtle changes in vegetation as sites
actively erode, subside, and become inundated.
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In addition to the promising new scientific insights offered by sUAS in studying
geoarchaeology is the relative ease and excitement that these technological advances
offer for education among undergraduate students. The sUAS utilized in the exam-
ples above (DJI Phantom 4) could be considered quite basic compared to the current
state-of-the-art sUAS systems that incorporate RTK-GPS, LiDAR, or other multi-
spectral sensors. However, even relatively inexpensive sUAS with standard cameras
can be invaluable for interdisciplinary education and getting undergraduate students
engaged in scientific research. Learning how to pre-design surveys and flight paths
and operate the sUAS in the field, post-processing the data after returning to the lab,
and potentially presenting the results at conferences are skillsets that can make
undergraduate students highly desirable upon graduation and encourage them to
seek advanced degrees. These research opportunities can be offered to students
underrepresented in the STEM fields, including Native Americans culturally affili-
ated with the sites discussed here, thereby helping to promote diversity and equity, as
well as indigenous partnerships and collaboration.

Lastly, sUAS can be a powerful instrument for fostering working relationships
with local communities, Native American tribes, and the general public, raising
awareness about socially relevant issues such as climate change, coastal land loss,
and anthropogenic alterations to landscapes. In coastal Louisiana, local communities
are well aware of the immediate consequences of land loss. They might not be fully
aware, however, of the current conditions of many Native American archaeological
sites. Aerial images and videos acquired from low-altitude sUAS can be highly
effective visual and communication tools to bring attention to sites that are being
rapidly destroyed and lost due to coastal erosion, storm surges, subsidence, sea level
rise, sediment deposition, and human alterations of landscapes and waterways.
While the widespread impacts of coastal land loss and climate change are evident
within the changing landscape of south Louisiana, the endangered cultural heritage
of the MRD and CZ is often inaccessible and remains largely unseen. The utilization
of sUAS in archaeological survey and site monitoring reveals spatial, spectral, and
structural features often obscured by terrain and time and very clearly shows both the
long-term and immediate impacts to these at-risk sites.

4.5 Conclusions

Louisiana’s coastal lands are rapidly being lost due to land subsidence, sea level rise,
coastal erosion, and storm surge, processes that have intensified due to climate
change and direct anthropogenic alterations to the landscape. Within Louisiana’s



dynamic coastal landscape, Native American archaeological sites, TCPs, and other
historically significant sites are currently in the process of being obliterated, with
thousands more at serious risk of being lost in the coming decades. This chapter
presents examples of site destruction for five sites throughout the Mississippi River
deltaic plain and how sUAS were utilized to conduct rapid reconnaissance, site
assessments, and high-resolution mapping and monitoring. While sUAS surveys
provide detailed data that can be used to evaluate and quantify rates of geomorphic
change at these sites, the high-resolution photographs and video also allow for easy
identification and discernment of shell midden and differences in vegetation associ-
ated with archaeological sites. In coastal wetland landscapes, access to sites is
increasingly difficult due to subsidence and sea level rise. These wetlands are
characterized by difficult exploration conditions, which often require complicated
and costly excavation techniques due to the impact of groundwater, tidal, or brackish
water inflow and/or unstable margins of archaeological excavations. Consequently,
sufficient archaeological knowledge and understanding of wetlands and coastal
zones are often patchy in availability, and surveys as well as excavations remain
challenging. sUAS can provide a low-altitude perspective of terrestrial sites on now
partially submerged and inundated landforms, helping to relocate sites that in many
instances have not been visited for decades. sUAS facilitate site mapping and the
identification of previously unidentified cultural features. High-resolution 3D infor-
mation on the spatial layout of Native American archaeological sites can reveal with
a high degree of accuracy the vertical and horizontal dimensions of large cultural
features such as mounds, plazas, and midden, as well as changes to those features
and surrounding landforms. Rapid and frequent monitoring of endangered sites,
especially after major storm surges, is becoming more urgent for cultural resource
management (CRM) planning with continued sea level rise, subsidence, and coastal
erosion. sUAS provide an efficient and highly effective means of collecting accurate
datasets for site monitoring.
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The low cost of many entry-level sUAS and their relative ease of operation are
also highly conducive for training and educating undergraduate students in interdis-
ciplinary research. sUAS imagery and datasets can be a powerful communication
tool for public outreach and immersing audiences in coastal science adaptations
through compelling visual media. Incorporating sUAS into interdisciplinary inves-
tigations focused on the changing coastal landscape and impacts to Native American
archaeological sites can also help foster working relationships and collaborations
with local communities and Native American tribes, engaging coastal communities
in scientific research while promoting advocacy and equity in CRM.

The risks and challenges to archaeology and CRM planning in wetland land-
scapes are not unique to the north-central Gulf Coast. Similar challenges are being
experienced in deltaic and estuarine landscapes across the globe, where erosion and
relative sea level rise demand rapid and effective responses to catastrophic and
widespread impacts on living populations and cultural resources (Anderson et al.
2017; Watt et al. 2020). Sites at risk from the dire consequences of anthropogenic
climate change are being adversely affected at a faster rate than can be satisfactorily
mitigated by traditional CRM data recovery. Implementing actionable and cost-



effective strategies of investigations and survey methodology utilizing sUAS tech-
nology will be critical in balancing research potential and the multifaceted value of
cultural resources.

90 K. Konsoer et al.

References

Adate N, Frisetti A, Marazzi F, Masini N, Lasaponara R (2021) Multitemporal-multispectral UAS
surveys for archaeological research: the case study of san Vincenzo al Volturno. Remote Sens
(Basel) 13:2719

Agudo PU, Pajas JA, Perez-Cabello F, Redon JV, Lebron BE (2018) The potential of drones and
sensors to enhance detection of archaeological cropmarks: a comparative study between multi-
spectral and thermal imagery. Drones 2:29

Anderson DG, Bissett TG, Yerka SJ, Wells JJ, Kansa EC, Kansa SW, Myers KN, DeMuth RC,
White DA (2017) Sea-level rise and archaeological site destruction: an example from the
southeastern United States using DINAA (digital index of north American archaeology).
PLoS One 12(11):1–25

Barras JA, Bernier JC, Morton RA (2008) Land area change in coastal Louisiana – a multidecadal
perspective (from 1956 to 2006). U.S. Geological Survey Scientific Investigations. https://doi.
org/10.3133/sim3019

Britt T, Watt DJ, Rees MA, Konsoer K, Huey SM (2020) A perfect storm: an archaeological
management crisis in the Mississippi River Delta. Parks Stewardship Forum 36(1):70–76

Chabot D, Dillon C, Shemrock A, Weissflog N, Sager E (2018) An object-based image analysis
workflow for monitoring shallow-water aquatic vegetation in multispectral drone imagery. Int J
Geo-Inform 7:294

Cloy CB, Ostahowski BE (2015) Archaeological investigations in support of the MC252 (Deep-
water horizon) oil spill response in the state of Louisiana. 4 vols. Gulf Coast incident manage-
ment team. HDR environmental, operations and construction, Inc, New Orleans

Collins HB (1927) Archaeological work in Louisiana and Mississippi: explorations and field-work
of the Smithsonian Institution in 1926. Smithson Misc Collect 78(7):200–207

Couvillion BA, Carras JA, Steyer GD, Sleavin W, Fischer M, Beck H, Trahan N, Griffin B,
Heckman D (2010) Land area change in coastal Louisiana from 1932 to 2010. US Geological
Survey Scientific Investigations, Map no. 3164

Cropley P, Boyko WCJ, Heller N, Meaden E, Smith SB, Bowen R (2020) Cultural resources
investigations of the mid-Barataria sediment diversion (MBSD) construction impacts APE and
the MBSD operations impacts APE in Plaquemines and Jefferson parishes, Louisiana. Prepared
by R. Christopher Goodwin and associates, Inc., for Royal Engineers and consultants, LLC,
New Orleans, Louisiana

Davis DD, Giardino MJ, Hartley JD (1978) Cultural resources survey, New Orleans to Venice
hurricane protection levee, reach a, Plaquemines parish, Louisiana. U.S. Army Corps of
Engineers, New Orleans District. Department of Anthropology, Tulane University, New
Orleans

Dawson T, Hambly J, Kelley A, Lees W, Miller S (2020) Coastal heritage, global climate change,
public engagement, and citizen science. PNAS 117(15):8280–8286. https://doi.org/10.1073/
pnas.1912246117

Fearnley S, Peneland S, Britsch LD (2009) Mapping the geomorphology and processes of coastal
land loss in the Pontchartrain Basin: 1932 to 1990 and 1990 to 2001. J Coast Res 10054:48–58

Fisk HN (1944) Geological investigations of the Alluvial Valley of the lower Mississippi River.
Mississippi River Commission, Vicksburg

Freundenburg WR, Gramling R, Laska S, Erikson KT (2009) Catastrophe in the making: the
engineering of Katrina and the disasters of tomorrow. Island Press, Washington, DC

https://doi.org/10.3133/sim3019
https://doi.org/10.3133/sim3019
https://doi.org/10.1073/pnas.1912246117
https://doi.org/10.1073/pnas.1912246117


4 Using sUAS to Map and Quantify Changes to Native American. . . 91

G.E.C. (2021) Environmental Impact Statement for the Proposed Mid-Barataria Sediment Diver-
sion Project, Plaquemines Parish, Louisiana. Prepared by G.E.C., Inc., Baton Rouge, for the
U.S. Army Corps of Engineers, New Orleans District

Gagliano SM (1963) A survey of preceramic occupations in portions of South Louisiana and South
Mississippi. Florida Anthropol 16(4):105–132

Gagliano SM (1967) Occupation sequence at Avery Island. Coastal studies series no. 22. Louisiana
State University Press, Baton Rouge

Gagliano SM (1984) Geoarchaeology of the northern gulf shore. In: Davis DD (ed) Perspectives on
Gulf Coast prehistory. University Press of Florida, Gainesville, pp 1–40

Gagliano SM, van Beek JL (1970) Geologic and geomorphic aspects of deltaic processes, Missis-
sippi Delta system. In: hydrologic and geologic studies of coastal Louisiana, vol 1. Louisiana
State University, Baton Rouge, Coastal Studies Institute

Gagliano SM, Weinstein RA, Burden EK (1975) Archaeological investigations along the Gulf
Intracoastal waterway: coastal Louisiana area. U.S. Army Corps of Engineers, New Orleans
District. Coastal environments, Inc, Baton Rouge

Gagliano SM, Weinstein RA, Burden EK (1976) Archaeological survey of the port Fourchon area,
Lafourche parish, Louisiana. Greater Lafourche port commission, Galliano, LA. Coastal Envi-
ronments, Inc., Baton Rouge

Gagliano SM, Smith WG, Burden E, Weinstein R, Emmer R, Brooks K, Hair L, King P (1977)
Cultural resources evaluation of the northern Gulf of Mexico continental shelf, offshore
Louisiana. 3 vols. U.S. Department of the Interior, National Park Service Office of archaeology
and historic preservation. Contract no. 08550-MU5-40. Coastal Environments, Inc, Baton
Rouge

Gagliano SM, Weinstein RA, Burden EK (1978) Preliminary study of the cultural resources of the
St. Bernard parish wetlands, Louisiana: an approach to management. Coastal Environments,
Inc., Baton Rouge

Gagliano SM, Weinstein RA, Burden EK, Glander WP, Brooks KL (1979) Cultural resources
survey of the Barataria, Segnette, and Rigaud waterways, Jefferson parish, Louisiana. 2 vols. U.-
S. Army Corps of Engineers, New Orleans District. Coastal environments, Inc, Baton Rouge

Gagliano SM, Meyer-Arendt KJ, Wicker KM (1981) Land loss in the Mississippi River deltaic
plain. Trans Gulf Coast Assoc Geol Soc 31:295–300

Gagliano SM, Pearson CE, Weinstein RA, Wiseman DE, McClendon CM (1982) Sedimentary
studies of prehistoric archaeological sites. Criteria for the identification of submerged archae-
ological sites of the northern Gulf of Mexico continental shelf. Preservation Planning Series.
Coastal Environments, Inc., Baton Rouge

Gibson JL (1978) Archaeological survey of the lower Atchafalaya region, south Central Louisiana.
Report no. 5, Center for Archaeological Studies, University of Southwestern Louisiana,
Lafayette

González JL, Törnqvist TE (2006) Coastal Louisiana in crisis: subsidence or sea level rise? Eos
Trans Am Geophys Union 87(45):493–498

Hale RA (2017) Archaeological investigations at the Adams Bay site (16PL8), Plaquemines Parish,
Louisiana: Assessing Natural and Anthropogenic Effects to a Louisiana Coastal Archaeological
Site. M.A. Thesis. St. Cloud State University. Culminating Projects in Cultural Resource
Management. 15. https://repository.stcloudstate.edu/crm_etds/15

Hill AC, Laugier EJ, Casana J (2020) Archaeological remote sensing using multi-temporal, drone-
acquired thermal and near infrared (NIR) imagery: a case study at the Enfield Shaker Village,
New Hampshire. Remote Sens (Basel) 12:690

Howe HV, Russell RJ, McGuirt JH (1935) Submergence of Indian mounds. In reports on the
geology of Cameron and Vermilion parishes. Geol Bull 6(1):64–68

Jones D (2014) Slip Slidin’ away: the Toncrey site (16PL7). Louisiana Archaeol 38(2011):51–81.
Louisiana Office of Cultural Development, Division of Archaeology. Cultural Resources Map.
Accessed 27 June 2021, at https://www.crt.state.la.us/archaeology/

https://repository.stcloudstate.edu/crm_etds/15
https://www.crt.state.la.us/archaeology/


92 K. Konsoer et al.

Kemp GP, Day JW, Rogers JD, Giosan L, Peyronnin N (2016) Enhancing mud supply from the
lower Missouri River to the Mississippi River Delta USA: dam bypassing and coastal restora-
tion. Estuar Coast Shelf Sci 183:304–313

Kesel RH (1989) The role of the Mississippi River in wetland loss in southeastern Louisiana, USA.
Environ Geol Water Sci 13(3):83–193

Kesel RH (2003) Human modifications to the sediment regime of the lower Mississippi River flood
plain. Geomorphology 56:325–334

Kim W, Mohrig D, Twilley R, Paola C, Parker G (2009) Is it feasible to build new land in the
Mississippi River Delta? Eos Trans Am Geophys Union 143(6):03117003

Kniffen FB (1936) A preliminary report on the Indian mounds and middens of Plaquemines and
St. Bernard parishes. In lower Mississippi River Delta: reports on the geology of Plaquemines
and St. Bernard parishes. Geol Bull 8:407–422

Kniffen FB (1938) The Indian mounds of Iberville parish: reports on the geology of Iberville and
Ascension parishes. Geol Bull 13:189–207

McIntire WG (1954) Correlation of prehistoric settlement and Delta development. Coastal research
institute technical report 5. Louisiana State University, Baton Rouge

McIntire WG (1958) Prehistoric Indian settlements of the changing Mississippi River Delta. Coastal
studies series no. 1. Louisiana State University Press, Baton Rouge

McLain RB (2014) Investigations at the Toncrey site (16PL7): analysis of a late prehistoric site in
extreme southeastern Louisiana. Louisiana Archaeol 38(2011):82–137

Mehta J, Ostahowski B, Marks T (2020) The disappearing environments and native ecosystems of
coastal Louisiana. The Society for American Archaeology Archaeological Record 20(5):23–28

Morton RA, Bernier JC, Barras JA (2006) Evidence of regional subsidence and associated interior
wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ Geol 50:
261–274. https://doi.org/10.1007/s00254-006-0207-3

Neuman RW (1970) Archaeological survey of the Lake Pontchartrain hurricane project area,
Southeast Louisiana. Louisiana State University, Baton Rouge

Neuman RW (1973) Archaeological survey of the bayou Lafourche and Lafourche-jump waterway,
Louisiana. Louisiana State University, Baton Rouge

Neuman RW (1974) Archaeological survey of the Houma Navigational Canal and bayous LaCarpe,
Terrebonne, petit Caillou, and grand Caillou, Terrebonne parish. Louisiana State University,
Baton Rouge

Neuman RW (1975a) Archaeological survey of the bayou Barataria - bayou Perot projects,
Jefferson parish, Louisiana. Louisiana State University, Baton Rouge

Neuman RW (1975b) Archaeological salvage excavations at the bayou jasmine site, Saint John the
Baptist parish, Louisiana, 1975. Louisiana State University, Baton Rouge

Neuman RW (1977a) An archaeological assessment of coastal Louisiana. Mélanges 11(1):1–43
Neuman RW (1977b) Archaeological techniques in the Louisiana coastal region. Louisiana

Archaeol 3(1976):1–21
Neuman R, Byrd KM (1981) Aerial imagery in locating and managing archaeological resources

along the Louisiana coast. Louisiana Archaeol 7:101–108
Penland S, Ramsey KE (1990) Relative sea-level rise in Louisiana and the Gulf of Mexico:

1908–1988. J Coast Res 6(2):323–342
Phillips P, Ford JA, Griffin JB (1951) Archaeological survey of the lower Mississippi Alluvial

Valley, 1940–1947. In: Papers of the Peabody Museum of Archaeology and Ethnology, vol 25.
Harvard University, Cambridge, MA

Rees MA, Huey SM, Sorset S (2018) Assessment of the effects of an oil spill on coastal
archaeological sites in Louisiana. US Dept. of the Interior, Bureau of Ocean Energy Manage-
ment, Gulf of Mexico OCS Region, New Orleans (LA)

Roberts H (1998) Delta switching: early response to the Atchafalaya River diversion. J Coast Res
14(3):882–899

https://doi.org/10.1007/s00254-006-0207-3


4 Using sUAS to Map and Quantify Changes to Native American. . . 93

Roberts H, Walker N, Cunningham R, Kemp G, Majersky S (1997) Evolution of sedimentary
architecture and surface morphology: Atchafalaya and wax Lake deltas, Louisiana
(1973–1994). Gulf Coast Assoc Geol Soc Trans 47:477–484

Roberts H, Coleman J, Bentley S, Walker N (2003) An embryonic major delta lobe: a new
generation of delta studies in the Atchafalaya-wax Lake delta system. Gulf Coast Assoc Geol
Soc Trans 53:690–703

Saucier RT (1963) Recent geomorphic history of the Pontchartrain Basin, Louisiana. Coastal
studies series no. 9. Louisiana State University Press, Baton Rouge

Saucier RT (1974) Quaternary geology of the lower Mississippi Valley. Arkansas Archeological
Survey Research Series 6, pp 1–26

Saucier RT (1981) Current thinking on riverine processes and geologic history as related to human
settlement in the southeast. Geosci Man 22:7–18

Smith RL, Apollonio H, Lintott KB (2006) Archaeological investigations for the proposed bayou
Sale swamp three dimensional seismic survey, St. Mary parish, Louisiana. Prepared by earth
search, Inc., for seismic exchange, Inc, New Orleans, Louisiana

Townshend JRG, Justice CO, Holben BN, Tucker CJ (1984) Monitoring and mapping global
vegetation cover using data from meteorological satellites. In: Proc. ESA/EARSeL Symp.
Integrated. Approaches remote Sens. ESA SP-124, Guildford, p 75

Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sens Environ 8(2):127–150

Watt DJ, Rees MA, Britt T, Konsoer K, Huey SM (2020) Mitigating engineered disaster on
Louisiana’s Gulf Coast. The Society for American Archaeology Archaeological Record 20(5):
16–21

Wiseman DE, Weinstein RA, McClosky KG (1979) Cultural resources survey of the Mississippi
River—gulf outlet, Orleans and St. Bernard parishes, Louisiana. U.S. Army Corps of Engineers,
New Orleans District. Coastal Environments, Inc, Baton Rouge

Yang B, Hawthorne TL, Torres H, Feinmann M (2019) Using object-oriented classification for
coastal management in the east central coast of Florida: a quantitative comparison between
UAV, satellite, and aerial data. Drones 3(3):60



Environment 24, https://doi.org/10.1007/978-3-031-01976-0_5

Chapter 5
A Comparison of Different Software
Packages in sUAS-Based Land Feature
Reconstruction

Yingkui Li and Nathan McKinney

Abstract The integration of small, unmanned aircraft systems (sUAS) and structure
from motion (SFM) provides a simple, cost-effective, and unique opportunity to map
detailed land features in a much finer (up to cm-level) resolution. Software packages
are available to process sUAS-collected photos into three-dimensional (3D) point
clouds, digital surface models, and orthomosaics. However, the differences between
the products generated by various software packages are seldom addressed. In this
chapter, we compared the 3D point cloud reconstruction of various natural and
man-made land features, including trees/forest, grassland, roads, parking lots, and
buildings, using five software packages: Pix4DMapper, Pix4D Cloud, Metashape
(previously Photoscan), GlobalMapper, and OpenDroneMap. We demonstrated this
work based on the sUAS-collected data from three sites in Missouri, Tennessee, and
Florida.

Keywords Structure from motion · Unmanned aircraft systems · Point cloud · Land
features

5.1 Introduction

The advances of a variety of technologies have revolutionized the fields of geo-
graphical and environmental sciences by the production of high-resolution topo-
graphic and land surface datasets (Fonstad et al. 2013; Tarolli 2014; Smith et al.
2016). In particular, the developments of light detecting and ranging (LiDAR) and
structure from motion (SfM) have allowed the generation of up to millimeter and
centimeter resolution digital surface models (DSMs) to quantify earth surface
processes (e.g., Eltner et al. 2015; Lu et al. 2019; Li et al. 2020) and obtain detailed
three-dimensional (3D) information for terrain and vegetation analysis (e.g., Tian
et al. 2021; Li et al. 2019). Integrated with small, unmanned aircraft systems (sUAS),
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LiDAR and SfM are extremely promising to map detailed land features up to
centimeter resolutions for relatively larger areas (Javernick et al. 2014; Cook 2017).
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SfM is an image-based technology with relatively low cost. Different from
traditional stereo-photogrammetry that requires specific and expensive cameras
and aircrafts to obtain precise camera position and orientation for the three-
dimensional (3D) reconstruction of both natural and man-made land features, SfM
is an advance in computer vision that significantly simplified image-based feature
identification and surface reconstruction (Fonstad et al. 2013; Smith et al. 2016;
Nouwakpo et al. 2016). It only requires highly overlapped images taken with
commonly used cameras, smartphones, and tablets (Fonstad et al. 2013; Smith
et al. 2016); thus, the cost of the survey can be reduced significantly. More impor-
tantly, despite the low cost, studies have demonstrated that the SfM-based surface
reconstructions can reach the accuracy of mm to cm levels in comparison to the
surface reconstructed using LiDAR and traditional stereo-photogrammetry (Eltner
et al. 2015, 2016; Nouwakpo et al. 2016; Kaiser et al. 2018). In recent years, the
integration of SfM with low-cost sUAS has become popular in conducting large-
scale surface reconstructions in geographic and environmental related projects
(Javernick et al. 2014; Ouédraogo et al. 2014; Eltner et al. 2016).

With the popularity of SfM and sUAS, software packages and web services are
available to process sUAS-collected photos into 3D point clouds, DSMs, and
orthomosaics. However, most studies have only used one specific software package
available to the authors for the 3D reconstruction, and the differences between the
products generated by different software packages are seldom addressed (Eltner and
Schneider 2015). Given the fact that different SfM software packages may use
different algorithms and/or parameters in the reconstruction and that users typically
treat the SfM reconstruction as a black box, lacking specific knowledge in the SfM
algorithms and/or parameters, it is of critical importance to examine the similarities
and differences of various software packages in reconstructing land features. In this
chapter, we explore the products generated by a set of commonly used SfM software
packages and compare the point clouds of various natural and man-made land
features, including trees/forest, grassland, roads, parking lots, and buildings, at
three sites from Missouri, Tennessee, and Florida.

5.2 Study Sites

We choose three sites to examine the similarities and differences of various software
packages in reconstructing natural and man-made land features (Fig. 5.1). The first
site (A) is a suburban neighborhood in St. Peters, a western suburb of St. Louis,
Missouri, including typical land features of residential houses, roads, schools,
grassland, and some forest. The second site (B) is an undeveloped hilltop area in
Knoxville, Tennessee. The land features include roads, grassland, and forest. The



third site (C) is located on Santa Rosa Island near the western end of the Florida
panhandle, representing typical coastal landforms with wetland (salt marsh), shallow
water, and both vegetated and unvegetated sand dunes. We present a detailed
analysis of the SfM reconstruction for different land features for site A, while sites
B and C are only used for a general comparison of the reconstructed point clouds,
DSMs, and orthomosaics, as well as processing times.
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Fig. 5.1 The three study sites in St. Peters, Missouri (a); Knoxville, Tennessee (b); and Santa Rosa
Island, Florida (c). The orthomosaics for each site in this figure were processed by Pix4DMapper

5.3 Methods

5.3.1 Drone Photo Collection

To compare the impacts of different software packages on the reconstructed point
clouds, DSMs, and orthomosaics, we used the same set of images collected by a
Parrot ANAFI drone (https://www.parrot.com/us/drones/anafi) using the integrated
21-megapixel camera. Photos used for the SfM reconstruction can be collected in
manual or automatic flight modes. We preferred to conduct this task automatically
because the built-in mission plans use a set of parameters to control the photo

https://www.parrot.com/us/drones/anafi


quality, overlap percentage, flight speeds, and other related parameters. We used
Pix4D Capture to design and control the flight mission (Fig. 5.2a). Two of our flights
(sites A and C) use a “Grid” mission pattern, while the third (site B) is a “Double
Grid Mission” that can capture more vertical details for 3D model reconstruction
(Fig. 5.2b–d) (https://support.pix4d.com/hc/en-us/articles/209960726-Types-of-mis
sion-Which-type-of-mission-to-choose). Table 5.1 lists detailed information for the
flights, including altitude, estimated ground sampling distance (GSD) based on the
flight height and camera resolution, area coverage, flight pattern, flight time, camera
angle, and number of photos collected for the three sites. The same overlap values of
80% in front and 70% at the sides are used for all three flights.
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Fig. 5.2 (a) A screenshot of the Pix4DCapture app, showing five different flight patterns that can
be used for photo collection; (b) the grid mission in site A; (c) the double grid mission in site B.
(d) the grid mission in site C

Table 5.1 sUAS flight information for the three sites

Studysite

Flight
altitude
(m)

Estimated
GSD
(m)

Area
coverage
(acre)

Flight
pattern

Camera angle
(�)

Photo
count

A 121 0.04 147.0 Grid 90 220

B 65 0.02 19.1 Double
grid

70 254

C 61 0.02 40.3 Grid 90 349

https://support.pix4d.com/hc/en-us/articles/209960726-Types-of-mission-Which-type-of-mission-to-choose
https://support.pix4d.com/hc/en-us/articles/209960726-Types-of-mission-Which-type-of-mission-to-choose
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5.3.2 Surface Reconstruction Using Different Software
Packages

We tested four desktop software packages, including Pix4DMapper, Agisoft
Metashape, GlobalMapper, and OpenDroneMap, and one cloud service,
Pix4DCloud, for elevation reconstruction. All these software packages can produce
georeferenced point clouds, DSMs, and orthomosaics of the surveyed areas.

Pix4DMapper is a popular commercial photogrammetry software for professional
drone mapping developed by Pix4D S.A. in Switzerland (https://www.pix4d.com/
product/pix4dmapper-photogrammetry-software). It provides a user-friendly inter-
face and processing templates for 3D reconstruction and mapping. We used
Pix4DMapper version 4.6.4 and the “3D Maps” processing template as the default
settings. In addition to the desktop software, we also tested the software-as-a-service
version Pix4DCloud, which uses an Amazon Web Services Linux platform to
process images through a streamlined browser interface.

GlobalMapper is a geographic information system software package developed
by Blue Marble Geographics, USA (https://www.bluemarblegeo.com/products/
global-mapper.php). Its optional LiDARModule includes the Pixels to Points tool to
generate georeferenced 3D point clouds, DSMs, and orthomosaics based on the SfM
technology.

OpenDroneMap (ODM) is an open-source software for drone image processing
to generate georeferenced point clouds, DSMs, and orthomosaics (https://www.
opendronemap.org/odm/). It has been developed as a command line toolkit since
2014. It also provides a user-friendly web front end (WebODM) to allow for easy
access of the data processing through a browser. We used a Docker image of
WebODM version 1.8.0 based on the ODM version 2.4.3 engine for the data
processing (OpenDroneMap 2020).

Agisoft Metashape is a widely used SfM software package developed by Agisoft
LLC (https://www.agisoft.com/) and was known in previous versions as Agisoft
Photoscan. The Metashape standard edition uses SfM to create point clouds and
digital models for applications, such as visual effects, game design, and archaeolog-
ical reconstructions, while the professional edition can also produce georeferenced
DSMs and orthomosaics. The version used in this study is Metashape Professional
v1.7.2.

The processes of these software packages follow a similar workflow to generate
point clouds, DSMs, and orthomosaics (Fig. 5.3). The first step is to identify
corresponding locations (keypoints) on the images and match these keypoints
among the images using feature and gradient detection. These matched keypoints
will be used to calculate relative camera positions, orientations, and spatial relation-
ships between the image locations. This step also conducts the sparse bundle
adjustment and triangulations to locate the identified keypoints in 3D space, gener-
ating a sparse point cloud (Strecha et al. 2003; Agisoft LLC 2021). For sUAS-
collected photos, this sparse point cloud can be georeferenced based on the GPS
locations embedded in the image metadata.

https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.pix4d.com/product/pix4dmapper-photogrammetry-software
https://www.bluemarblegeo.com/products/global-mapper.php
https://www.bluemarblegeo.com/products/global-mapper.php
https://www.opendronemap.org/odm/
https://www.opendronemap.org/odm/
https://www.agisoft.com/
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Fig. 5.3 An example of the three major steps in Pix4DMapper for generating point cloud, DSM,
and orthomosaic. The description of each step is detailed in the text. All software packages use the
similar workflow to generate these products

The second step is to increase the spatial density of 3D points using a multi view
stereo (MVS) method, creating a series of depth maps that are combined into a high-
resolution spatial reconstruction. This densification step produces a dense point
cloud (Strecha et al. 2003; Hiep et al. 2010).

The final step derives various georeferenced products from the dense point cloud
and the images. An orthomosaic is created as a rectified 2D projection of the images.
A DSM is created as a common product for geospatial analysis. The resolution of
these products can be controlled in the software parameters with the maximum
approximately equal to the GSD of the input images. Other products that may be
created in this step include a digital terrain model (DTM), vectorized contour lines,
and maps of normalized difference vegetation index (NDVI) or reflectance surfaces
depending on the input images (Pix4D SA 2017; Blue Marble Geographics n.d.).

Many parameters can be adjusted in these software packages. Some of these
parameters can be complicated and require extensive knowledge of the SfM algo-
rithm. Because regular users usually treat the SfM reconstruction as a black box,
lacking the knowledge in the customization of specific parameters, we used the
default settings of each software for the data processing. Each software uses slightly
different default settings. Based on the documentations, the default parameters for
each package are set for balancing reconstruction details and the processing time/
resources required. Different software packages use varied down-sampling of
images to reduce processing time because reduction of image size leads to an
exponential decrease in processing time but may have much less influence on the
resulting quality and point cloud density (Pix4D SA 2017; Blue Marble Geographics
n.d.). Table 5.2 summarizes the default image sizes of different software packages in
each of the three major steps.

Each of the software packages was installed on a separate computer with an
identical hardware configuration and a fresh install of Windows 10 Pro. The
configuration includes an Intel Core i7-9700 3.0GHz 8-core processor, 32 GB



Orthomosaicresolution DSMresolution

� �
� �
�

�

� �

RAM, 500 GB NVMe m.2 SSD drive, and Intel 630 integrated graphics. This
configuration meets the minimum suggested system resources recommended for
each package and represents a widely attainable system for the average user
(OpenDroneMap2020; Agisoft LLC 2021; Blue Marble Geographics n.d.; Pix4D
SA 2017).
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Table 5.2 The default image sizes and resolutions of different software packages in generating
point clouds, DSMs, and orthomosaics

Step 1
(Camera
calibration)

Step 2
(Cloud
densification)

Step 3 Step 3

Pix4DMapper Full resolution ½ of input 1 GSD 1 GSD

Pix4DCloud Full resolution ½ of input 1 GSD 1 GSD

GlobalMapper ½ of input ½ of input 1 point spacing 5 � point
spacing

ODM 2048 pixels 2048 pixels 5 cm or 10 GSDa 5 cm or 30 �
GSDa

Metashape Full resolution ¼ of input 1 GSD 4 GSD
aODM allows the user to set a desired resolution and adjusts the output if a minimum GSD is not
met. The different resolutions for orthomosaic and DSM were only for our processed data and may
not be the same for other applications

5.3.3 Point Cloud Registration

We proceeded to register the point clouds generated by different software packages
in site A using an open-source software, CloudCompare (https://danielgm.net/cc/).
Due to the lack of geographic referencing points, we used the Align tool to manually
pick up a set of control points that represent fixed objects in the area, such as the
corners of buildings and the one-way or turning signs on roads and within the
parking lots, to register the point clouds. We treated the point cloud generated
using Pix4DMapper as the reference, and all other point clouds were adjusted to
this point cloud. We tried out different control points and removed the points with
the high errors to make sure that the registration can reach the lowest root mean
square error (RMSE) value that we can achieve. We did not use the ICP (iterative
closest point) algorithm (Besl and McKay 1992) for the point cloud registration
because of its poor performance on the point clouds with different point spacings.
Figure 5.4 shows the control points on the two point clouds in site A generated by
Pix4DMapper and Pix4DCloud, respectively, and the final RMSE value of the
registration. Note that most identified control points are distributed on the center
of the region. The registration errors may increase toward the margins.

https://danielgm.net/cc/
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Fig. 5.4 An example of point cloud registration in CloudCompare for site A. (a) A screenshot of
the reference point cloud generated using Pix4DMapper, showing six referenced control points
(R0 to R5). (b) A screenshot of the aligned point cloud generated by Pix4DCloud, showing six
aligned control points (A0 to A5). The middle screenshot shows the final RMSE value of the
registration (about 2.15 cm) and the transformation matrix that applied to the aligned point cloud for
the registration

5.3.4 Point Cloud Comparison and Quality Assessment

After point cloud registration, we first used the Rasterize tool in CloudCompare to
convert the referenced and registered point clouds to a set of rasters representing the
statistics of point clouds in a 2 m by 2 m window. We chose this window size to
minimize the potential impact of the registration error (a few cm to 20 cm) on the
point cloud statistics. The statistics include the maximum (Z-Max), minimum
(Z-Min), mean (Z-Mean), and standard deviation (Z-STD) of the point elevations,
as well as the point count.

We then opened the orthomosaic generated using Pix4DMapper (corresponding
to the reference point cloud) in ArcGIS 10.7 and manually digitized five natural and
man-made land features, including trees/forest, grassland, roads, parking lots, and
buildings (the roofs of apartments, single-family houses, hospital, and schools) in
this area (Fig. 5.5). During the digitization, we focused on the areas that only
represent one type of the features and avoided the potential overlaps, such as trees
over the top of the houses. We also tried to distribute the digitized features across the
whole area to reduce the bias that may be introduced by a specified area.

We used the Create Fishnet tool in ArcGIS 10.7 to generate a fishnet polygon
layer of 2-m by 2-m, corresponding to the raster cell size that we used to rasterize the
point cloud. We only extracted the fishnet polygons completely within the digitized
land features and assigned the feature code to each fishnet polygon. We then
extracted the point cloud statistics generated using CloudCompare to the center



point of each fishnet polygon and used these statistics to evaluate the performance of
different software packages on these land features.
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Fig. 5.5 Digitized land covers and man-made features for site A

We calculated the difference between Z-Mean of each fishnet polygon generated
by the five software packages and summarized the mean and standard deviation of
the Z-Mean difference for each feature. We then conducted Pearson’s correlation to
examine the relationships between the Z-Mean values generated using different
software packages.

We also compared the SfM-reconstructed land features with the 1-m LiDAR
DEM of this area. This DEM was generated using airborne LiDAR data obtained in
February 2017 and available from the USGS TNM download site (https://apps.
nationalmap.gov/downloader/#/). Due to the uncertainty of the internal drone GPS in
the latitude and longitude measurement (about 3–5 m), we used the identifiable
features, such as street and building corners, to register the SfM-reconstructed DSMs
and the 1-m LiDAR DEM. We only conducted the linear regression of the DEM
elevations with the Z-Min values of the fishnet polygons from the roads and parking
lots (representing the bare earth) because the LiDAR DEM data represents the bare
earth topography.

https://apps.nationalmap.gov/downloader/#/
https://apps.nationalmap.gov/downloader/#/
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5.4 Results

5.4.1 General Comparison of Products from Three Sites

Each of the five software packages was able to successfully produce the point cloud,
DSM, and orthomosaic for all three sites using default settings without human
intervention beyond loading the images and triggering the processing pipeline.
Despite being given identical images, the results from the packages showed consid-
erable variations in attributes, such as point density and resolution (Table 5.3). In
every site, the open-source ODM produced much smaller point clouds than the other
packages, with a resultant point count of 20–60%, likely due to more aggressive
image resampling settings. Pix4DMapper and Pix4DCloud generate similar, but not
identical, point clouds. It appears that the Pix4DCloud generates a point count about
1% larger than Pix4DMapper although the difference in the overall point spacing is
negligible. The relative point density between the Pix4D, Metashape, and particu-
larly the GlobalMapper clouds appears to be highly influenced by different image
parameters associated with each flight. In site A, which uses the lowest GSD images,
the GlobalMapper cloud is nearly equal to Metashape for most points generated and
has the smallest point spacing. This contrasts heavily with sites B and C in which
GlobalMapper produces only about half as many points as the densest clouds
produced by other commercial software and with a point spacing closer to the
open-source ODM. The point densities produced by the Pix4D products and
Metashape also suggest some site-influenced variations in performance. While the
point counts for these two packages were approximately equal for site B, Metashape

Table 5.3 A summary of the point clouds, DSMs, and orthomosaics generated by different
software packages for the three study sites

Site Software
Point
count

Point spacing
(m)

DSMresolution
(m)

Orthomosaicresolution
(m)

A Pix4DMapper 23,905,991 0.164 0.042 0.042

Pix4DCloud 24,029,477 0.164 0.042 0.042

GlobalMapper 30,873,374 0.131 0.560 0.112

ODM 7,359,467 0.293 0.383 0.087

Metashape 30,896,673 0.149 0.165 0.041

B Pix4DMapper 23,417,668 0.055 0.021 0.021

Pix4DCloud 23,572,890 0.055 0.021 0.021

GlobalMapper 10,110,044 0.107 0.315 0.063

ODM 4,968,526 0.109 0.110 0.050

Metashape 23,810,138 0.069 0.073 0.018

C Pix4DMapper 43.724,230 0.065 0.019 0.019

Pix4DCloud 44,242,349 0.065 0.019 0.019

GlobalMapper 21,440,633 0.086 0.366 0.073

ODM 12,845,882 0.112 0.199 0.050

Metashape 40,169,436 0.063 0.068 0.017



produced about 28% more points for site A, and in site C the Pix4D count was about
10% higher.
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Fig. 5.6 The processing time (in minutes) for the three sites using the five software packages

The time required to perform camera calibration, point cloud densification, and
surface generation (Fig. 5.6) appears influenced by but not fully dependent on the
output resolutions. For every set of images, ODM finished much quicker than any
other package, taking only between 18 and 41 minutes to complete under the default
settings. Metashape consistently required a much longer time (182–547 minutes),
despite not always creating higher-resolution products. The Pix4DCloud performed
faster than Pix4DMapper on our test machines, likely due to greater memory and
processor allocations on the cloud (69GB and Xeon 8124 M 18-core, respectively).
Processing time for the cloud service only includes the time in the generated report
and not any queueing period between uploading the images and the start of
processing since this may be highly dependent on uncontrollable demand factors.
The logs indicate that any queue delay may have added only about 5–15 minutes to
the overall time.

5.4.2 Detailed Point Cloud Comparison of Land Features
in Site A

5.4.2.1 Point Cloud Registration

Depending on the quality and spacing of the point clouds, the RMSE value of the
registration among each point cloud and the reference point cloud of Pix4DMapper
ranges from ~0.02 m to ~0.20 m in site A. The RMSE value between the point
clouds of Pix4DMapper and Pix4DCloud is 0.022 m, much smaller than the average
spacing of these two point clouds (~0.15 m). The RMSE value between the point
clouds of Pix4DMapper and GlobalMapper is 0.076 m, about half of the average
spacing of these two point clouds (0.131–0.152 m). The RMSE value between the
point clouds of Pix4DMapper and Metashape is 0.189 m, slightly larger than the
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average spacing of these two point clouds (0.138–0.152 m). The RMSE value
between the point clouds of Pix4DMapper and ODM is 0.203 m, larger than the
average spacing of the point cloud of Pix4DMapper (0.152 m), but smaller than the
average spacing of the ODM point cloud (0.267 m). Note that these RMSE values
are only calculated from the control points that are mainly distributed on the center
part. The registration errors may be higher toward margins.
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The registration errors may cause some disparities between point clouds. We
therefore compared the point cloud statistics based on the much larger 2 by 2 m
fishnet polygons to limit the impact of the registration errors because the size of the
fishnet polygon is at least one magnitude larger than the registration errors. The
following sections summarize detailed comparisons of each land feature for the point
clouds generated using different software packages.

5.4.2.2 Point Cloud Comparison of Land Features

Trees/Forest
Figure 5.7 shows descriptive statistics for the 2 � 2 m fishnet polygons of trees /
forest sampled from point clouds of each software package. All point clouds have
significant percentages of NoData fishnet polygons (zero point within the 2 � 2 m
window). The Metashape point cloud has the lowest percentage of NoData fishnet
polygons (5.67%), followed by GlobalMapper (10.29%), ODM (11.22%),
Pix4DMapper (14.61%), and Pix4D Cloud (15.14%). The ODM point cloud has
the lowest point count (density), while the Metashape point cloud has the highest
point density. The two point clouds generated by Pix4D (Mapper and Cloud) have
almost identical point density, and the GlobalMapper point cloud has slightly lower
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Fig. 5.7 The point cloud statistics of trees/forest based on the 2 2 m fishnet



point density than the Pix4D ones. For the point elevation statistics, the Pix4Dpoint
clouds have almost identical Z-Min, Z-Max, Z-Mean, and Z-STD values. The
elevation statistics of the GlobalMapper and ODM point clouds are similar (slightly
higher) to the Pix4D ones, except for the Z-STD value of the ODM point cloud,
probably affected by the low point density. In contrast, the elevation statistics of the
Metashape point cloud are different from the other point clouds. Specifically, the
Z-Min, Z-Max, and Z-Mean values are apparently lower, while the Z-STD value is
apparently higher than the other point clouds.
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Table 5.4 The absolute Z-Mean differences (in meters) and Pearson’s correlations of 2 � 2 m
trees/forest fishnets between point clouds generated using different software packages

Pix4DMapper Pix4DCloud GlobalMapper ODM

Pix4DCloud 0.599 � 1.866
(0.966)

GlobalMapper 1.721 � 2.800
(0.922)

1.790 � 2.932
(0.919)

ODM 1.744 � 2.898
(0.915)

1.779 � 3.001
(0.912)

1.174 � 2.097
(0.963)

Metashape 4.780 � 4.375
(0.860)

4.851 � 4.430
(0.852)

4.207 � 3.465
(0.926)

3.839 � 3.578
(0.914)

As listed in Table 5.4, the absolute difference between Z-Mean values of the
Pix4DMapper and Pix4DCloud point clouds is around 0.6 m, while their differences
with the Global Mapper and ODM point clouds are 1.7–1.8 m. The absolute Z-Mean
difference between the GlobalMapper and ODM point clouds is about 1.2 m. In
contrast, the absolute Z-Mean differences between these point clouds and the
Metashape point cloud are much larger, ranging from 3.8 to 4.9 m. The Pearson’s
correlations between different point clouds are all >0.85, but the correlation coeffi-
cients are higher between Pix4D, GlobalMapper, and ODM point clouds and slightly
lower between these point clouds and the Metashape point cloud (Table 5.4).

Figure 5.8 illustrates an example of the tree reconstruction by different software
packages. The Metashape and ODM clouds each have a large hole (NoData) in the
tree crown area when viewed from above. The Pix4D and GlobalMapper clouds
have smaller coverage gaps in the overhead view of the tree crown. The side view of
these clouds also shows very different reconstructions in the point vertical distribu-
tion. GlobalMapper generates points almost exclusively along the top of the tree,
while the Pix4D and Metashape have a more complete vertical distribution with
points from the sides and middle of the tree. ODM only reconstructs the tree trunk
area, and the tree crown area has been completely missed.

Grassland
The NoData fishnet polygons are negligible for the point clouds of grassland areas.
Only the point clouds of Pix4DCloud and ODM have 0.01% of NoData polygons
(Fig. 5.9a). The ODM point cloud has the lowest point density, while the
GlobalMapper point cloud has the highest and highly varied point density. The
point densities of the two Pix4Dpoint clouds are almost identical. The point density



of the Metashape point cloud is similar to the Pix4D ones, but highly clustered
(Fig. 5.9b). The Pix4D point clouds have almost identical elevation statistics. The
elevation statistics of the GlobalMapper and ODM point clouds are similar (slightly
lower) to the Pix4D ones, except for the Z-STD of the ODM point cloud with higher
and highly varied values. In contrast, the elevation statistics of the Metashape point
cloud are different with much lower Z-Min, Z-Max, and Z-Mean values, but similar
Z-STD values (Fig. 5.9c–f).
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Fig. 5.8 The comparison of point clouds generated using different software packages for a tree in a
parking lot. The yellow box in the upper left panel represents the extent of the subset point cloud.
The top panel for each point cloud subset is the top view, and the bottom one is the front view

The absolute Z-Mean difference of the Pix4DMapper and Pix4DCloud point
clouds is around 0.11 m, while their differences with the Global Mapper and
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ODM point clouds are from 1.65 to 2.14 m (Table 5.5). The absolute Z-Mean
difference between the GlobalMapper and ODM point clouds is only about
0.48 m. In contrast, the absolute Z-Mean differences between these point clouds
and the Metashape point cloud are much higher, ranging from 5.87 to 7.99 m
(Table 5.5). The Pearson’s correlations between different point clouds are all
>0.92, but the correlation coefficients are higher between Pix4D, GlobalMapper,
and ODM point clouds (>0.99) and slightly lower between these point clouds and the
Metashape point cloud (0.92–0.96, Table 5.5).
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Fig. 5.9 The point cloud statistics of grassland based on the 2 2 m fishnet

Table 5.5 The absolute Z-Mean differences (in meters) and Pearson’s correlations of 2 � 2 m
grassland fishnets between point clouds generated using different software packages

Pix4DMapper Pix4DCloud GlobalMapper ODM

Pix4DCloud 0.112 � 0.090
(1.000)

GlobalMapper 2.139 � 1.173
(0.992)

2.030 � 1.107
(0.992)

ODM 1.761 � 0.990
(0.994)

1.652 � 0.918
(0.995)

0.480 � 0.369
(0.997)

Metashape 7.991 � 4.296
(0.921)

7.882 � 4.232
(0.924)

5.865 � 3.173
(0.961)

6.270 � 3.401
(0.948)

Roads
The point clouds of roads have a small percentage of NoData fishnet polygons
(Fig. 5.10a). The point clouds produced by Pix4DMapper and Pix4DCloud have
about 1.4% NoData fishnet polygons. The GlobalMapper and ODM point clouds
have about 4.4% and 4.7% NoData fishnet polygons, respectively. The Metashape
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point cloud has the lowest percentage of NoData fishnet polygons (0.1%). The ODM
point cloud has the lowest point density, while the GlobalMapper point cloud has the
highest but highly varied point density. The point densities of the two Pix4Dpoint
clouds are almost identical. The point density of the Metashape point cloud is
slightly lower than the Pix4D ones, but highly clustered (Fig. 5.10b). The
Pix4D point clouds have almost identical elevation statistics. The elevation statistics
of the GlobalMapper and ODM point clouds are similar (slightly lower) to the Pix4D
ones, except for the Z-STD of the ODM point cloud with higher and highly varied
values. In contrast, the elevation statistics of the Metashape point cloud are different
with much lower Z-Min, Z-Max, and Z-Mean values, but similar Z-STD values
(Fig. 5.10c–f).
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Fig. 5.10 The point cloud statistics of roads based on the 2 2 m fishnet

Table 5.6 The absolute Z-Mean differences (in meters) and Pearson’s correlations of 2� 2 m road
fishnets between point clouds generated using different software packages

Pix4DMapper Pix4DCloud GlobalMapper ODM

Pix4DCloud 0.047 � 0.149
(0.999)

GlobalMapper 1.135 � 1.079
(0.986)

1.144 � 1.071
(0.986)

ODM 0.803 � 0.749
(0.989)

0.797 � 0.742
(0.989)

0.697 � 0.442
(0.993)

Metashape 4.286 � 4.157
(0.881)

4.278 � 4.155
(0.882)

3.204 � 2.962
(0.945)

3.542 � 3.523
(0.916)

The absolute Z-Mean difference of the Pix4DMapper and Pix4DCloud point
clouds is around 0.05 m, while their differences with the Global Mapper and
ODM point clouds are around 1.14 and 0.80 m, respectively (Table 5.6). The
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absolute Z-Mean difference between the GlobalMapper and ODM point clouds is
about 0.70 m. In contrast, the absolute Z-Mean differences between these point
clouds and the Metashape point cloud are much higher, ranging from 3.20 to 4.29 m
(Table 5.6). The Pearson’s correlations between different point clouds are all >0.88,
but the correlations are higher between Pix4D, GlobalMapper, and ODM point
clouds (>0.98) and slightly lower between these point clouds and the Metashape
point cloud (0.88–0.95, Table 5.6).
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Fig. 5.11 The point cloud statistics of parking lots based on the 2 2 m fishnet

Parking Lots
As expected, most statistical plots for parking lots (Fig. 5.11) are similar to the plots
of roads (Fig. 5.10) because both features represent hard and relatively flat ground
surfaces. The only difference is that no fishnet polygons for parking lots are empty
NoData polygons (Fig. 5.11a). The point clouds produced by Pix4DMapper and
Pix4DCloud are almost identical for all statistics. GlobalMapper produced the
highest point density, while ODM generated the lowest point density (Fig. 5.11b).
The elevation statistics of GlobalMapper and ODM point clouds are similar (slightly
lower) to the Pix4D ones, except the Z-STD of the ODM point cloud with much
higher and highly varied values. The Metashape point cloud has relatively lower
values for all elevation related statistics (Fig. 5.11c–f).

Table 5.7 shows very small absolute Z-Mean difference between the
Pix4DMapper and Pix4DCloud point clouds (0.03 m), similar to the registration
error of these two point clouds. The differences between the Pix4D point clouds and
the GlobalMapper and ODM point clouds are around 0.50–0.51 and 0.33–0.35 m,
respectively (Table 5.8). The absolute Z-Mean difference between the
GlobalMapper and ODM point clouds is about 0.32 m. The absolute Z-Mean



differences between these point clouds and the Metashape point cloud are from 1.49
to 1.92 m (Table 5.7). All Pearson’s correlations between different point clouds are
>0.97 with slightly higher correlations between Pix4D, GlobalMapper, and ODM
point clouds (0.998, Table 5.7).
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Table 5.7 The absolute Z-Mean differences (in meters) and Pearson’s correlations of 2 � 2 m
parking lots fishnets between point clouds generated using different software packages

Pix4DMapper Pix4DCloud GlobalMapper ODM

Pix4DCloud 0.027 � 0.056
(1.000)

GlobalMapper 0.510 � 0.576
(0.998)

0.504 � 0.555
(0.998)

ODM 0.346 � 0.324
(0.998)

0.330 � 0.310
(0.998)

0.319 � 0.230
(0.998)

Metashape 1.924 � 2.189
(0.977)

1.916 � 2.173
(0.977)

1.491 � 1.578
(0.988)

1.731 � 1.802
(0.981)

Table 5.8 The absolute Z-Mean differences (in meters) and Pearson’s correlations of 2 � 2 m
buildings fishnets between point clouds generated using different software packages

Pix4DMapper Pix4DCloud GlobalMapper ODM

Pix4DCloud 0.064 � 0.099
(1.000)

GlobalMapper 0.925 � 0.766
(0.988)

0.915 � 0.758
(0.988)

ODM 0.684 � 0.614
(0.988)

0.667 � 0.604
(0.989)

0.556 � 0.497
(0.993)

Metashape 3.792 � 4.025
(0.880)

3.791 � 4.013
(0.881)

3.218 � 3.151
(0.934)

3.464 � 3.555
(0.909)

Figure 5.12 shows the colorized point clouds as rendered in CloudCompare for a
section of parking lot with painted traffic arrows. The points in this section are 2516
for GlobalMapper, 1049–1066 for Pix4DMapper and Pix4DCloud, 899 for
Metashape, and 547 for ODM, respectively. The appearance of the arrows varies
greatly between the clouds. Both Pix4D clouds and GlobalMapper clouds show
shapes that are instantly recognizable as arrows. GlobalMapper generated about 2.5
times more points than the Pix4D ones, but the arrow edges are not as sharp as the
Pix4D ones. Metashape produced about 15% fewer points than the Pix4D ones, but
the arrow edges appear substantially less sharp. It is hard to identify these arrows
from the ODM cloud due to the low point density. It seems that Pix4D point clouds
preserve the sharpness of the edges well and retain the most contrast between the
asphalt and paint color even with relatively less points than GlobalMapper.

Buildings
The point clouds of buildings (including condos, single family houses, schools, and
hospitals) have negligible NoData fishnet polygons, ranging from 0.02 to 0.25%
(Fig. 5.13a). The point cloud produced by Pix4DCloud has the smallest percentage
(0.02%) of NoData fishnet polygons, whereas the ODM point cloud has the highest
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Fig. 5.12 The comparison of point clouds generated using different software packages for the
traffic signs in a parking lot. The yellow box in the upper left panel represents the extent of the
subset point cloud. All point cloud subsets are the top (nadir) view
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Fig. 5.13 The point cloud statistics of buildings based on the 2 2 m fishnet



percentage (0.25%). The ODM point cloud has the lowest point density, while the
GlobalMapper point cloud has the highest but highly varied point density. The point
densities of the two Pix4D point clouds are similar. The point density of the
Metashape point cloud is slightly lower than the Pix4D ones (Fig. 5.13b). The
Pix4D point clouds have almost identical elevation statistics. The elevation statistics
of the GlobalMapper and ODM point clouds are similar to the Pix4D ones. The
elevation statistics of the Metashape point cloud are lower than the other point clouds
(Fig. 5.13c–f).
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The absolute Z-Mean difference of the Pix4DMapper and Pix4DCloud point
clouds is around 0.06 m, while their differences with the Global Mapper and
ODM point clouds are 0.92–0.93 and 0.67–0.68 m, respectively (Table 5.8). The
absolute Z-Mean difference between the GlobalMapper and ODM point clouds is
about 0.56 m. In contrast, the absolute Z-Mean differences between these point
clouds and the Metashape point cloud are much higher, ranging from 3.22 to 3.79 m
(Table 5.8). All Pearson’s correlations between different point clouds are >0.88 with
slightly higher correlations between Pix4D, GlobalMapper, and ODM point clouds
(>0.98, Table 5.8).

Figure 5.14 shows an example of the point cloud reconstructions for a single-
family house. Each software package is able to create a general 3D pitched roof
shape with few substantial gaps in data. Even the relatively low-density cloud
generated by ODM can capture the general shape of the roof. This example also
demonstrates that although GlobalMapper generates the most points, the side view
of the cloud shows that more points do not visually lead to a more accurate
representation of the house. Both Pix4D and Metashape were better in creating the
sharp angles and straight lines than the overly smoothed shape in the GlobalMapper
cloud. The Pix4D products appear to be best suited to reconstructing the angles and
lines of the roof shape, but the fewer points on the side walls leave a less complete
structure than Metashape, which created smoother angles but greater wall coverage.

5.4.3 Comparison with the 1-m LiDAR DEM

Figure 5.15 illustrates the linear regression results between the Z-Min values of the
fishnet polygons from the parking lots and roads and their corresponding elevations
extracted from the 1-m LiDAR DEM. All linear regressions were adjusted to a fixed
slope of 1. Although all elevations interpreted by the SfM technology are
6.70–9.65 m higher than the 1-m LiDAR DEM, the R2 values of the linear regres-
sions are high (>0.78). The vertical offsets are likely caused by the uncertainty of the
internal drone GPS measurement, as well as the potential inclusion of non-ground
points within the SfM-reconstructed parking lots and roads. The regression coeffi-
cients suggested that the elevations of the Pix4D generated point clouds have the
highest consistency (R2 ¼ 0.998) with the 1-m LiDAR DEM after removing the
vertical offset. The regression coefficients between the point clouds generated from
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Fig. 5.14 The comparison of point clouds generated using different software packages for a single-
family house. The yellow box in the upper left panel represents the extent of the subset point cloud.
The top panel for each point cloud subset is the top view, and the bottom one is the front view



GlobalMapper and ODM and the 1-m LiDAR DEM are similar (R2 of 0.976 and
0.982) with similar offsets of 9.00 and 9.11 m, respectively. The worst regression
comes from the point cloud generated using Metashape (R2 of 0.782, offset of
6.70 m). We also tested Z-Mean, showing similar results.
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Fig. 5.15 The comparison of ground elevation (Z-Min in the 2 � 2 m fishnet) of each point cloud
and 1-m LiDAR DEM

5.5 Discussion

5.5.1 Uncertainties Caused by Point Cloud Registration

This study compared the differences in the point clouds generated using
Pix4DMapper, Pix4DCloud, GlobalMapper, ODM, and Metashape. The differences
between the point clouds are likely caused by the varied SfM algorithms and default



parameter settings of these software packages. However, some differences may also
be resulted from the registration errors between the point clouds. As we mentioned
earlier, we used the point cloud generated using Pix4DMapper as the reference and
the best registration that we can achieve range from 0.02 m to 0.20 m (RMSE values)
for different point clouds. The registration is affected by the density and quality of
each point cloud, as well as the control points that we chose for the registration. To
mitigate the impact of registration error, we used the 2 m by 2 m fishnet polygons
(10 times larger than the largest RMSE value) as the unit to compare the difference
between point clouds.
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The smallest registration error of 0.02 m comes from the point clouds generated
using the Pix4DMapper and Pix4DCloud. It is understandable because these two
point clouds were generated using the same software package (algorithm), just with
different versions or computational settings. If assuming these two point clouds are
basically the same on the “hard” surface areas, including roads, parking lots, and
buildings, the differences between these two point clouds on these areas can be
treated as the errors mainly caused by the misalignment (shift and rotation) of the
point clouds during the registration. Our results indicate that the differences between
these two point clouds in the 2 m by 2 m fishnet polygons are from 0.03 to 0.06 m on
these areas (Tables 5.5–5.8), indicating that the impact of registration errors is likely
within three times of the RMSE values. If this is the case, we can estimate that the
differences caused by the registration error are likely within 0.23 m for the
GlobalMapper point cloud (RMSE ¼ 0.076 m), 0.80 m for the ODM point cloud
(RMSE ¼ 0.267 m), and 0.57 m for the Metashape point cloud (RMSE ¼ 0.189 m).
Based on these estimates, it is interesting that the ODM point cloud is close to the
Pix4D point clouds on “hard” surfaces (0.3–0.8 m differences between the two point
clouds, Tables 5.6, 5.7 and 5.8) although the point density of the ODM point cloud is
much lower. The GlobalMapper point cloud is slightly different from the Pix4D point
clouds (0.5–1.1 m differences, Tables 5.5–5.8), while the difference between the
Metashape point cloud and Pix4Dpoint clouds (1.5–4.3 m differences, Tables 5.5–
5.8), as well as the point clouds produced by GlobalMapper and ODM, is significant.

5.5.2 Difference in Land Feature Reconstruction

Our comparison indicates that the point cloud differences in “hard” surfaces are
smaller than that in vegetations (trees and grassland), except for the Metashape point
cloud. This is probably because the “hard” features have relatively regular surfaces
(flat or straight sloped) and the SfM can easily identify and match the keypoints
during the reconstruction. Among these “hard” surfaces, parking lots have the
smallest difference and zero NoData fishnet polygons. This is likely caused by the
relatively low reflective surface (asphalt), plenty of markers (parking lot lines and
traffic signs), and wide coverage. The low reflective surface and markers increase the



contrast of the photos and help identify and match the keypoints, while the wide
coverage minimizes the impact of the registration errors in the point cloud compar-
ison. Other “hard” surfaces, including roads and buildings, have relatively larger
differences than the parking lots. One potential reason is because the digitized
individual buildings or roads have relative smaller or narrow coverage, so that
they are more vulnerable to the impact of registration errors. In addition, some of
these surfaces may be highly reflective, such as some sections of roads, and lack
identifiable markers for the SfM reconstruction to identify key matching points,
leading to the appearance of NoData fishnet polygons.
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Compared to the hard surfaces, the differences in the point clouds of trees/forest
and grassland are much larger. The SfM reconstruction of an irregular, complex
shape, such as trees, is challenging because it is difficult to identify key matching
points from the leaves and from leaf movement due to the wind. For example, the
percentages of NoData fishnet polygons are much higher in trees/forest, likely
caused by the keypoint matching and leaf movement issues. The percentages of
NoData fishnet polygons in grassland are negligible because grass is short and close
to the ground and the impact of leaf movement or matching issues is minor.

5.5.3 Do More Points Represent a Better Reconstruction
for a Land Feature?

The point densities reconstructed using Pix4DMapper, Pix4DCloud, GlobalMapper,
ODM, and Metashape are different for our digitized land features. As expected, the
ODM point cloud produced the lowest density because the default setting of ODM
uses a reduced resolution (2048 pixels) of the images for the SfM reconstruction, and
the point clouds reconstructed using Pix4DMapper and Pix4DCloud have similar
point density for different land features. For the point clouds generated using
GlobalMapper and Metashape, it is interesting that GlobalMapper consistently pro-
duces higher point densities for “hard” surface features and grassland than the
Pix4D point clouds and lower point densities for trees/forest. This may also explain
why GlobalMapper produced such a higher overall density of points in site A
compared to the sites with fewer man-made features (Table 5.3). In contrast, the
Metashape produces higher point density for trees/forest, but lower densities for
other land features than the Pix4D point clouds.

Would this mean that high point density represents a better reconstruction for the
land feature? As illustrated in Figs. 5.8, 5.12, and 5.14 earlier, more points do not
necessarily represent a better reconstruction of land features. It seems that Pix4D-
produced point clouds tend to have a better preservation of the edges, angles, and
shapes, as well as the contrast between colors, while GlobalMapper tends to produce
a smooth surface and Metashape may have an advantage in reconstructing parts of
vertical man-made features.
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5.5.4 Ground Truth Calibration

The comparison of the SfM-reconstructed ground elevation and 1-m LiDAR DEM
(Fig. 5.15) suggests a large difference exists between Metashape-reconstructed
ground surfaces and the surfaces reconstructed by other software packages. After
removing the vertical shift, it seems that the Pix4D point clouds have the best
reconstruction of the ground elevations in our study area. GlobalMapper and
ODM produce good correlations. In contrast, the ground elevations reconstructed
by Metashape are not fully consistent with the 1-m LiDAR DEM. Note that our
observations are only from this specific site; more work is needed to examine if it is
the case for other types of landscapes.

The differences between these software packages in reconstructing ground ele-
vations do stress the need to include ground truth calibration, such as the use of
ground targets with differential GPS measurements and the comparison with the
airborne LiDAR or terrestrial LiDAR measurements, in work related to the SfM
reconstruction. It is important to verify the quality of the point clouds generated
using different software packages and select the best product for further analysis.

5.6 Conclusions

In this study, we investigated the impacts of various SfM software packages,
including Pix4DMapper, Pix4DCloud, GlobalMapper, ODM, and Metashape, on
land feature reconstruction based on the comparison of point clouds generated using
the software default parameters. Our results indicate that when given identical image
sets, these software packages produce markedly different point clouds and that these
variations may be amplified by certain types of land features. The differences on
“hard” surfaces, such as parking lots, roads, and buildings, are smaller than vege-
tated surfaces, especially trees/forest, except for the Metashape point cloud. High
point density does not necessarily signal better quality reconstruction. It seems that
Pix4D-produced point clouds have a better preservation of the edges, angles, and
shapes, as well as the contrast between colors, while GlobalMapper tends to smooth
the surface and Metashape may have an advantage in reconstructing parts of vertical
man-made features. The large differences between Metashape point cloud and other
point clouds cannot be simply explained by registration errors. The comparison
between the ground elevations derived from point clouds with the 1-m LiDAR DEM
also indicates a relatively poor ground reconstruction by Metashape and relatively
consistent reconstructions by other software packages. Although open-source ODM
produced the lowest density point cloud, it is broadly consistent with the point
clouds generated using other commercial software, except Metashape. We acknowl-
edge that our observations are only from one specific suburban neighborhood and
more work is needed to examine if the findings from this site are consistent on other
types of landscapes. Nonetheless, the potential inconsistency between the



SfM-derived ground elevations and the LiDAR DEM stresses the need of ground
truth calibration and vegetation filtering in SfM-related feature reconstruction. This
study provides useful insights into the use of sUAS and SfM to reconstruct natural
and man-made land features.

120 Y. Li and N. McKinney

Several limitations exist in this study. First, it is essential to improve the regis-
tration between point clouds. In our study, after trying different techniques, we used
simple point picking to register the point clouds. Future work may use additional
ground targets or advanced methods, for example, the ICP method, to improve the
registration. Second, we only investigated five land features that are typical in the
suburban areas. More work is needed to explore the land features in other environ-
ments. Finally, this work only investigated the default parameters of the software
packages. It is also worthwhile to examine the impacts of different parameters of
these packages, including methods requiring additional intervention, such as
georeferenced ground control points and manually identified keypoints, as well as
other available processing options, on the quality of land feature reconstruction.
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Chapter 6
Assessing the Role of sUAS Mission Design
in the Accuracy of Digital Surface Models
Derived from Structure-from-Motion
Photogrammetry

Daniel S. Hostens, Toby Dogwiler, Joshua W. Hess, Robert T. Pavlowsky,
Jacob Bendix, and Derek T. Martin

Abstract The mission design used to acquire imagery with small unmanned aerial
systems (sUAS) incorporates decisions that determine the quality and accuracy of
derived products. This study assesses the influence of sUAS mission design strate-
gies on the accuracy of the resulting digital surface models and orthophotography in
order to determine an optimal approach to image acquisition. Imagery was collected
in the spring of 2018 during leaf-off conditions at six field sites along the North Fork
of the White River in south-central Missouri. The aerial imagery was collected using
a DJI Phantom Pro 4 sUAS. Four different mission designs were tested at each of the
sites. Each of these designs yielded a set of base mission imagery. Each of these base
mission datasets was processed individually and in various combinations using the
structure-from-motion photogrammetry (SfM) software Agisoft Metashape to pro-
duce digital surface models (DSMs). Fifty-four resulting DSMs derived from those
datasets were assessed based on their ability to accurately interpolate the planimetric
and vertical coordinates of GNSS-surveyed check points (CPs). Simpler base mis-
sion designs with 80% image overlap yielded equal or better DSM accuracy than
more complex mission designs. Additionally, slightly oblique imagery (20 � above
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nadir) provided a small additional advantage in terms of accuracy. The simpler base
mission datasets also provided advantages during SfM processing. With fewer
images, the time required during both field work and data processing was reduced
significantly.
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Keywords sUAS · Digital surface models · Structure from motion · sUAS mission
design · Photogrammetry

6.1 Introduction

One of the advantages of small unmanned aerial systems (sUAS) is the ability to
acquire on-demand imagery quickly and inexpensively. Such imagery can be
processed with structure-from-motion photogrammetry (SfM) to create digital sur-
face models (DSMs) and orthorectified imagery. These just in time products can
facilitate change detection over time and rapid assessments in the wake of extreme
events and sudden natural hazards. Using sUAS platforms for SfM photogrammetry
has become standard practice in a wide range of geomorphic applications (Wheaton
et al. 2010; James and Robson 2012; James and Varley 2012; Fonstad et al. 2013;
Bemis et al. 2014; Javernick et al. 2014; Woodget et al. 2015; Eltner et al. 2016). The
growth in usage of sUAS-based SfM photogrammetry can be attributed to the
affordability of sUAS hardware and SfM software, the development of mission
planning software that optimizes field-based data acquisition, and the ability for
SfMmethods to generate 3D spatial data with comparable accuracies and densities to
that of modern terrestrial laser scanners (Carrivick et al. 2016). SfM photogrammetry
also benefits from the ability to be used at a wide range of scales. Studies have
applied this method to cm-scale rock hand sample analysis (James and Robson
2012) up to multiple kilometers for fluvial studies (Dietrich 2016) and active lava
dome analysis (James and Varley 2012).

sUAS mission planning and autonomous flight software facilitates the design of
repeatable acquisition missions with precise control over flight pattern, camera
angle, and image overlap. The primary objective of this study is to ascertain which
mission designs optimize the quality and accuracy of the resulting three-dimensional
SfM products. Because of the ease of image acquisition with sUAS and a lack of
scientific literature exploring best practices in mission design, our experience indi-
cates that many sUAS projects err on the side of obtaining excessive quantities of
images to ensure a suitable final product, such as an SfM-derived DSM or
orthoimage. The over-collection of images results in inefficiencies in both the field
and SfM processing phases of sUAS-based studies. Furthermore, excessive imagery
does not equate to more accurate SfM products and, in some cases, can reduce the
quality of the products. The extra imagery also increases the burden of storing and
archiving sUAS imagery and datasets. As such, important questions remain about
optimal mission design strategies involving the variables described above in relation
to the quality and accuracy of the final SfM products. Relatively little investigation
has focused on these questions, especially in the rugged terrain of moderate relief



and densely forested landscape as is typically found in the Ozarks physiogeographic
region of southern Missouri and northern Arkansas in the midcontinental USA.
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Achieving an accurate result from a sUAS-based SfM photogrammetric survey is
dependent upon a wide range of variables. Some of these, such as image overlap,
flight path orientation, camera angle, flying height, and ground control point (GCP)
quantity and placement, are under the control of the sUAS user. Other factors such as
the terrain, vegetation, and, in some cases, weather conditions are inherent charac-
teristics of the study area. There have been a variety of publications reviewing the
methods of using sUAS to collect imagery for SfM (e.g., Fonstad et al. 2013;
Gonçalves and Henriques 2015), but many questions about how best to optimize
the variables listed above remain unresolved. This study uses sUAS-acquired imag-
ery from the North Fork of the White River within the Mark Twain National Forest
in south-central Missouri to explore how various sUAS mission designs, and their
associated choices regarding these variables, influence the quality and accuracy of
the derived SfM products.

6.1.1 Mission Planning and Autonomous Flight Control

The variables over which the sUAS user can control over are generally set within
mission planning software and executed by an autopilot system (most sUAS mission
planning and autopilot software are integrated). These software packages are gener-
ally run on a tablet computing device that is connected to the sUAS, usually via the
remote controller. The ability to precisely control image overlap, flight path, camera
angle, and flying height via mission design software was a critical step in the
evolution of sUAS as scientific instruments. Employing mission design software
to program sUAS data acquisition makes the process reproducible to a level not
possible via manual flight of the sUAS.

Flight and mission planning normally occurs prior to field work. Careful planning
of aircraft trajectory, such as waypoints, flight pattern, speed, and altitude along with
real-time mission management, is important for achieving successful and repeatable
missions (Colomina and Molina 2014). Autonomous flights are designed and con-
trolled through a ground control station. The GNSS/INS on the sUAS is used to
guide image acquisition at specified waypoints along the flight path (Remondino
et al. 2011). The flight plan designed dictates the specific amount of longitudinal and
transversal overlap of images acquired during the flight (Remondino et al. 2011),
which is ideally optimized based on the requirements for the desired SfM products.

An important aspect of planning an ideal mission design is understanding the
effect of those design decisions on the accuracy of the final SfM products as well as
the repercussions those decisions have on the required time investment to gather and
process the data. The importance of the variables typically defined within mission
planning software is well documented in the literature (e.g., Mancini et al. 2013;
Rossi et al. 2017; Sanz-Ablanedo et al. 2020). Altitude has the most significant effect
on the quality of imagery and SfM products, but others such as imagery overlap and



camera angle also affect the accuracy of the resulting products (Rock et al. 2011).
Efficient mission designs will yield SfM products, such as DEMs and orthophotos,
with high accuracy without any unnecessary time invested in the collection of excess
imagery and ground control as well as during data processing stages.
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6.1.1.1 Altitude

The required ground sample distance (GSD) will be a determining factor in choosing
a flight altitude. Higher altitudes result in higher GSDs and lower-resolution SfM
products. The GSD refers to the distance between pixel centers as measured on the
ground. As such, the GSD of sUAS-acquired imagery is a function of imaging sensor
resolution (e.g., as measured in megapixels), camera focal length, and flight altitude.
The same imaging sensor will yield lower resolution imagery when it is flown at a
higher altitude above the ground level. As the area of a field site increases, it is often
necessary to decrease the resolution of the acquired imagery and derived products in
order to keep acquisition and processing times feasible. Choosing an appropriate
resolution for a sUAS-based SfM project often involves a cost and benefit analysis
that optimizes the balance between planned project GSD, field site size, and the
objectives of the study. As such, larger study areas are often surveyed at lower GSDs
with a linear degradation of precision and a similar effect on the root mean square
error (RMSE) (Carrivick et al. 2016; James and Robson 2012; Sanz-Ablanedo et al.
2018; Micheletti et al. 2015b).

One benefit of SfM photogrammetry is that it is capable of being used at a wide
range of scales. Accuracy for a survey is limited by the scale of the study area
(Carrivick et al. 2016) and distance between the camera and the surface (Eltner et al.
2016; Küng et al. 2011). Eltner et al. (2016) found that the absolute error values of
SfM photogrammetry are generally low at close ranges and the relative error
becomes larger at greater distances. The altitude necessary for a survey will be
dependent upon the goal of the survey and the camera used. Using a camera image
sensor with a higher resolution provides the ability to obtain the same GSD from
higher altitudes, thus reducing the number of images necessary to cover a study area.
In the application of sUAS for rangeland assessment, Rango et al. (2009) required a
GSD finer than 25 cm for proper estimates of rangeland indicators. Higher-altitude
flights require fewer photos to obtain sufficient overlapping imagery. Understanding
the limitations of the camera sensor being used and finding a balance between the
required altitude for the survey and the necessary GSD for project objectives will
promote a more efficient flight plan and mission design. Localities with sUAS flight
ceilings, such as the 122 m (400 ft) sUAS flight ceiling imposed by the Federal
Aviation Administration in the USA, when combined with the sensor resolutions of
typical sUAS cameras, may make unnecessarily high GSDs unavoidable.

Obtaining imagery from various altitudes can be important for 3D scene recon-
struction. Larger-scale imagery can be used to cover the entire scene, while the
addition of closer imagery can be used to obtain the GSD or detail required (Eltner
et al. 2016). Multi-scale imagery is also advantageous in that it provides a wider



range of image directions that aid in the accurate solution of camera models (Eltner
et al. 2016). Flight altitude also affects the ability to detect and accurately mark
GCPs in the imagery (although this can be countered, in part, with larger GCPs).
Study areas with high relief will also cause the GSD to vary across the resulting
imagery if flight elevation is constant during the mission. Increasingly, mission
planning and flight control software incorporates DEMs in the flight plan and
provide the option of maintaining a single GSD by maintaining a constant above-
ground altitude during imaging acquisition.
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6.1.1.2 Image Overlap

Higher degrees of overlap increase the amount of matching key points available to
generate DEMs. Additional overlap in the imagery producing a higher number of
images across the study area can provide additional camera perspectives that will
help to decrease DEM error (James and Robson 2012). Higher overlap may also
increase photo alignment for imagery of homogenous terrains (e.g., forests, grass-
lands, etc.) during SfM processing. However, the higher the overlap, the greater the
number of photos that must be acquired. Micheletti et al. (2015a) found that
additional photos and greater image overlap do not linearly increase the accuracy
of the results. The additional photos and overlap may increase the density of the
resulting sparse point cloud; however, this does not guarantee an increase in the
quality of the final derived products, such as orthoimagery and DSMs (Carrivick
et al. 2016; Fonstad et al. 2013; James and Robson 2012; Micheletti et al. 2015b;
Westoby et al. 2012). Indeed, the additional imagery may only lead to unnecessary
additional processing time without noticeable benefits. An optimal amount of
overlap will yield accurate results without acquiring needless additional imagery
and increasing processing time.

6.1.1.3 Camera Angle

The angle of the camera during imagery acquisition affects the accuracy of the DEM
produced. SfM techniques require features to be recognizable in at least three images
(ideally more) for effective feature tracking and surface reconstruction (Carrivick
et al. 2016). Various camera angles and points of view across the study area improve
the image network geometry (Carrivick et al. 2016). Convergent imagery refers to
image acquisition with the focal point of consecutive photographs to tend toward or
approach intersecting points on the surface of a study area. This is opposed to
parallel imagery where each individual photograph has an independent focal point
on the surface of the study area. A strong image network geometry will increase the
quality and accuracy of the results; however, the use of GCPs is still necessary to
reduce radial errors and other distortions and achieve the highest accuracy (Sanz-
Ablanedo et al. 2018).
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Complex terrain with steep or sub-vertical surfaces can be difficult to reconstruct,
but Rossi et al. (2017) and Helm et al. (2020) have demonstrated that the use of
oblique imagery can increase the consistency of the reconstructed surfaces. When
the imagery consists of all near-parallel viewing directions and camera self-
calibration is used, radial distortion can occur in the DEM (James and Robson
2014). Artificial “doming” of the landscape occurs in derived SfM products due to
inaccuracies in modeling radial camera lens distortion when using parallel viewing
imagery (James and Robson 2012, 2014). James and Robson (2014) identify
solutions to doming, such as the inclusion of oblique angle imagery and the use of
GCPs. Other investigators have found that the use of oblique convergent imagery
can help to minimize systematic error in SfM-based DEMs (Wackrow and Chandler
2008, 2011).

6.1.1.4 Course Angle

Mission planning and autonomous flight control software also provides the oppor-
tunity to vary the orientation of the flight path or course angle. Course angle is often
determined based on in-field conditions, especially wind direction. However,
multirotor sUAS with gimbaled cameras are generally able to adapt, within reason,
to wind conditions during flight and still maintain a constant orientation of the
camera toward the ground. Most sUAS imagery acquisition flight plans employ a
“lawn mower” pattern of back-and-forth flight paths that systematically traverse the
study area. Some mission planning packages include mission design templates with
multiple course angles, usually at a 90-degree angle. Little investigation has
explored the effect of multiple course angles and camera orientations on the quality,
accuracy, and precision of SfM products.

6.1.2 Other sUAS Mission Parameters Affecting Accuracy

Some variables related to sUAS image acquisition missions are not controlled
through mission planning and flight control software. An example is GCP and
check point (CP) placement. Other variables are outside of the user’s control, such
as the relief of the study area, the surface texture of the study area, lighting
conditions, and wind speed and direction. Some of the latter may be partially
accounted for by the decisions made during the mission planning process. For
example, the course angle of the flight path may be changed in accordance with
wind direction, or higher image overlap may be planned for areas with difficult to
align imagery such as forests, large homogenous fields, or other landcovers that
make it difficult for key points to be identified by the SfM software.
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6.1.2.1 Ground Control

Lower SfM product accuracies have been found by studies where no GCPs or an
individual GCP was used as compared with missions where sufficient ground control
was established (Mian et al. 2015, 2016). In addition to GCPs, the use of CPs, which
are ground control that are not used to process and georeference the SfM products,
provides a more robust approach to assessing the accuracy of SfM-derived DSMs
and orthoimagery. CPs are not used in the SfM processing procedure. They are
reserved for the error analysis phase as points of known x, y, and z coordinates that
can be compared to the interpolated values of those points in the derived DSMs and
orthophotos. Using the known CPs, rather than comparing the known and interpo-
lated coordinates of GCPs, provides a better estimation of point cloud accuracy.
Geometric camera model optimization through the bundle adjustment attempts to
obtain a best fit of the GCP data used. This creates a bias where the used GCPs have a
higher accuracy than may be present in the rest of the DSM resulting in a false
estimation of the accuracy of the dataset (Sanz-Ablanedo et al. 2018).

Both GCPs and CPs are deployed throughout the study area and located using a
GNSS survey. Deploying sufficient GCPs and CPs is a time-consuming process, and
while more GCPs do aid in higher accuracies, the return on investment diminishes as
the optimal amount of GCPs is surpassed (Carrivick et al. 2016; Sanz-Ablanedo
et al. 2018). Optimizing the number of GCPs and CPs used in a project is critical to
efficiency in both the field and data processing. The time required in the field for
GCP and CP deployment, surveying, and retrieval varies non-linearly with the size
of the study area, the ruggedness of the topography, the density of the understory and
canopy vegetation, property access issues, and other logistical considerations.
Greater quantities of GCPs and CPs, especially in combination with greater quanti-
ties of photos (either due to imagery overlap or high GSDs), also compound the time
requirements for marking the targets on the photos during SfM processing. Sanz-
Ablanedo et al. (2018) demonstrated that in large projects greater than 3 GCP per
100 photos achieved a high level of accuracy. Other studies have looked at GCP
needs in terms of study site size (Agüera-Vega et al. 2017). Additionally, most
guidance suggests that GCPs should be evenly distributed across the entire field site.
Gaps in GCP coverage, localized concentrations of GCPs, and peripheral focused
distribution strategies may produce unfavorable accuracies (Sanz-Ablanedo et al.
2018). It is worth noting that as sUAS with onboard real-time kinetic and post-
processed kinetic GNSS become more broadly used, the number of GCPs required
for projects may be significantly reduced (Štroner et al. 2020).

6.1.2.2 Surface Texture

Feature matching in scale-invariant feature transform (SIFT) requires texture and
contrast sufficient to distinguish individual features and allow for suitable image key
points to be identified (Lowe 1999). Areas with low texture and contrast are



problematic as fewer image features will be identified by the SIFT algorithm
(Carrivick et al. 2016; Eltner et al. 2016). Vegetation also causes problems for
feature detection due to the differences in appearance from various viewing angles.
Trees especially complicate the image matching as their appearance changes with the
viewing angle, even light winds create motion that confounds feature identification,
and they block the view of the ground surface around them hindering the ability for
understory ground features to be identified. Large vegetation can also create
shadows, and the presence of shadows tends to locally reduce accuracy within
models (Wackrow and Chandler 2008, 2011). The presence of shadows can be
reduced by acquiring imagery during overcast or diffuse light conditions. Acquiring
higher image overlap in datasets can also improve the alignment of images that are
largely composed of dense canopy during SfM processing.
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6.1.3 Objectives

Data collection of sUAS imagery occurred in six North Fork sub-watersheds ranging
in size from 1 to 16 ha with dense tree canopy, and stream channels are often
confined within steep valley walls (Fig. 6.1 and Table 6.1). Based on the rugged,
densely forested terrain of the study area, the specific objective reported on here was
to determine the sUAS image acquisition mission design that optimized both time
and effort in the field and during SfM processing and the accuracy of the
SfM-derived DSMs.

6.1.4 Study Area

Six tributary stream reaches of the North Fork of the White River watershed (i.e., the
North Fork) located in the Mark Twain National Forest were investigated (Fig. 6.1
and Table 6.1). The chosen study sites were representative of the range of channel
types, sizes, floodplain characteristics, and flood impacts within the portion of the
North Fork watershed that was investigated. This portion of the North Fork water-
shed spans ~3600 km2 in the counties of Douglas, Howell, and Ozark in the south-
central most portion of Missouri, USA (Miller and Wilkerson 2001). The region is
underlain by Ordovician and Mississippian age sandstone and carbonate bedrock.
Karst terrain is extensive within the study area with numerous caves, springs, losing
streams, and sinkholes. The area is characterized by steep, rugged topography with
up to 165 m of total relief. The North Fork lies within the Oak Woodlands land type
association of the Ozark Highlands ecological section, which is typified by dense
stands of oak-hickory and oak-pine forest (Raeker et al. 2011). Approximately
two-thirds of the watershed, and most of the area encompassed by the study sites,
is densely forested (Miller and Wilkerson 2001).
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Fig. 6.1 Study sites in the North Fork of the White River watershed in south-central Missouri.
(After Hess 2019)

According to the National Weather Service reports, on April 28 and April
30, 2017, a major storm system over the midwestern USA yielded widespread
precipitation amounts totaling 10–20 cm and local areas of 25–30 cm. More than
20 streams in the region experienced record peak discharges. As described in



Heimann et al. (2018), 14 of these streams were in southern Missouri, including the
North Fork of the White River (Fig. 6.1). The study area experienced some of the
highest reported rainfalls associated with this event with precipitation totals in the
North Fork watershed ranging from 20 to 30 cm. The USGS gage (gage number
07057500) at Tecumseh, Missouri, recorded a peak discharge of 5350 m3/s and a
stage of approximately 13 m. The flood was estimated to have an annual exceedance
probability of <0.02 (i.e., greater than 1 in 500-year recurrence interval) (Heimann
et al. 2018). This extreme event caused extensive riparian corridor damage, deposits
of woody debris, and extensive modification of channel and floodplain landforms
along the North Fork and its tributaries.
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Table 6.1 Area surveyed and the quantity of ground control points and check points deployed for
image acquisition

Field Site Size (Hectares) GCPs Used CPs Used

Spring Creek 5.3 6 5

Indian Creek 5.7 6 5

Lower Tabor 16.2 10 10

Upper Tabor 4.8 6 6

Lick Branch 1.0 5 3

Dry Creek 2.6 6 3

The broader post-flood investigation of this extreme event, of which this study
was one part, had multiple objectives related to understanding the short-term effects
of a large flood on channel morphology and riparian forests in a typical Ozark
Plateau stream. This included assessments of channel morphology and floodplain
landforms, channel substrate, surveys of large woody debris, and a biogeographic
survey of tree damage. The steep, rugged, and heavily forested terrain of the study
area in combination with the spatially extensive effects of the flooding made it
impossible to quantify the flood effects solely through on-the-ground field work.
To complete the assessment efficiently and rapidly, we employed sUAS to collect
aerial imagery to create SfM-derived DSMs and orthoimagery that could serve as
base maps for field mapping, GIS-based analysis, and quantification of areal and
volumetric characteristics of channel and floodplain landforms (e.g., Bendix et al.
2018; Hess 2019; Fig. 6.2) and woody debris deposits (Martin et al. 2020).

The densely forested and steep topography of our stream channel study sites
posed interesting questions and challenges regarding how best to acquire sUAS
imagery that would ensure the highest accuracy SfM products with the least effort
necessary during both field work and subsequent SfM processing. The combination
of a topographically complex and densely forested landscape posed significant
challenges for SfM techniques because of difficulties in image alignment, key
point identification, and tie point matching in the homogenously forested terrains.
These site characteristics in combination with the short timeframe available for field
work demanded that we design our sUAS image acquisition missions to ensure
adequate imagery was obtained to allow for quality DSMs and orthoimages to be
derived through SfM. Questions about how best to design sUAS missions to acquire
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Fig. 6.2 A map of channel and floodplain features for the Dry Creek site with the location of
damaged trees. This map was drafted using field-based observations as well as observations and
measurements from an orthophoto and DSM. The sUAS imagery facilitated a more efficient use of
field time by allowing some aspects of the survey, including quantitative measurements to occur in
the office. (From Hess 2019)



imagery datasets adequate for our purposes were not clearly outlined in the literature.
The relative ease and low cost of sUAS-based image acquisition have often been a
motivation to “over collect” imagery during field campaigns under the premise of
ensuring that the SfM processing workflow is not hindered by insufficient image
overlap. However, acquiring unnecessary imagery exacts costs in both the time and
effort required in the field and in the SfM processing workflow.
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6.2 Methods

6.2.1 Mission Design for Image Acquisition

DJI Phantom 4 Pro sUAS were used to collect imagery for SfM processing using
Agisoft Metashape. The integrated camera on the Phantom 4 Pro has an effective
sensor resolution of 20 megapixels. The camera utilizes a global shutter which
captures the entire scene within the photo simultaneously. Global shutters are
preferred for sUAS SfM applications because they are not prone to the image
distortions inherent in rolling shutters, which introduce errors into the photogram-
metric process (Carrivick et al. 2016). DJI Ground Station Pro was the mission
planning and autonomous flight control software used for image acquisition
(Fig. 6.3). The Phantom 4 sUAS can reliably fly 20 min on one battery with an
acceptable portion of remaining flight time (5–7 min) reserved for a margin of safety.
Larger field sites may require multiple flights to complete an individual mission.
Individual flights of the Phantom 4 usually last 20–25 min, and multiple flights may
be required for each mission.

Four separate image acquisition missions, each with a separate flight plan, were
flown at each study site. We refer to these four missions as the base missions. Each
base mission was designed as a standalone flight plan designed to acquire all the
imagery necessary to produce DSMs and orthoimages of the site from SfM methods.
Each base mission was created in advance and sent to the sUAS before take-off to
allow for automated flight. At one of the sites, manual take-offs and landings were
performed through narrow openings in the tree canopy, but all other aspects of the
flights were completed by the autopilot system.

Each base mission was flown at an altitude of approximately 108 m (355 ft) above
ground level (AGL). This altitude in combination with the Phantom 4 Pro camera
yields an estimated GSD of about ~3.0 cm/pix. However, due to the topography of
the field sites, the true AGL altitude varied across each field site, and it was estimated
that the actual GSDs ranged by as much as +/� 0.25 cm/pix. Flight paths included
longitudinal and transversal image overlap of 80%. Two of the base missions
collected orthogonal imagery using a camera angle of 900 (pointed straight down).
The other two base missions used a camera pitch angle of 700 (i.e., 200 above nadir)
to acquire oblique imagery. Both the orthogonal and the oblique mission pairs
included one mission with a north-to-south course angle and one with an east-to-



west course angle. The missions were flown in “lawnmower” patterns, and the
general design of the four unique base missions is depicted in Fig. 6.4.
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Fig. 6.3 A screenshot from the DJI Ground Station Pro software of the flight plan for the Lower
Tabor site. The blue area of interest (AOI) is the desired coverage of the imagery to be collected
during the flight. The green line is the calculated flight path determined by the software necessary to
acquire the imagery. Note that the flight path is slightly offset from the AOI to compensate for the
oblique angle of image acquisition. Longitudinal (front) and transversal (side) overlap as well as
camera angle are set with the parameters in the white box on the right

In case additional flooding occurred prior to the opportunity to acquire leaf-off
imagery of the field sites, an initial round of leaf-on imagery was flown in September
2017. However, no significant channel altering flows occurred between the April
2017 floods and the March 2018 acquisition of leaf-off imagery. As such, all of our
analyses were performed on the March 2018 imagery.

The four base missions were flown at each of the six field sites over the course of
3 days in March 2018. The details of the flights performed to complete each mission
are listed in Table 6.2. Due to constraints in completing the field work, flights were
conducted throughout each field day. Thus, ambient lighting conditions varied from
site to site and mission to mission. Some image datasets captured in the morning or
late afternoon included significant shadowing contrasting with brightly lit areas.
Nonetheless, individual missions at each site were flown consecutively in a rela-
tively short period of time (Table 6.2) under uniform lighting conditions. All four
base missions were completed at each site over a period ranging from approximately
30 min to 2.5 h, depending on the size of the site.
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Fig. 6.4 Base mission designs used for sUAS imagery acquisition

The imagery collected during each of the four base missions for each site was
processed separately to derive associated DSMs and orthoimages. Additionally, five
combined imagery datasets were created by combining the imagery from the four
base missions, as indicated in Fig. 6.5. As a result, for each of the six field sites, a
total of nine different datasets were separately processed to derive DSMs and
orthoimages (i.e., 54 total DSMs and an equal number of orthoimages).

6.2.2 Ground Control

Slow-moving vehicle triangles (bright orange with a reflective red outline) were used
for both GCPs and CPs during image acquisition. Each ground control was ran-
domly designated as a GCP or a CP. GCPs were used during SfM processing to
georeference the derived point clouds and other products such as DSMs and
orthophotos. CPs were only for error analysis of the resulting DSMs. Due to the
extent and density of the tree canopy at the sites, there were a limited number of
locations suitable for placing GCPs and CPs. The number and spatial distribution of
control points were to some extent limited by these factors. At each of the six field



sites, GCPs were placed in suitable locations that would be visible from the aerial
imagery. The areal size of the field sites and the number of GCPs and CPs deployed
varied for each site (Table 6.1). Each GCP and CP was surveyed using a pair of
GNSS receivers (Geneq SXblue Platinum base and a Gintec G10 rover) in a real-
time kinetic configuration to collect sub-decimeter positional data. Each surveyed
position was the result of averaging 60–180 s of 1 Hz positional data. The duration of
the averaging was varied to compensate for GNSS errors induced by limited horizon,
tree cover, and extended GNSS correction age due to topography.
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Table 6.2 Base mission flight time information for each of the six field sites

Field site Base mission flight Flight number Start time End time Date

Upper Tabor EW Ortho 1 10:04 10:13 3/2/2018

NS Ortho 1 10:14 10:26 3/2/2018

EW Oblique 1 10:39 10:46 3/2/2018

NS Oblique 1 of 2 10:47 10:54 3/2/2018

2 of 2 10:56 11:06 3/2/2018

Lick Branch EW Ortho 1 11:32 11:38 3/2/2018

NS Ortho 1 11:40 11:48 3/2/2018

EW Oblique 1 11:48 11:54 3/2/2018

NS Oblique 1 11:55 12:04 3/2/2018

Dry Creek EW Ortho 1 14:26 14:32 3/2/2018

NS Ortho 1 14:33 14:38 3/2/2018

EW Oblique 1 of 2 14:39 14:47 3/2/2018

2 of 2 14:49 14:52 3/2/2018

NS Oblique 1 14:53 15:02 3/2/2018

Spring Creek EW Ortho 1 16:37 16:47 3/2/2018

NS Ortho 1 16:48 17:00 3/2/2018

EW Oblique 1 17:01 17:10 3/2/2018

NS Oblique 1 17:11 17:21 3/2/2018

Lower Tabor EW Ortho 1 of 2 9:33 9:52 3/3/2018

2 of 2 9:54 10:04 3/3/2018

NS Ortho 1 10:09 10:29 3/3/2018

EW Oblique 1 of 2 10:30 10:49 3/3/2018

2 of 2 10:53 10:57 3/3/2018

NS Oblique 1 of 2 10:58 11:12 3/3/2018

2 of 2 11:16 11:22 3/3/2018

Indian Creek NS Ortho 1 13:00 13:09 3/4/2018

NS Oblique 1 of 2 13:10 13:18 3/4/2018

2 of 2 13:21 13:32 3/4/2018

EW Ortho 1 12:55 13:05 3/4/2018

EW Oblique 1 of 2 13:06 13:16 3/4/2018

2 of 2 13:33 13:41 3/4/2018
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Fig. 6.5 The four base missions flown at each site are represented by the black boxes (top row).
Five additional “combined imagery” datasets were also created from the indicated combinations of
the four base missions

6.2.3 Structure-from-Motion Photogrammetry Processing

6.2.3.1 Imagery Alignment

The acquired imagery was processed in Agisoft Metashape version 1.4 (including
builds 5076 through 7354, which was previously named Agisoft Photoscan at the
time these data were processed) following the workflow in Noble and Matthews
(2017) with some slight modifications as described in Hostens (2019). The gradual
selection portion of the workflow, which identifies and removes erroneous points
from the sparse point cloud, was automated in Metashape using a Python script
documented in Hostens (2019). Image alignment was completed with an accuracy
setting of “highest” with key point limit of 60,000 and tie point limit of 0, which
allows the software to use any number of matched key points as tie points. After
alignment a least squares bundle adjustment, which is referred to as “camera
optimization” in Metashape, was run to refine the tie point positions and the
estimates of camera position and orientation (Moore et al. 2009; Chien et al.
2015). As specified in Noble and Matthews (2017), the parameters f, cx, cy, k1, k2,
k3, p1, and p2 are used for this bundle adjustment (Table 6.3).

6.2.3.2 Ground Control

After image alignment, the GNSS data for the ground control were loaded into
Metashape. All GCPs and CPs were located, marked, and labeled accordingly on all
images. The Metashape marker data for the GCPs and CPs were exported and added
to all imagery sets being processed to ensure all the base and combined imagery
datasets were processed with consistent marker data. CPs at each site were used to



compare the accuracy between each imagery set. Though CPs were identified with
markers in Metashape, they were not used to georeference the data or generate the
SfM products. The advantage of marking the CPs in Metashape, but not including
them in the georeferencing of the SfM products, is that the software will report an
estimated projected 3D coordinate position and error for each CP. As such, the CP is
a known three-dimensional point in space (based on the field-surveyed GNSS
position) that does not influence the bundle adjustment solution and can be used to
assess product accuracy (Carrivick et al. 2016; Dietrich 2016; Eltner et al. 2016;
Javernick et al. 2014; Sanz-Ablanedo et al. 2018). The accuracy information
reported by Metashape are used to calculate RMSE (Eq. 6.1) and mean absolute
error (MAE, Eq. 6.2) values. The GCPs are used in the subsequent processing steps
in the bundle adjustment and to georeference the SfM products.
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Table 6.3 The definition of the least squares bundle adjustment parameters used in the Agisoft
Metashape camera optimization procedure

Camera alignment parameter definitions

f Camera focal length (x, y)

cx, cy Center of camera sensor of principal point (x, y)

k values Distortions from center of the lens (radial distortions)

p values Lens misalignments (tangential distortions)

b values Values that compensate for non-square pixels

Table 6.4 RMSE and MAE
values for the residual errors
found from the comparison
between each imagery set and
the best-case imagery set in
this study, the NS Oblique. All
values are in meters

RMSE MAE

NS Ortho 0.065 0.028

EW Ortho 0.108 0.076

NS Oblique – –

EW Oblique 0.069 0.034

Ortho Missions 0.092 0.064

Oblique Missions 0.052 0.020

NS Missions 0.237 0.189

EW Missions 0.085 0.053

All Missions 0.216 0.177

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 eið Þ2
n

s

ð6:1Þ

MAE ¼
Pn

i¼1 eij j
n

ð6:2Þ

The error values for the CPs reported by Metashape were used to obtain the
RMSE and MAE for each of the imagery sets (Table 6.4). When calculating the
overall RMSE and MAE values, a total of 32 CPs from all the field sites were used



(Table 6.1). Most studies involving assessment of SfM products utilize RMSE to
report error (Carrivick et al. 2016). While RMSE does represent the error magnitude
within a dataset, it has some limitations. The RMSE characterizes the magnitude of
errors with higher priority due to the nature of finding the squared difference of
errors in the calculation. The MAE is used as a compliment to the RMSE because it
displays a more consistent average error within the data (Willmott and Matsuura
2005). Some GCPs and CPs were located near trees along stream banks, and the
GNSS-surveyed accuracy of their positions was influenced by factors such as the
presence of shadows and obscuration by vegetation and topographic barriers. Addi-
tionally, the same factors limited the number of photos in which these GCPs and CPs
could be effectively marked in Metashape. Across the six field sites, we had to
eliminate three ground control targets (two at Dry Creek and one at Lick Branch) that
yielded high error values inconsistent with the rest of the GCPs and CPs. The error
values within these points were very high and suggested that the surveyed point
location was most in the tree canopy rather than on the ground.
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6.2.3.3 Gradual Selection

A Python script (documented in Hostens 2019) was written to automate the sparse
point cloud error reduction via the Gradual Selection tool in Metashape. Gradual
selection is a point filtering and reduction process that removes points in the sparse
cloud. The procedure is usually performed iteratively such that points up to an error
threshold are removed from the point cloud and then a bundle adjustment is run on
the remaining points. The gradual selection process can be a time-intensive task to
accomplish manually, especially for large sparse point clouds. Automation of the
gradual selection process with the script enabled this task to be efficiently accom-
plished on all 54 of the base missions and combined imagery datasets processed as
part of this study. In addition to saving user time, the script ensures the error-
reduction thresholds are applied consistently during gradual selection and reduces
the chances of user error during a monotonous series of steps.

Gradual selection involves three primary types of error reduction performed in the
following order: (1) reconstruction uncertainty, which removes points with poor
geometry; (2) projection accuracy, which removes points with pixel matching errors;
and (3) reprojection error, which removes points with pixel residual errors. The
gradual selection process was the main area where we deviated from the workflow in
Noble and Matthews (2017). Whereas their workflow specifies adding the ground
control between the projection accuracy and reprojection error steps, we added the
ground control prior to gradual selection. Marking the ground control prior to
gradual selection has no adverse effect on the ultimate SfM products but enables
the gradual selection procedure to be automated in a single script.
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6.2.3.4 Dense Cloud and Data Products

After gradual selection, a three-dimensional dense point cloud is generated from the
points remaining in the sparse cloud. Depth map creation and subsequent dense point
cloud generation are a very computationally intensive process. The quantity of
acquired imagery is a function of mission design (i.e., photo overlap and flight
altitude). To assess the effect of image quantity on SfM processing times, the data
were processed one at a time on a single workstation to allow an equitable compar-
ison of the required processing times. The computer hardware used for processing
SfM data is a limiting factor on the quality of the end products and the time required
to generate them. Inadequate hardware resources can dramatically slow down the
data processing. The workstation we used exceeded the minimum system require-
ments for Metashape, and our data processing tasks did not exceed the capacity of
the RAM, graphics cards, or processors. Thus, our results provide an accurate
relative comparison of the effect of image quantity on the time required to process
the SfM data. A report was generated for each imagery dataset that recorded the
processing details including sparse point cloud size, dense point cloud size, point
density, and the associated processing times.

Mission planning parameters, such as the GSD, the resolution of the photos, and
the longitudinal and transversal image overlap, also influence the computational
requirements, quality, and accuracy of the SfM products. Wisely choosing the
specifications for these aspects of the mission design will ensure excess effort is
not expended during field work or the SfM processing workflow. In addition to
removing noisy and inaccurate data, gradual selection thins the sparse cloud, which
ultimately reduces the computational requirements of generating the dense point
cloud and presents the opportunity to output higher-quality and more accurate results
for an equivalent investment of processing time.

Metashape allows specification of a quality setting when building a dense cloud.
The quality setting determines the detail and accuracy of the geometry of the dense
cloud as a trade-off with the time and computational power required to produce the
end result. We used a “High” setting that results in the downscaling of the resolution
of the original images by a factor of 4. This setting yields a significant savings in
processing time and hardware requirements while still yielding excellent quality
results. We also used an “Aggressive” setting for depth filtering, which is the
recommended setting for aerial imagery processing and does a good job of filtering
out outlier data at the expense of retaining small details in the dense cloud.

After generation of the dense cloud, a derivative DSM can be generated. Because
our data products were being produced for broader objectives related to mapping and
analyzing the effects of the April 2017 flooding on our field sites, we did not want to
perform vegetation removal on our DSMs as would be necessary to yield DEMs. We
exported our DSMs at their native maximum resolution as determined by the
Metashape processing algorithm. Our source imagery and the GNSS survey of our
ground control were georeferenced to World Geodetic System 1984 (EPSG:4326).
We maintained this projection throughout the processing workflow and in the



derived products. The mosaicked orthoimages were orthorectified using the DSMs
and also exported at their maximum native resolutions.
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6.3 Results

6.3.1 Mission Design and SfM Product Accuracy

Based on our analysis of the four base missions and the five combined imagery
datasets we processed at our field site, the RMSE and MAE results are shown in
Fig. 6.6. Tables 6.5 and 6.6 display the RMSE and MAE results in order of

Fig. 6.6 (a) Overall RMSE values of CPs from all sites for each imagery set. (b) Overall MAE
values of CPs from all sites for each imagery set. All values are in meters
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Table 6.5 RMSE values, sorted by ascending total error, for all imagery sets. All values are in
meters

RMSE

Imagery dataset Total error XY error X error Y error Z error

NS Oblique 0.581 0.462 0.466 0.458 0.766

NS Ortho 0.637 0.514 0.499 0.528 0.830

EW Oblique 0.667 0.482 0.479 0.485 0.933

EW Ortho 0.717 0.467 0.477 0.457 1.052

Oblique Missions 0.744 0.537 0.505 0.568 1.041

All Missions 0.749 0.444 0.405 0.480 1.136

NS Missions 0.770 0.722 0.787 0.650 0.857

EW Missions 1.146 0.719 0.555 0.851 1.705

Ortho Missions 1.153 0.445 0.394 0.491 1.896

Table 6.6 MAE values, sorted by ascending total error, for all imagery sets. All values are in
meters

MAE

Imagery dataset Total error XY error X error Y error Z error

NS oblique 0.495 0.367 0.393 0.342 0.750

EW Ortho 0.528 0.364 0.401 0.327 0.856

NS Ortho 0.530 0.398 0.405 0.392 0.792

EW oblique 0.549 0.384 0.418 0.351 0.880

All Missions 0.565 0.340 0.337 0.342 1.017

Oblique Missions 0.602 0.432 0.445 0.419 0.943

NS Missions 0.653 0.540 0.597 0.484 0.878

Ortho Missions 0.663 0.329 0.301 0.356 1.332

EW Missions 0.780 0.528 0.439 0.617 1.285

ascending magnitude of error. The imagery dataset with the lowest overall total
RMSE and total MAE values when considering the error values of all CPs for the six
sites was the NS Oblique imagery dataset. The All Missions and Ortho Missions
imagery datasets had slightly lower planimetric RMSE and MAE values than the NS
Oblique imagery dataset. The EW Ortho imagery dataset had slightly higher plani-
metric RMSE values than the NS Oblique design but a lower MAE planimetric
value. The NS Oblique imagery dataset had the lowest Z RMSE and MAE values of
all imagery sets by a good margin. The closest in Z accuracy in both cases was the
NS Ortho imagery dataset.

Combining base missions to create combined imagery datasets or using all
imagery as is the case for the All Missions imagery dataset did not improve the
overall total RMSE or MAE values in relation to the individual base missions. Base
mission imagery datasets consistently performed better than, or similar to, the
combined imagery datasets. Among the combined imagery datasets, the Oblique
Missions appears to handle Z errors better than the Ortho Missions; however, this
relationship does not hold true for the base mission datasets. The NS Oblique had the



lowest Z RMSE and MAE values compared to all other imagery sets. The EW
Oblique had the second highest RMSE Z error value and the highest MAE Z error
value among the base mission imagery sets but was comparable to and better than
most RMSE and MAE results for combined imagery sets. Mixed camera angle
imagery sets such as the EW Missions and the NS Missions imagery sets did not
consistently produce improved planimetric or Z accuracy.
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A cross-sectional profile from the Spring Creek site was used to compare the
results of each base mission and combined imagery dataset. It is important to note
that a field survey across the site was not performed during the fieldwork. Rather, a
profile was extracted from the NS Oblique image dataset, which had the lowest
overall error values. The NS Oblique profile was used as the baseline for comparison
between the other eight image datasets. Figure 6.7 shows the location of the profile
line. The location was chosen to display a cross-sectional profile of the creek while
avoiding trees and vegetation. Complex tree canopies can result in difficult to
compare profiles because each imagery dataset may reflect the location of a single
branch or leaf. Figure 6.8a compares the profile lines created for each imagery set,

Fig. 6.7 Orthophoto of the Spring Creek site showing the location of the profile line (green line)
used for profile elevation extraction for each imagery set



and Fig. 6.8b displays the residual difference relative to the NS Oblique imagery set.
The NS Oblique is shown as the thick bright green line in the profile line comparison.
Table 6.7 shows the RMSE and MAE values for the residuals of each imagery set.
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Fig. 6.8 (a) Comparison of profiles extracted from the DSMs of the various imagery datasets. (b)
Residual difference between the NS Oblique DSM profile and the profiles of each of the other
imagery datasets

Mission design determines the number of images acquired for a study site.
Figures 6.9 and 6.10 display the RMSE and MAE values of the CPs in relation to
the number of base missions included in the imagery datasets we included in our
analysis. Although there are slight increases in the error values as the number of
photos per imagery dataset increases, there is no significant correlation. This sug-
gests that additional imagery does not improve the accuracy of the SfM products as



different mission designs are combined. Additional imagery significantly affects the
computational overhead associated with SfM processing. As shown in Fig. 6.11,
combining imagery from multiple base mission datasets to create the combined
imagery datasets had a non-linear effect on the required processing time. The
non-linear trend demonstrates that additional photos can greatly increase the neces-
sary processing time relative to processing the base mission imagery sets.
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Table 6.7 RMSE and MAE
values for the residual errors
found from the comparison
between each imagery set and
the best-case imagery set in
this study, the NS Oblique. All
values are in meters

Imagery dataset RMSE MAE

NS Ortho 0.065 0.028

EW Ortho 0.108 0.076

NS Oblique – –

EW Oblique 0.069 0.034

Ortho Missions 0.092 0.064

Oblique Missions 0.052 0.020

NS Missions 0.237 0.189

EW Missions 0.085 0.053

All Missions 0.216 0.177

Greater numbers of photos had no effect on the dense point cloud density
(Fig. 6.12). What appears to have a greater affect is the camera angle in the imagery
set. Orthogonal camera angles led to larger dense point cloud densities than oblique
camera angles (Table 6.8 and Fig. 6.13). The dense point cloud density for combined
imagery sets with both oblique and orthogonal camera angles was typically between
the range in densities of the oblique only and orthogonal only combined imagery
sets.

6.4 Discussion

Accuracies reported in various studies of sUAS surveys suggest a relationship where
accuracy decreases as GSD increases (Harwin and Lucieer 2012; Vallet et al. 2012;
Vericat et al. 2016). As such, it follows that there are inherent variations in accuracy
with increasing GSDs (as a function of height and image sensor resolution). Eltner
et al. (2016) found that the absolute error values of SfM photogrammetry are
generally low at close ranges and the relative error becomes larger at greater
distances. Our flight altitude of 108 m yields a GSD of ~3.0 cm. The varying relief
of the field sites, the presence of shadows during image acquisition, and errors
inherent in the GNSS surveys used for ground control positioning, all introduce
errors into the results. However, our study design should cause these errors to be
approximately equal for each of the four base mission imagery datasets and the
derivative combined imagery datasets. Differences in RMSE or MAE errors between
the various imagery datasets we analyzed across our six field sites should primarily
reflect the effects of the mission design on accuracy of the SfM products.
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Fig. 6.9 RMSE three-dimensional (top), XY (middle), and Z (bottom) values of all CPs for each
imagery set separated by number of base missions combined into the imagery set
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Fig. 6.10 MAE three-dimensional (top), XY (middle), and Z (bottom) values of all CPs for each
imagery set separated by number of base missions combined into the imagery set

Our base mission designs utilized an 80% longitudinal and transversal image
overlap. We did not systematically test how variations in longitudinal and transver-
sal image overlap affect the accuracy of the SfM products. However, our experience
in the steep, vegetated terrain of our field sites indicates that less than 80% overlap
results in a significant number of images not being aligned due to fewer key point



matches during SfM processing. The poor image alignment leaves the datasets as
unworkable or only partially covering the field site due to the resulting “holes” in the
resulting SfM products. Our combined imagery datasets functionally increase the
effective imagery overlap beyond 80%. However, as discussed below, the combined
imagery datasets yield lower RMSE and MAE accuracies and require greater time in
the field to acquire and significant increases in the time required to process the data.
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Fig. 6.11 Comparison of the average processing time required to create dense point clouds for each
imagery set separated by the number of base missions used in the imagery set

Fig. 6.12 Average dense point cloud density for each imagery dataset in relation to the number of
included base mission photosets. Dense point cloud density is in thousands of points/m2



Thus, our base mission designs each represent a minimum image dataset adequate
for SfM in the terrain of the study sites.
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Table 6.8 Average dense
point cloud density (in points/
m2) and required processing
time (in hours) obtained from
an average of the results for
the six study sites

Average dense point cloud

Imagery dataset Density Processing time

NS Ortho 71,433 0.90

EW Ortho 70,595 0.91

NS Oblique 59,058 0.85

EW Oblique 59,712 1.41

Ortho Missions 71,261 4.13

Oblique Missions 59,553 3.21

NS Missions 65,247 3.68

EW Missions 64,574 3.86

All Missions 65,412 20.68

Fig. 6.13 The average dense point cloud density is consistently higher for missions with orthog-
onal imagery (solid black bars). Oblique camera angles yield slightly lower point densities (sold
gray bars) while imagery datasets with both orthogonal and oblique imagery (bars with diagonal
pattern) have intermediate densities

The imagery dataset that yielded the highest overall CP accuracy and shortest
relative processing times was the NS Oblique imagery set. The base mission imagery
datasets yielded accuracy levels similar to, or better than, the combined imagery sets.
The dense point cloud processing times were also significantly shorter for base
mission imagery sets, with differences ranging from 3.5x to 20x longer for the
combined imagery datasets (Fig. 6.11). These results confirm the suggestions by
other authors that excess images provide little benefit in terms SfM product accuracy
(Fonstad et al. 2013; James and Robson 2012; Micheletti et al. 2015a, b; Westoby
et al. 2012). It is worth noting that after we completed our analysis, subsequent
versions of Metashape have increased the algorithmic efficiency of the alignment



and dense cloud generation processes. These updates improve the absolute
processing times of datasets, but it is unclear how they would affect the relative
differences in processing times reported above.
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Complex terrains with heavy tree canopy, the presence of shadows, and poor
visual texture pose challenges for SfM photogrammetry. Additional image overlap
obtained through combinations of base imagery datasets provides additional camera
perspectives and key points that could improve the products and accuracy of the SfM
photogrammetric processing. However, our results do not support this hypothesis.
Indeed, we find that the additional imagery resulted in higher average errors in the
DSMs. One possible reason for this result may be that the additional imagery
introduced conflicting estimates of camera orientations that led to greater uncer-
tainties in key point locations. During bundle adjustment these uncertainties result in
higher tie point residuals that cause improper parameter adjustments that contribute
to surface error (James et al. 2017).

Gradual selection procedures should help to reduce instances of high tie point
residual error, but our results suggest that some of the additional uncertainty passes
through the filtering process and ultimately is propagated into the derived DSM. The
systematic error associated with the All Missions and NSMissions imagery sets in the
profile lines comparison is a potential example of this (Fig. 6.8). The base mission
imagery datasets did not individually display significant systematic error in the
profile, yet, when that imagery was combined in the NS Missions and All Missions
imagery datasets, they did. Most of the higher relative RMSE and MAE total error
values in the combined imagery sets seem to be due to higher Z error relative to the
base mission imagery datasets (Fig. 6.6). The systematic error resulted in elevation
inaccuracies, while the planimetric accuracy was generally less affected.

Another potential reason for the higher error values in the combined imagery
datasets could be due to small differences between the base mission imagery datasets
particularly in ambient light, shadows, and similar factors. For example, slight
changes in the position of shadows between missions could lead to uncertainties in
the estimation of key points, which would translate into errors in tie point matching
and reconstruction of camera orientation. Though the base mission flights were
flown in back-to-back sequence over relatively short time periods for each field
site (Table 6.2), there are certainly some differences. However, this is not an effect
unique to our methodology. Any sUAS imagery acquisition campaign, regardless of
mission design, occurs over a period of time in which ambient conditions are likely
to change between the start and finish of the flights. To the extent that this explains a
portion of the additional error in the combined imagery datasets, it is an inherent
constraint posed by any campaign that attempts to acquire more than the minimum
requirement of imagery. A future opportunity exists to tease apart the effect of inter-
and intra-mission ambient changes across the field site by using multiple sUAS to
simultaneously acquire imagery for a site using varying mission designs.

Our comparison of the profiles extracted from the various mission DSMs is
inherently constrained by the lack of a ground-surveyed profile to use as an objective
reference. However, our analysis nonetheless demonstrates the relative magnitude
and distribution of variation between the various mission profiles. The profiles



display a similar shape that captures the overall trend in elevation across the profile
line (Fig. 6.8a). However, there are differences in the magnitude of the elevation
changes across the profile. Variations in the residual values of all imagery datasets
are apparent in Fig. 6.8 at profile distances greater than 32 m where the profile line
intersected woody debris alongside the channel. A smaller variation is seen in the
stream bed where approximately 15 cm of shallow water was present. The greatest
residuals are in the NS Missions and All Missions imagery datasets (Fig. 6.8b). The
residuals for these datasets have a positive slope indicating a systematic divergence
in elevation with distance across the profile. This may be evidence of the doming
effect in those datasets (James and Robson 2012, 2014).
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The NS Oblique base mission image dataset yielded the least RMSE and MAE
error of the various mission designs. However, especially among the base mission
designs, there were only small and probably insignificant differences in most of the
error ranges (Fig. 6.6). Unsurprisingly, camera orientation (east-west vs. north-
south) seemed to have a minimal effect on the accuracy of the base imagery sets.
When comparing the orthogonal and oblique imagery datasets, the oblique imagery
consistently yielded less error than the similar orthogonal mission design (Fig. 6.6).
The All Missions imagery set yielded total RMSE and MAE errors similar to the
Oblique Missions imagery set; however, the All Missions data acquisition required
significantly longer field and processing times. These results suggest that the base
missions were the most efficient in terms of yielding higher accuracy DSMs with the
minimum time required in the field and for SfM processing. Furthermore, oblique
imagery may provide slight benefits over orthogonal imagery, especially with
respect to elevation errors.

There appears to be no significant difference in dense point cloud density or
processing time based on flight path orientation (Fig. 6.13 and Table 6.8). In
comparison, camera angle may have a small effect. The oblique imagery datasets
produced dense point clouds with the lowest point densities (Table 6.8). However,
the greater quantity of images in the combined imagery datasets had no effect on the
dense point cloud density but resulted in a non-linear increase in the required
processing times. In summary, there is no correlation between point cloud density
and the accuracy of the final DSMs. As such, the base mission designs are optimal in
terms of the time and effort required in comparison to the accuracy of the final DSM.

Extreme events, such as the flooding we studied in the Ozarks, are occurring with
increasing regularity (Mallakpour and Villarini 2015). Imagery datasets such as ours
may be of value to future studies that investigate the long-term impacts of the April
2017 floods or as a point of comparison for evaluating the effects of future floods.
Toward this end, another consequence of our results speaks to the issue of archiving
sUAS imagery for future studies. Although the question of how to archive and share
sUAS imagery for future investigations is beyond the scope of this work, our results
suggest that the resources necessary for archival can be more efficiently used by not
over-collecting and archiving unnecessary imagery that does not improve the accu-
racy of the SfM products.
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6.5 Summary

Our investigation was part of a broader project tasked with the rapid post-flood
assessment of the North Fork of the White River after major flooding in April 2017.
Our specific role in this investigation was to provide high-resolution DSMs and
orthoimagery that provided basemaps for analysis of the flood impacts on the
riparian corridor and the accumulation, distribution, and size of woody debris within
the floodplain. The terrain in which our field sites are located is typical of the Ozark
Plateau and more generally representative of the steep, hilly, forested landscapes in
many temperate mid-latitude regions. When planning our imagery acquisition, we
faced uncertainty about the most efficient mission designs for obtaining the neces-
sary data to produce accurate DSMs and orthoimages via SfM photogrammetry. Our
conclusions suggest that relatively simple mission designs utilizing “lawnmower-
type” flight paths to collect slightly oblique imagery with approximately 80%
longitudinal and transverse overlap yield maximum accuracy in the SfM products
while reducing field acquisition time and processing requirements. In contrast,
mission designs that capture imagery using multiple flight path orientations or
camera angles yield larger datasets that require greater field and processing efforts
but yield no benefit in terms of DSM and orthoimagery accuracy.

Future research exploring this topic could pursue several possible questions. This
investigation focused on “lawnmower-pattern” mission designs, which remain the
most commonly employed approach in sUAS image acquisition (Sanz-Ablanedo
et al. 2020). Sanz-Ablanedo et al. (2020) found that point-of-interest mission
designs, where the camera remains obliquely oriented toward the center of the
study area, yielded significantly reduced doming errors in comparison to other flight
patterns. However, their study was based on imagery of a flat parking lot, and it is
unclear how effective such an approach would be on a linear corridor, such as a
stream channel, or in areas with dense canopy and steep topographic relief. Addi-
tionally, our investigation did not explore the effects of image overlap or various
camera angles. However, oblique imagery is known to reduce doming errors and
produce more accurate three-dimensional SfM products (as documented in our
results and elsewhere such as Rossi et al. 2017, and Sanz-Ablanedo et al. 2020).
Reducing image overlap, which may be feasible in terrains with less dense canopy,
would result in fewer images per dataset and reduce processing demands. Under-
standing how different camera angles or image overlap affects the accuracy of SfM
products would allow these mission parameters to be optimized for accuracy and
minimum processing requirements.
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Chapter 7
Drones and Poles for Low-Elevation Oil
and Gas Environmental Surface Inspections

Chris W. Baynard, Robert D. Richardson, and Nicolas W. Baynard

Abstract This chapter highlights how small unoccupied aerial vehicles (sUAVs), or
drones, and pole aerial photography (PAP) can provide actionable information for
regulators and stakeholders on the state or condition of oil and gas wellpads on US
federal grasslands. We believe that imagery-derived datasets such as orthomosaics,
vegetation, elevation, and 3D models, as well as 360� drone video and very
low-elevation pole aerial video, can help regulators such as the US Forest Service
(USFS), as well as industry, identify major surface compliance issues from their
office computers and therefore enhance the quantity and quality of site visits.
Furthermore, we anticipated that these datasets would prove most useful when
determining if remediation efforts met compliance targets during the 5-year recla-
mation phase, where abandoned wellpads are returned to a natural state. Findings
suggest that 70% of the annual inspection can be conducted utilizing these datasets.
For reclamation sites, they had broad applications. Though vegetation cover condi-
tions could be detected, it was difficult to distinguish the grass seed mix, weeds, and
invasive plants, as well as the condition of fences from visual analysis. Overall,
access to and interpretation of these data can speed up inspections, increase effi-
ciency, greatly enhance field visits, and target locations that indeed require addi-
tional field reviews and appropriate responses. We conclude that while these
methods can improve current Forest Service field inspections, perhaps operators
benefit more, since they can more readily adopt the latest aerial surveillance methods
to monitor surface effects as they occur. This allows them to address areas of concern
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prior to and after inspections, thus better coordinating planning and actions with the
USFS regulators throughout the life cycle of the well. Hence, operators can save time
and money and reduce legal exposure while enhancing communication with
regulators.
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Keywords Oil and gas · Energy · Grasslands · Forest service · Drones · Pole aerial
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7.1 Introduction

Surface effects associated with oil and gas production on western federal grasslands
are monitored by the USDA Forest Service (FS) and include two main types of
reviews, annual active well compliance inspections and 5-year final reclamation site
inspections. The annual inspection list consists of about 40 items that focus on the
condition of infrastructure features located on the wellpad, such as signs, tanks,
fences, stairs, and cattle guards. It also includes environmental features such as
erosion, access road conditions, weeds, vegetation, and catch basins (USDA Forest
Service Dakota Prairie Grasslands 2019a). The 5-year reclamation forms contain five
categories: erosion stability, revegetation and plant vigor, fence condition, reclama-
tion status/time frames, and follow-up actions (USDA Forest Service Dakota Prairie
2019b). See Appendix.

A wellpad is a large, often rectangular cleared area of land, though the shape
varies, that contains the O&G infrastructure features needed to extract hydrocarbons,
such as the wells, pumps, and storage tanks (see examples in Fig. 7.8). Out west, in
the Little Missouri National Grasslands of western North Dakota, the FS allows oil
and gas drilling and production and is the regulator overseeing surface inspections.
A major challenge is that a small number of personnel oversee large tracts of land
and are required to visit each active wellpad at least once a year. On the other hand,
since final reclamation sites take 5 years, annual inspections are not necessary.

To alleviate the pressure placed on staff who may have missed something during
the inspection phase and to enhance procedures, we propose an aerial imagery
acquisition process that utilizes small unoccupied aerial vehicles (sUAVs)1, o
drones, to capture imagery and video. In this case sUAVs refer to lightweight
multirotor drones that can hover, take off, and land vertically and can be handled
by one person (Botlink 2021).

We couple drone imagery acquisition with pole aerial video, adding a higher-
than-eye-level perspective to enhance the data gathered via sUAVs. While the
resulting imagery products cannot fully substitute for an onsite field inspection, we
wanted to know if they would provide sufficient spatial information to detect most
items on the inspection sheet. If so, this might speed up the number of inspections
per visit and season, benefitting personal through reduced long drive times in remote

1Throughout this chapter we use sUAV to represent small unoccupied aerial vehicles.



areas and decreased potential exposure to environmental hazards. The increased
efficiency would allow FS inspectors to spend more time on locations with the most
problems. We also anticipated that these methods would prove most useful when
determining if remediation efforts met compliance targets during the reclamation
phase, where abandoned wellpads are returned to a natural state.
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Findings suggest these datasets allow regulators to identify up to 70% of items on
the annual inspection form. For reclamation sites, the data had broad applications.
Overall vegetation cover conditions could be detected; however, the datasets made it
difficult to distinguish the grass seed mix, weeds, and invasive plants, as well as the
condition of fences. This finer-grained approach is possible, with additional analysis,
since the needed imagery is acquired during field visits. Identifying different types of
vegetation from imagery goes beyond the visual analysis methods proposed here,
but it is certainly possible through remote sensing techniques such as imagery
classification, the use of vegetation indices, and machine learning.

We conclude that this data acquisition approach enhances FS service field
inspections by creating robust time-series spatial datasets that can be reviewed as
needed by various regulators to follow the life cycle of the wellpads. Furthermore,
operators may benefit the most, since they can keep up with surface effects more
quickly through regular data acquisition and therefore better coordinate their plan-
ning and actions with regulators. Additionally, by addressing areas of concern prior
to and after inspections, industry can save time and money and, just as importantly,
reduce legal exposure.

7.1.1 sUAVs for Oil and Gas Inspections

The use of drones and aerial imagery for oil and gas inspections has been growing
over the last 10 years, whereby large energy companies are using them to improve
data collection, investigate hazardous locations, enhance security, and conduct early
warning detection (Al Amir and Al Marar 2018; Cho et al. 2015). A central mission
is safety, given the large legal exposure and negative press coverage that industry
faces when catastrophes lead to human injuries and death, environmental pollution,
and damage.

The Deepwater Horizon accident that occurred in the Gulf of Mexico in 2010
was a catalyst for adopting sUAVs, and they were implemented soon after the
accident. Prior to this large-scale spill, the use of sUAVs was not commonplace,
but following this disaster they were increasingly “deployed to gain advanced
intelligence on the behavior of the plume” (Nelson and Grubesic 2018). This
included a blossoming citizen scientist movement to help stop the flow of oil,
estimate the amount of the spill, and protect coastal resources (Lubchenco et al.
2012). In fact, this approach represents a transition from lay mapping to a broader
and more inclusive data gathering system that helps detect environmental alter-
ations (McCormick 2012).
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Other applications of sUAVs include offshore platform inspections and live flare-
stack examinations (both on- and off-shore) (Kridsada et al. 2016; Marinho et al.
2012). Moving from sUAVs, which are light and only require one operator, to large
UAVs that require a team, Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) has been used on auto-piloted NASA airplanes (such as Gulfstream III)
to study such oil spill effects on wetland and coastal environments in the Gulf of
Mexico (JPL 2014). This equipment was actually “designed to be operable on an
uninhabited aerial vehicle” (Liu et al. 2011). Researchers such as Dabbiru et al.
(2015) applied fusion techniques on UAVSAR data and hyperspectral imagery from
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) to classify coastal
vegetation affected by oil spills. Meanwhile, Liu et al. (2011) used these data to test
effective approaches for detecting oil spills related to this accident.

While oil and gas pipelines create a vast network on- and offshore (throughout the
world), onshore the USA has 4.2 million kilometers of pipelines, many above
ground (US DOT PHMSA 2018). Naturally, these require inspections and tradition-
ally involve “regular patrols via foot, vehicle and air, using small fixed-wing aircraft
and helicopters” (Hausamann et al. 2005). Given the vast array of global pipeline
networks, spills occur due to negligence, age, lack of maintenance, natural hazards,
accidents, and sabotage, which can lead to broad environmental damages, health
problems and death, large economic losses, and even disruptions to international
energy markets (Gómez and Green 2017; Lustenberger et al. 2019). Kheraj (2020)
argues that onshore pipeline spills are endemic because these systems were mainly
built for economic efficiency, not environmental protection. Therefore, detecting
leaks as soon as possible is paramount, and the ability to customize larger UAVs
with distinct sensors and fly as often as needed has demonstrated their value in
pipeline inspections and in many areas. After all, UAVs excel in “their ability to
cover large areas at a fixed altitude and speed under a wide range of wind and
weather conditions” (Casana et al. 2014).

The advent of prosumer sUAVs combined with photogrammetry software
designed to process this imagery has led to increased applications for site inspections
in various contexts and settings. This now includes using remote inspection
workflows to record site conditions for prioritizing response teams during a disaster
and chronicling the entire construction process to render digital site replicas
(DroneDeploy 2021a). Therefore O&G field inspections using in situ remote sensing
techniques are timelier than ever.

In this chapter, we are interested in the application of sUAVs and pole aerial
video for onshore surface inspections of wellpads located on federal grasslands in
the US West. They are simple to deploy, are cost-effective, and produce actionable
data. A key objective is to provide data for a visual analysis approach, since it
mirrors the visual surface inspection conducted by FS personnel. This tactic also
keeps it accessible to a wide range of stakeholders and citizen scientists interested in
land management who may not possess advanced geospatial training.
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7.1.2 Surface Effects of Onshore Oil and Gas Production
Activities

Oil and gas exploration and production activities can create extensive and permanent
surface changes related to land clearing and operations. This includes the removal of
soil and vegetation to construct wellpads, the often-rectangular flat area where
extraction operations take place, as well as the building of roads and infrastructure
features (Marcellus Shale Coalition 2012; Resolve 2021; Weidner 2017; Colorado
Oil and Gas Conservation Commission n.d.; Baynard et al. 2017); see Fig. 7.8 for
examples. These activities contribute to landscape fragmentation (Londe et al.
2019), soil loss and degradation (Minnick and Alward 2015), and increased soil
toxicity and alterations to the landscape hydrology (Di Stéfano et al. 2020).

Noise from road and pipeline construction as well as drilling operations can lead
to changes in wildlife behavior, such as avoidance of sites and nearby roads; shifting
of habitat use to less suitable areas (Green et al. 2017; Thompson et al. 2015; Londe
et al. 2019), especially during migration (Jakes et al. 2020); reduction in nesting
success of some bird species (Bernath-Plaisted and Koper 2016); lower types
diversity; oil pollution; and the introduction of invasive species (Olive 2018;
Nasen et al. 2011). Therefore, monitoring these actions closely is important for
early detection of potential ecological problems and for appropriate responses.

7.1.3 Wellpads

In this study, wellpads are the unit of analysis. Depending on the type of resource (oil
or gas), the age and size of the wellpad, and terrain characteristics, one can find some
or all of these features: pump(s), compressor, storage tanks for oil and produced
water,2 pipelines, flares and flare pits, natural gas tanks, and waste pits (see Fig. 7.1).

When wellpads are first built, a larger area of land is cleared to accommodate
heavy equipment that can navigate the area and provide room for storing supplies.
Once the wellpad is established, the size is reduced to allow production operations to
continue, and the unused part of the wellpad can revegetate (USDA Forest Service
2021a; CSUR n.d.). Finally, once a well is abandoned or retired on federal grass-
lands, it is supposed to be returned to 70% of the original way it appeared in the
landscape (USDA Forest Service Dakota Prairie Grasslands 2019b). This usually
occurs within 5–7 years of seeding and “achieving a minimum of three consecutive
growing season(s) without disturbance and/or damage” (USDA Forest Service
Dakota Prairie Grasslands 2019b). The US Forest Service (FS) conducts surface
inspections and approves the decommissioning of these sites.

2Produced water refers to the water, often brine, that comes out of the ground when oil is extracted.
This must be separated from the oil and stored either in storage pits constructed onsite or in storage
containers until the contents are trucked away to a treatment facility.
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Fig. 7.1 Example of a grassland oil wellpad with associated infrastructure features

Personnel must travel to each active wellpad at least once per year and conduct an
environmental surface inspection which includes checking 40 items on a form,
taking notes, and capturing still digital photographs. The form includes inspection
items, area of operations, facilities equipment, flare pits, oil waste pits, waste (trash),
and roads (see Appendix). Meanwhile, abandoned and plugged wells which are
being reclaimed require fewer inspections, given the time frame it takes for these
sites to recuperate.

•

Inspection items on the 5-year reclamation phase list include:

•

Access route condition and percent vegetation cover.

•

Pad area condition and percent vegetation cover.

•

Bare spots.

•

Plant vigor.

•

Representative seed mixture.

•

Noxious weeds, invasive plants.

•

Reserve pit condition.

•

Closed gate.
Fence condition and signs of cattle within fenced areas.

Identifying all these items is time-consuming, especially in large remote areas
such as North Dakota. This exposes personnel to long drives as well as potential



hazards such as the presence of hydrogen sulfide gas (H2S), a toxic and potentially
fatal gas that is considered the primary chemical hazard of O&G production
(Doujaiji and Al-Tawfiq 2010; Seaman 2017).
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To supplement these field inspections, we propose the use of sUAVs for two main
reasons. First, sUAVs provide updated imagery, showing the current situation on the
ground. This contrasts with outdated imagery provided in image services like
Google Earth, ESRI’s ArcGIS Pro Imagery base map, and Bing Maps. While
more current (and free) satellite imagery and air photos are accessible, the spatial
resolution (the size of the pixel in reference to the ground) is often too coarse for this
type of inspection. Examples include Landsat (with 30 m resolution) and Sentinel
data (with up to 10 m resolution). The NAIP program (National Agricultural
Imagery Program—part of the USDA) acquires aerial imagery (via planes) during
the agricultural seasons in the continental US every 3 years (USDA 2021). Even
though recent imagery has a high resolution of 60 cm in our North Dakota study
area, the most current imagery dates to 2018 (USDA 2019a) and therefore is not
up-to-date.

The second reason for acquiring imagery is that very high spatial resolution can
be achieved by a field-quality sUAV, such as the DJI Phantom 4 Pro V2 that we
utilized. The camera sensor has a 1-inch complementary metal oxide semiconductor
(CMOS) capturing 20-megapixel images (DJI 2021), which, depending on the
altitude flown, produced as high as 1 cm spatial resolution orthoimagery (see
Fig. 7.2).

7.2 Methods

7.2.1 Study Area and Site Selection

The study area includes 14 oil and gas wellpad locations in North Dakota’s Little
Missouri National Grasslands (LMNG) visited during August 2019 (see Fig. 7.3).
Located in western North Dakota, these are the largest grasslands in the USA and are
managed by the Forest Service (FS) as part of the Dakota Prairie Grasslands (USDA
Forest Service 2021b). The terrain is rugged and studded by high buttes, or badlands,
which are soft sedimentary formations that easily erode (National Park Service 2020;
USDA Forest Service 2021b). This mixed grass prairie contains short and long
grasses and consists of a mosaic of federal, state, and private land ownership (USDA
Forest Service 2021c). Land and resource management activities here support
recreation, wildlife habitat, grazing, and mineral development (USDA Forest Ser-
vice 2021c).

The subsurface in this region forms part of the Williston Basin, a large structural
and sedimentary basin containing rich oil and gas deposits covering several thousand
square kilometers in the states of South Dakota, North Dakota, and Montana and the
Canadian Provinces of Saskatchewan and Manitoba (North Dakota Geological
Survey 1997). Much of the oil in this basin is located in North Dakota, which not
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Fig. 7.2 Comparing the spatial resolution of NAIP imagery (60 cm) in the top half of the image to
our sUAV imagery (1 cm) on Site 01
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Fig. 7.3 The North Dakota study area, with the Little Missouri National Grasslands (LMNG) and
wellpads visited, top. Close-up view of McKenzie and Billings Counties and the location of the
wellpads and their number, at bottom



only has the second largest crude oil reserves but also ranks as the second top
producer in the USA (after Texas) (EIA 2020). On the other hand, North Dakota is a
small producer of natural gas, and most of it is associated with oil (EIA 2020). Even
so, “natural gas production exceeds the state’s takeaway pipeline capacity, resulting
in much of the gas being flared, or burned at the wellhead” (EIA 2020). In our study
area, 13 out of 14 wellpads contained oil wells.
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Site selection began with spatial data of oil well locations downloaded from the
North Dakota’s Department of Mineral Resource’s Oil and Gas Division GIS Map
Server (NDDMR 2019). Additional spatial datasets included national forests and
federal grasslands extracted from US Department of Agriculture (USDA) Forest
Service (FS) Geodata Clearinghouse (USDA 2019b). We utilized ArcGIS Desktop
9.4 software to map, extract, and analyze spatial datasets of oil and gas fields, well
locations, and forest/grassland locations.3

Previous fieldwork efforts in Wyoming and Colorado federal grasslands helped
us determine which places we would visit, which were then narrowed with help from
FS personnel in North Dakota and the US Geological Survey (USGS) personnel in
Wyoming and North Dakota. With their aid, we were able to identify wellpads that
did not contain hydrogen sulfide wells (H2S), as we clearly wanted to avoid this toxic
and deadly gas.4 Additionally, we looked for well density, as that would offer
multiple locations to choose from once we were in the field. Previous experience
had shown us that just because the well data indicated a well was present, even when
the imagery confirmed it, this was not always the case once arriving in the field.
Wells get shut down or abandoned, fences get put up, and imagery is often outdated.

We focused on wells located on federal grasslands so that we would be visiting
public lands and not trespass on private property. We still needed permission from
the Dakota Prairie Grasslands FS and applied to conduct fieldwork in these loca-
tions. They were very helpful, and their main concern was determining if we were
going to collect plant or soil samples. After clarifying that we were only gathering
images and taking notes, and providing information regarding our previous oil and
gas research in the US West, we received permission. Because we were examining
surface features, we did not need to get permission from the Bureau of Land
Management (BLM), who focus on subsurface land changes. Nevertheless, they
also provided help and suggestions.

While we had a general idea of the wellpads we wanted to visit, we waited until
we were out in the field to collect data at specific wellpads. There, we could
determine if sites were indeed accessible. Sometimes there was a locked gate
preventing entrance, workers might be onsite in which case we would visit another
location, or we believed that H2S might be present and therefore sought other
wellpads (or flew the sUAV from a distance). Due to the density of oil wells in the
area, we were able to find sufficient locations to visit and gather imagery. We chose a

3Subsequent analysis was conducted with ESRI’s ArcGIS Pro 2.7.1.
4We did wear H2S meters while conducting fieldwork to alert us of potential gas as part of our
safety protocol.



combination of wellpads that contained producing and abandoned wells in
McKenzie and Billings counties to test our methods on two types of inspections,
active and reclaimed.
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7.2.2 Flight Preparation

Equipment used included a DJI Phantom 4 Pro V 2 quadcopter and GoPro 7 Hero
Black action cameras with 3D printed GoPro bases mounted on extendable 3.7-m
telescopic poles (DocaPole).

Prior to visiting the field, we used DroneDeploy’s online software to draw out
flight path plans for various wellpads and downloaded the underlying basemap to an
iPad, which formed part of the flight controller. The flight path directs the sUAV’s
trip and looks like a grass cutting pattern, whereby it flies straight in one direction,
turns around, and closely parallels the path it just flew (see Fig. 7.4). Due to the
remoteness of these locations, we realized there would be no Wi-Fi or even cellular
coverage when the iPad was connected to the sUAV controller. This meant the base
map would appear as blank, without an image, if the imagery was not downloaded
ahead of time. On occasions where we had to fly another location for which we did
not have a base map, we drew out a flight path based on a best guess of our current
location and the wellpad before us.

In the field, we followed FAA protocols and ran through the sUAV inspection
checklist to ensure the drone was safe to fly and had a fully charged battery and the
SD storage card (with sufficient storage) installed. Then, we connected either an iPad
or an iPhone to the sUAV controller and tested the connection with the DJI software
(DJI is the drone manufacturer). If the flight software called for a compass calibra-
tion, this was done next. Here, the visual observer (VO) stands about 5 m away from

Fig. 7.4 Flight path plan for Site 03 on the left and the actual flight path image locations captured
on the right and represented by blue dots



the pilot (or PIC, pilot in command) and holds the drone in front of him/her with
arms stretched out and rotors pointing skyward. Next, the VO rotates his/her body
counterclockwise, completing a couple of circles with the sUAV held in front. The
horizontal calibration is followed by the vertical calibration. This time the process is
repeated, with the VO holding the sUAV with the rotors facing the horizon and the
camera looking at the ground.
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Once the calibration was finished, we then placed the device on a flat surface
(usually an access road—we were often alone in these remote locations), and the DJI
software would run through a checklist. Once complete, we would open the
DroneDeploy software and use the pre-planned flight path. If we needed to make
changes, such as extending a leg of the flight or changing the altitude due a tall
antenna on or near the wellpad, we would do so and then start the flight. Each flight
path contained overlap segments at the perimeter to ensure proper coverage of each
wellpad, an important step for constructing orthomosaics later.

Most trips occurred at about 61-m elevation, and depending on the size of the
flight path, the sUAV would require one battery or two, and the camera would
capture an image at nadir about every second (see blue dots in Fig. 7.4). In addition
to relying on the VO, the controller showed the pilot where the drone was flying
along the path. For the few sites where H2S was a potential concern, we flew from a
greater distance than normal, and given the open grasslands, we were able to
maintain a line of sight. We also wore H2S monitors on our hips.

Our field transportation vehicle was a full-sized four-wheel drive pickup truck,
which proved handy for carrying and moving about our gear and equipment as
needed and getting through some tough terrain. There we had drone batteries
charging on a converter running from the truck battery.

We purposely did not use ground control points during field data collection.
During previous field research, we found that they were not necessary for our
objectives since we were not aiming for survey-level accuracy. The quality of the
GPS sensor on our sUAV combined with DroneDeploy’s ability to process the
imagery produced quite satisfactory georeferenced results. Plus, our DroneDeploy
license did not include ground control point verification.

On half of the wellpads visited (seven), once the flight path was completed, we
would choose a center point in the wellpad and direct the drone to automatically
cover a 360� oblique flight around it, this time recording video. This video
supplemented the perspective available from a nadir orthomosaic and allows the
user to later freeze, rewind, and fast-forward as needed (see Fig. 7.5).

After each flight we checked the sUAV, replaced the storage card, and then
uploaded the files to our laptop to ensure a data backup. Given that most sites were
not near each other, we used the drive time to the next location to accomplish this.
Back at headquarters in the evening, we would upload the imagery to cloud storage
for redundancy. We then sorted through the images of each particular flight and
removed those that were too close to the takeoff and landing site or out of focus,
though the latter was usually not an issue. Given the sunny daylight conditions and
lack of trees (that might be moving in the wind), almost all the images were useful
and included for cloud processing on DroneDeploy.
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Fig. 7.5 A still shot from the 360� video captured with the sUAV, Site 23. Notice the oblique,
rather than nadir (top down) perspective

7.2.3 Imagery Processing and Data Products

The wellpads studied ranged in size from 0.31 to 3.34 hectares or from less than half
a FIFA soccer pitch to 4.7 soccer pitches (FIFA 2015/2016). This in turn affected the
amount of time spent at one location gathering imagery, the number of batteries
needed to run the sUAV, and therefore overall the number of wellpads we could visit
during a given fieldwork day. The acquired images were processed with
DroneDeploy photogrammetry software into four products: orthomosaics, vegeta-
tion health, elevation, and 3D models. Since our DJI Phantom 4 Pro V2 sUAV only
had an RGB camera (that collects light in the red, green, and blue wavelengths),
DroneDeploy applies a Visual Atmospheric Resistance Index (VARI) to create a
vegetation health model (DroneDeploy 2021a, b, c). This index uses the visible
spectral range bands (red, green, and blue) to estimate vegetation health and produce
maps of greenness (Polinova et al. 2019).

Elevation datasets indicated in which direction a wellpad drains plus the sur-
rounding topographic features. Meanwhile the 3D model allowed us to move about
the landscape and get an idea of the relationship of infrastructure features to the
wellpad and surrounding landscape.

A 360-degree video drone flight around the wellpad captured at an oblique angle
provided a different perspective that could be paused and reviewed as needed. This
sideway angle, as opposed to top down, provided a more cinematographic viewpoint
that lent a 3D perspective to the scene. This permitted the viewer to see and detect
landscape features from the surrounding terrain beyond the wellpad such as the
location of a nearby creek that may be subject to runoff from the wellpad or a truck



driving by on the dirt access road, kicking up dust onto the grasslands on either side
of the road.
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For the pole aerial video, we utilized a GoPro 7 Black camera which is GPS
enabled and attached it to the end of an extendable pole raised to about 4.5 m. The
researcher then recorded video while walking the perimeter of the wellpad. Addi-
tional video was then captured by walking inside the wellpad (when possible),
recording the installation and infrastructure features. The user could pause and
focus on particular items of interest and had the flexibility of tilting the pole to get
a close-up view, examine the top of a structure, or stretch over a fence, such as those
surrounding an oil pit. Additionally, the video recorded sound, providing an auditory
track of noise disturbance created by compressors, well pumps, and flares (that may
cause avoidance behavior in wildlife). These sounds were not captured by the sUAV.

Together, these three datasets provide a robust record of the surface conditions of
a given wellpad. We believed that knowing that these datasets will provide valuable
information that can be later examined at the office, FS inspectors could potentially
spend less time on each wellpad during field inspections while directing their
attention to items that indeed require in-person assessment. This would also allow
them to spend more time on wellpads that are clearly not in compliance, potentially
saving time and money.

We also expected that these data would be especially useful in determining
compliance for closed-down and abandoned sites. Here, operators as well as regu-
lators would benefit from having as much spatial data as possible as the 5-year final
reclamation site inspection approaches. The imagery information provided can help
highlight compliance or problem areas that can (quickly) be addressed, thus allowing
the abandonment process to be completed and the site returned to a natural state as
determined by regulators.

7.2.4 Inspection Forms

The two main inspection forms the FS uses in the study area include the active well
compliance inspection and 5-year final reclamation site inspection (USDA Forest
Service Dakota Prairie Grasslands 2019a, b.) Different versions and variations of the
annual well compliance form exist, but they tend to focus on the same 40 items (see
Appendix), which can be grouped into seven classes:

•

•

Inspection items

•

Area of operations

•

Facilities equipment

•

Flare pits

•

Oil waste pits

•

Waste
Roads



¼ ¼

¼ ¼ ¼

¼
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The fifteen inspection codes include the following:

O OK G gone/missing M ¼ maintenance/
repair

S ¼ spills/leaks/
drips

C clean (up/out) H health and/or safety N noncompliance U ¼
unauthorized

D ¼ dikes (ditches)
inadequate

I ¼ inadequate/not to
specifications

P ¼ paint or T ¼
touch-up

W ¼ waste
(s) removal

E ¼ excessive
equipment

J junk/junky R ¼ reclamation
needs

7.3 Findings

Our own analysis yielded the following results. For active wellpads, key compliance
items that required detection due to environmental and safety risks include the
following:

•

•

Clear road access to site.

•

Clean area of operations.
Intact cattle guards and fences to keep people, cattle, and wildlife away from
moving parts and toxic areas, such as oil waste pits and flare pits.

•

•

Marked and legible operator and safety signs and windsock.

•

Cages around the pumps and machinery.

•

Spills at the wellhead, around the storage tanks and pipelines (when present).
Berms around storage tanks and other equipment where spills need to be
contained.

•

•

Functioning flare pit ignitor.

•

Tank battery condition.
Drainage and erosion.

We found that all these items could be detected and inspected with one or more of
the datasets. Regarding the flare, if it was not burning, we could not determine the
condition of the ignitor.

•

For reclaimed wellpads, the key inspection items include the following:

•

All facilities removed.

•

Access route condition and percent vegetation cover.

•

Pad area condition and percent vegetation cover.

•

Bare spots.

•

Plant vigor.

•

Representative seed mixture.

•

Noxious weeds, invasive plants.

•

Reserve pit condition.

•

Closed gate.
Fence condition and signs of cattle within fenced areas.
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Fig. 7.6 Still shot taken from the 360� aerial video (left) for Site 05. The black outline marks the
potential site of the abandoned wellpad. The image at right shows cleared ground from the
orthomosaic

Inspections on these sites proved harder. Some of these wellpads were apparently
abandoned and reclaimed more than 17 years ago, thus making it hard to inspect
anything. However, Nasen et al. (2011) note that these effects can last more than
50 years after well site construction. To confirm, we compared the orthoimagery
generated from our data collection to 2003 NAIP images and did not detect much of
a difference for Sites 07 and 08, for example. Sites 05 and 09 were very hard to find,
if at all. The 360� aerial video suggests a slight clearing in site 05, which can be seen
in the ortho, but it is not certain (see Fig. 7.6).

Site 06 appeared to be recuperating well with seeded vegetation growing within
its fenced area. Meanwhile the access road and wellpad on Site 04 had been scraped
clean, awaiting seeding.

7.3.1 Orthomosaics

The entire still imagery dataset begins with the individual sUAV images captured
and then processed into an orthomosaic, whereby geometric distortions, camera
perspectives, distances, and elevation are corrected to form one large georeferenced
image. When imagery is first captured, “it has perspective geometry that results in
distortions that are unique to each image” (ESRI 2021). These distortions, or errors,
are caused by the curvature of the Earth, instrumentation, and terrain displacement
(ESRI 2021). Luckily, modern photogrammetry software used to process sUAV
imagery, like the program DroneDeploy that we used, corrects these distortions to
produce its imagery products.

These large mosaics provide the landscape-level imagery that allows visual
inspection of the wellpads and surrounding area. Furthermore, the photogrammetry
software also generates additional datasets such as elevation, vegetation, and 3D
models. This information can be used to detect and measure the direct disturbance
footprint of most wellpads, evidenced by the cleared dirt area comprising the sites.
However, the indirect footprint can also be gleaned at times. For example, Nasen



et al. (2011) found that indirect effects on grasslands wellpads extend 20–25 m
beyond the direct disturbance footprint. This measure, therefore, can indicate how
well the operator is managing the site, since ostensibly the disturbance should be
kept to the wellpad itself and the surrounding area should contain planted grass or
natural vegetation.
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Fig. 7.7 Minor fluid spill located behind the well pump on Site 01 in the shaded area at the bottom
of the image

In general, it was possible to determine if oil spills were present on the wellpads.
We did not find any, though at times ground discoloration at the wellhead or near
compressor was discernible. They did not appear as a major oil spill but perhaps
were fluid leaks from the compressor (see Fig. 7.7). Stairs and some infrastructure,
such as the pump jack, were at times distorted in the orthomosaic.

Fences, often made of barbed wire, were hard to detect from the orthoimages due
to the nadir view. Sometimes when the sun was shining on a particular section, the
fence line could be made out. Wellpad identification signs and the windsock were
impossible to see, much less read, particularly because of the camera nadir perspec-
tive. Figure 7.8 provides the general location as well as thumbnail images of the
orthomosaics for all the study area sites.

7.3.2 Elevation

The elevation datasets proved particularly useful in three areas (see Fig. 7.9). One is
to show which way the wellpad was draining, so that if erosion was present, it could
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Fig. 7.8 Site location of wellpads studied, 1 through 10, top image, and 20–23 in the middle image.
Bottom images (inside the table) show individual orthomosaic representations of the 14 wellpads.
For overall reference of the sites, see the bottom of Fig. 7.3



be traced to waterbodies if they were located nearby. These datasets also highlighted
the berms surrounding tank farms, where large storage tanks are located. These
raised earthen mounds are supposed to contain spills from the tanks. While some
berms were hard to see in the orthomosaics, they stood out in the elevation models.
Third is the flare pits, with their lower elevation also popped out (see Fig. 7.10).
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Fig. 7.8 (continued)

Finally, draping an elevation dataset over the ortho is also helpful when the
wellpad is not clearly apparent, such as Site 22, where potential spills would flow
down to the nearby water bodies (see Fig. 7.11).

7.3.3 Vegetation Health

The camera onboard the sUAV we utilized collects RGB data (red, green, and blue
bands), similar to most digital cameras. Therefore, the DroneDeploy photogramme-
try software could not calculate the more common normalized difference vegetation
index, or NDVI, which is widely used in vegetation studies when the near-infrared
(NIR) band is present. Instead, the VARI was employed (DroneDeploy 2021a, b, c),
which uses all three bands (Mehrotra and Srinivasan 2019) “to emphasize vegetation
in the visible portion of the spectrum, while mitigating illumination differences and
atmospheric effects” (Viswambharan 2018). Researchers such as Zhang et al. (2019)
observe that the success of the VARI Index for detecting the percentage of green



ground cover justifies the more affordable use of RBG cameras over hyperspectral
ones.
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Fig. 7.8 (continued)

VARI ¼ G� Rð Þ
Gþ R� Bð Þ

7.3.4 Formula 1 Visible Atmospherically Resistant Index

Because the wellpads are often flat cleared areas devoid of vegetation, they naturally
show up as dark red or areas with no grass (see Fig. 7.12). That is expected.



However, this information becomes more interesting when examining the borders of
the wellpad to potentially determine if too much land has been cleared or if
operations are affecting the nearby natural vegetation. If so, then these hotspot
areas can be addressed.
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Site 03 provides an example whereby the cleared vegetation appears relegated to
the wellpad itself, while grasses and plants are growing within the fence boundaries.
Sites 20 and 21 show a similar pattern, while Site 23 shows established vegetation
inside the fence perimeter.

On the abandoned wellpads that are restored or being restored, the pattern of
missing or light vegetation sometimes matches the shape of the former wellpad. This
suggests that the reclamation effort is still ongoing or that the seeding of required
grasses has not been successful. More information is needed, however, since a dry
season when the imagery was captured could affect plant phenology. Recent studies
examining the relationships between climate change and NDVI suggest that past
climate patterns mark the NDVI and therefore time-lag effects need to be considered
(Zhe and Zhang 2021).

Fig. 7.9 Elevation models for the study area wellpads. Low areas appear in blue and higher
elevations are in red. The elevation graph above represents ND Site 01 and shows how values on
the left are low and move higher toward the right
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Fig. 7.9 (continued)

7.3.5 3D Models

The 3D models generated with the DroneDeploy photogrammetry software provide
a novel perspective for visualizing the wellpads and getting an idea of how the
infrastructure features relate to the wellpad (see Fig. 7.13). They also provide a
topographic/elevation perspective that highlights drainage patterns, as well as nearby
features, such as buttes (see Fig. 7.14).
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Fig. 7.10 In this elevation model, notice the red arrow pointing to the yellow outline berm
surrounding the tank farm and connecting lines and the black arrow pointing to the flare pit
in Site 01

7.3.6 360� Aerial sUAV Video

The 360� aerial video had the great advantage of not suffering from distortions that
sometimes occur when the orthomosaic is created (see Fig. 7.15). Its oblique view
provides needed context to the study area (see Fig. 7.16) and allows the inspector to
more easily see elevation differences and distinguish different types of plants. While
it is still difficult to identify specific plant species, a global assessment can be made
regarding vegetation coverage surrounding the wellpad.

Another feature only distinguishable in the video is the windsock. This cloth wind
indicator is flown to announce the potential presence of H2S or other harmful gases,
and so can warn inspectors which way to approach/avoid the wellpad. The identi-
fication sign announcing the operator and providing warnings is only detectable in
the video. However, the resolution is insufficient to read it clearly.

The crisper detail of the video shows the size and shape of the pump jacks in Site
02, for example, whereas in the ortho, they can only be made out because of the



shadow they cast. Furthermore, the flare is clearly burning on the right side of the
video but cannot be seen at all in the ortho (see Fig. 7.17).
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Fig. 7.11 Draping the elevation model over the ortho provides a more informed perspective (Site
22). If spills were to occur on the wellpad, they would flow to the lower, dark blue areas, where
water bodies are located, potentially contaminating them. Elevation values range from low, in blue,
to high values in dark red

7.3.7 Pole Aerial Video

Pole aerial photography provides a solid complement or even alternative to flying an
sUAV for several reasons. First, researchers have more control over where the
camera enters and what it records because it accompanies them as they walk the
study area. The height of the camera is easily adjusted, and because it is tethered to a
pole, it can be directed over fences and places not quite accessible, such as the
surface above an oil pit or under stairs. Second, the low elevation ensures good
resolution so that features on the wellpad, or study area, remain in focus and



distinguishable. Third, using a camera with GPS and an intervalometer allows
acquired images to be processed the same way as sUAV imagery, creating
orthomosaics, elevation, vegetation, and 3D models. We have had success with
this approach in monitoring coastal areas, the establishment of new roads into
forested landscapes, and recording infrastructure features in northeast Florida.
(Kite and balloon aerial photography provides additional approaches. We actually
utilized kite aerial photography in a few wellpad locations, but do not report those
findings here).
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Compared to an sUAV, like the DJI Phantom 4 Pro V2 that we used, the pole
camera has its limitations. It is more time-consuming to walk a wellpad or study area
in the same manner as the grass cutting path of an sUAV, especially if there are
features one must walk around or avoid. Also, the megapixel resolution on the
cameras we used was 12, compared to 20 on the sUAV. However, no FAA approval
or special permission is needed to handhold a camera, albeit 4 m above your head.
You can also quickly stop and check your recordings to ensure all is working and
adjust right away.

Fig. 7.12 Vegetation health perspectives, using the VARI index, for the study area wellpads. Red
indicates cleared areas devoid of vegetation or lightly vegetated, while green represents vegetation.
The last graphic shows the plant health graph for Site 22. Note how the values in dark red, on the
left, represent cleared landscape or lack of vegetation, while on the right, green values stand for
healthy/vigorous vegetation
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Fig. 7.12 (continued)

During the fieldwork phase, we chose to use the video feature and capture pole
aerial video at a few locations, rather than still images. Since the sUAV was already
capturing stills, we engaged the video to provide an on-the-ground perspective that
greatly enriched our datasets, rather than provide redundancy. Plus, we could extract
still images from the video when needed, and it recorded sound (see Figs. 7.8 and
7.19).

We acquired pole aerial video at four sites. In two locations we had access to the
wellpad and could walk onto it. In the other two, we could only record from the
perimeter. Like the 360� sUAV video, the pole video provided very good detail,
which is not surprising given we were standing on the wellpad with the camera lifted
about 4.5 m from the ground. The GoPro camera excelled due to its solid image
stabilizer. Furthermore, because of its GPS features, the camera recorded the GPS
track that we walked on the wellpad (see Fig. 7.18). This information can later be



Fig. 7.13 Storage tanks appear more vividly in the 3D model of Site 03 at the left. Another 3D
view of Site 23 underscores how the wellpad has been carved into the grasslands (at right). Note
how the flare pit is easily distinguishable in the lower right of this image

Fig. 7.14 3D model of Site 10. Note how the wellpad is atop a ridge, and potential spills would
flow down to nearby water bodies. Unlike the orthomosaics, the topography of the buttes is evident.
Our truck is visible near the entrance to the wellpad

Fig. 7.15 A still shot from the 360� sUAV aerial video (left) shows crisp details of Site 01 storage
tanks. The windsock is visible just behind the third tank furthest away from the stairs where the
cleared land meets the grass. The ladder conditions and pipe structures are clear, vegetation inside
the fence is detectable, and even the corner fence structure can be made out. Meanwhile the same
tanks shown in the ortho on the right display some distortion, which is more evident on the pipe
network in front of the tanks and along the stairs to the right, which appear to have gaps



184 C. W. Baynard et al.

Fig. 7.16 A still shot of the 360� sUAV video captured as the drone was about to land provides a
richer perspective than can be attained from the orthomosaic with its nadir view (Site 01)

Fig. 7.17 Image on the left shows a still captured from the 360� video at Site 03, where the pump
jacks can be clearly made out, and the flare (at the very right) can be seen burning. The image on the
right is from the orthomosaic, where the pump jack shadows can be seen, but the flare cannot

Fig. 7.18 GPS tracks recorded while capturing pole aerial video on Site 01, left, and Site 22, right



used to determine if a given part of the wellpad was insufficiently examined.
Conversely, a clustering of points could indicate where a problem was identified.
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Fig. 7.19 Still photo of the pole aerial video hovering over the flare pit at Site 01 (at left) and the
pump jack (on the right). Note: while this may seem like a still photograph that FS inspectors could
take, it’s actually a video, providing various perspectives, and it also captures sound

Fig. 7.20 The original single sUAV image of the pump jack and surrounding cage in Site 02 allows
for inspectors to determine overall condition

With pole aerial video, signs identifying the well site and the condition of all the
infrastructure features are now clear. If a building needs paint or the roof needs
attention, it is plainly detected. The condition of the fence can also be noticed, and
the sound of the jack pumps, compressor, and flare (if present) is recorded. Plus, the
flare pit condition is visible from several angles (see Fig. 7.20).
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7.3.8 Forest Service Expert Inspections

More important than our findings were responses from the FS, who must visit and
inspect all active wellpads at least once per year to confirm the condition of about
40 items on their compliance inspection form. Reclamation visits can occur annually
but are not required.

For this chapter, the FS were kind enough to conduct a mock field inspection
using our spatial datasets and concluded that about 70% of the items on their list
could be identified/addressed (Dekker 2021). The items they could not easily detect
were cattle guards needing to be cleaned out, the adequacy of well signs and warning
signs, fence condition, the functionality of flare pit ignitors, and the presence of
noxious weeds on and around the wellpad (Dekker 2021).

Though we only had pole aerial video for four wellpad locations, we found that
this video provided a lot of this information. For example, well and warning signs
and fence conditions could be read or detected. We hypothesize that had pole aerial
video been available for more wellpad sites, this FS assessment might have changed
to an even higher value.

Though a trained expert would be needed to determine the condition of flare pit
ignitors, the presence of noxious weeds could eventually also be identified in sUAV
and PAP imagery. Recent research utilizing sUAVs for examining abandoned
wellpads suggests this method is quite robust. By gathering aerial images during
the sUAV flights, species identification can occur later, “rather than relying on one
team’s plant identification skill level” (McKim 2020). The resulting spatial record
could be examined at various times by different experts, reducing observer bias
(Curran et al. 2020). Furthermore, a standard two-person inspection team takes an
average of 99 min to inspect a site, whereas a sUAV pilot can accomplish the same
work in 20 min (McKim 2020). This strongly supports our imagery data gathering
approach. Consequently, while federal agencies such as the FS may not yet be in the
position to adopt sUAVs, they can introduce pole aerial video, which consists of an
extendable pole and a GoPro camera, quite easily. Capturing video from above and
being able to extend the camera to places they cannot readily reach will greatly
increase the data showing the conditions of the wellpad and will also capture sound.

The FS mock inspection did find that the 360� sUAV video and the pole aerial
video proved the most useful to gather inspection information (Dekker 2021). We
concur the two types of videos provide very beneficial and focused material. Not
only could the footage be stopped and rewound, still images can be captured, and
again, they contribute to a spatial data record that can be reviewed as needed by
various agencies or stakeholders.

Regarding the reclamation sites, the FS found that the aerial imagery
(orthomosaics) was beneficial for determining overall vegetation cover and provid-
ing an informative landscape-level view of the sites (Dekker 2021). We propose that
derived elevation and vegetation datasets can also be used to supplement the



inspection, as well as the combination of datasets, such as draping elevation files
over the orthomosaics (see Fig. 7.11). These steps would require FS inspectors to
have access and training to GIS software, such as ESRI’s ArcGIS Pro.
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In short, the resulting aerial intelligence provides insights for resolving issues,
integrating data, and managing resources for onshore wellpad surface inspections.
This suggests that annual inspections could be completed more quickly perhaps if an
sUAV, pole, or both types of imagery are acquired during the site visit for closer
review back at the office. This means more wellpads could be inspected during a
given day, increasing efficiency and perhaps reducing the number of long-distance
drives to remote regions. Plus, if H2S is present, using an sUAV with imagery
capture and 360� video could reduce exposure of FS staff to these harmful gases.

7.4 Conclusion and Discussion

This chapter highlighted how sUAVs and pole aerial photography (PAP) can be
utilized to provide actionable information on the state or condition of oil and gas
wellpads on US Federal grasslands. The rationale is that drone imagery and the
associated products, i.e., orthomosaics, vegetation health, elevation, and 3D models,
combined with 360� drone video captured at an oblique angle around the wellpad,
pole aerial video taken at the wellpad surface, and individual sUAV images, provide
valuable inspection data. These can be examined over and over as needed by
regulators, their teams, and other stakeholders to create a detailed geospatial record
that tracks temporal changes. Currently, visual field inspections are carried out by
two to three FS personnel, where items are checked, notes are added on a compliance
sheet, and standard digital camera photographs are captured (see Appendix).

While annual field inspections by trained experts are currently the way the FS
complies with its mandate to visit every active well once per year, we believe this
snapshot-in-time approach renders temporal comparisons difficult because still
photographs from the field may not line up with surface features or improper lighting
conditions may affect the identification of attributes captured. This is particularly
true if only one or two photos are taken of a given item during an inspection.
Meanwhile the redundancy of images captured by an sUAV greatly enhances the
chances that adequate images are recorded, since overlapping images are needed for
stitching together the orthomosaic (ESRI 2021) of the entire wellpad.

Overall, the spatial data record provided by the sAUV is robust and allows the
re-examination of every part of the wellpad, thus overcoming limitations inherent to
particular datasets. For example, distorted views of features such as stairs, pump
jacks, and cages visible in the orthomosaics can be clearly observed and inspected in
the original individual images captured during the drone flight. While the FS
inspectors did not have access to these files, but instead the orthomosaic, distinct



still photos provide high-resolution perspectives that can answer various inspection
questions, perhaps reducing the need to watch some of the videos and increasing the
FS confidence in being able to examine datasets in the office to complete surface
inspections.
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Fig. 7.21 The flare is clearly working in this individual original image captured by the sUAV on
Site 03. It was not detected in the ortho

For example, Fig. 7.20 shows the intact pump jack and surrounding cage, which
is hard to detect in the orthoimage. In Fig. 7.21, the flare burns bright.

Therefore, individual sUAV flight images, 360� aerial sUAV video, pole video,
or the individual still images extracted from both videos provide perspectives from
different angles and distinct levels of detail that greatly aid the identification and
condition of many of the surface features on the FS service inspection sheet.

Regarding 5-year reclamation inspections, more work is needed. The FS person-
nel that carried out a mock inspection using the datasets we collected concluded that
they could not determine the type of vegetation present nor the seed mix planted.
However, with appropriate ground truth data and image processing, this too could be
accomplished at the office computer. In fact, new research in Wyoming oil and gas
fields highlights the benefits of collecting sUAV data over traditional field inspec-
tions. This includes the time and money saved, the rich spatial datasets produced,
and the ability for experts and stakeholders to review and interpret these data as
needed (McKim 2020; Curran et al. 2019; University of Wyoming 2020).
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Furthermore, remote sensing techniques such as supervised image classification
combined with expert field knowledge and vegetation indices can be effectively used
to identify the different types and amounts of vegetation present on and around a
wellpad. Sampling points taken during field inspections using a GPS receiver and/or
a GPS-enabled camera enhance this approach. Here, researchers standing in the
middle of an area covered with weeds record the GPS coordinates to create ground
reference points (while imagery is being acquired). They repeat this for healthy
grass, invasive species, and other areas of interest. Later, when the imagery is
analyzed with appropriate software, training samples can be created in locations
on the imagery that represent weeds, grass, and invasive species identified in the field
with the GPS coordinates to classify the imagery pixels in a process known as
supervised classification. And even in cases where a plant cannot be identified at the
moment, this information can be used at a later time once the species is known
(Dukowitz 2018). This is especially important, note Minnick and Alward (2015), so
that specific plant species suited to that ecosystem can be replanted on recovering
wellpads during restoration phases.

In one of the few examples of researchers studying oil and gas wellpad restoration
with sUAVs, Minnick et al. (2018) found that sUAV-acquired imagery of soil and
vegetation could be analyzed to accurately estimate ground cover. Using the Opti-
mized Soil-Adjusted Vegetation Index (OSAVI), they found that ground cover
estimates were strongly related to the slow traditional field sampling methods, but
unlike the traditional approach, the imagery findings could be extrapolated to larger
areas.

Interestingly, state regulators, such as the Colorado Oil and Gas Conservation
Commission (COGCC), are now using sUAVs to follow all stages of oil and gas
development. According to Gomez (DroneDeploy 2020a), COGCC transitioned
from an organization that facilitated oil and gas production in the state to one that
oversees environmental protection. To that end, they are using drones to provide the
necessary spatial data for field inspections, environmental protection, and reclama-
tion (Webb 2019). In fact, they are now using them during the entire life cycle of a
wellpad, from construction to well capping (DroneDeploy 2020b). These five steps
include the following:

1.
2.

Permitting, getting a first look, and gathering baseline data.
Assessing best management practices such as examining water drainage, noise,
and proximity to urban areas.

3. Regular inspections, where they identify issues such as stained soil next to a
compressor, or if the wellpad size has been reduced from the initial construction
to the production phase.

4. Enforcement and environmental compliance. Here, a problem area is identified
and marked with orange squares on the imagery. Later, they examine newer data
and determine if the problem area shrunk or was addressed.
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5. Reclamation and the orphaned well program. Abandoned wells are numerous and
often unrecorded. Imagery is also used to monitor contractors during construction
and verify if the work was completed.

Industry wise, the use of drones and other aerial platforms provides two critical
functions related to oil and gas (O&G) wellpad operations: asset management and
monitoring and environmental safety and compliance (Airborne drones 2019). Oil
and gas producers increasingly recognize the use of drones as a cost-effective and
flexible way to conduct surface inspections, improve the quality of examinations,
enhance worker safety, reduce costs related to field inspections, and minimize
shutdowns (Digital Aerolus 2021). Currently as least seven major oil and gas
companies are using drones to monitor their operations. These include BP (British
Petroleum), the first company in the USA to get a license for operating commercial
drones; Chevron which is utilizing augmented reality (AU) with the drone imagery
feeds during field inspections; ConocoPhillips inspects oil tankers and offshore
platforms with drones; Equinor is developing drone technologies to maneuver
areas that inspectors find hard to reach; ExxonMobil is using drones to mainly
address offshore platforms and petrochemical complexes; Gazprom is testing them
for monitoring assets in very cold conditions; and Royal Dutch Shell applies them to
flare stack inspections (Murray 2020).

The COGCC operations are similar to the approach we propose for the Forest
Service, who regulates surface activities on O&G wellpads located on in the Little
Missouri National Grasslands located in western North Dakota. The FS personnel
we worked with were amenable to allowing us to visit these locations and conduct
our data gathering. They were also interested in seeing how these datasets might help
them manage their surface inspections and even conducted mock inspections to
gauge their usefulness.

Moving forward, having access to additional data products such as vegetation
health and elevation models provides a broader perspective to detect patterns that
might not be evident during a single visit. For example, pad erosion, whereby part of
the wellpad is continuously (though perhaps slowly) eroding toward a nearby
waterbody and potentially adversely affecting it or nearby habitats, can be more
easily tracked over time. Another consideration is that field inspections require
regulators to drive long distances in remote regions to carry out these surveys and
sometimes exposes them to hazards, such as H2S. The chances of automobile
accidents also increase, and more vehicle maintenance is required. Being able to
reduce the number of trips by increasing the number of inspections per visit is
advantageous.

Given the major benefits of acquiring and using aerial imagery to monitor and
inspect oil and gas wellpads on federal grasslands in western North Dakota, we
propose that FS personnel add the sUAV flights and pole aerial video to their
inspection visits. As noted, this has the potential to reduce the amount of time
spent on each wellpad. At minimum, one inspector could focus on the 30% of the



items that are hard to detect in the imagery, while the other inspector acquires the
imagery for later use on the remaining items. Even if the FS does not provide a
budget and training for sUAV flights, personnel can indeed use and action camera
such as a GoPro mounted to a pole and record valuable and useful video (and sound).

7 Drones and Poles for Low-Elevation Oil and Gas Environmental. . . 191

Considering that FS personnel may not tasked with these methods in the future,
then we suggest operators take on this responsibility by either providing these
services in-house or contracting them out and then providing the FS with pertinent
datasets. Beginning with phase 1, operators can create a spatial record starting with
the baseline stage, which is the time before land was cleared or when they took over
from another operator. Then, they can monitor all phases of construction and identify
problem areas prior to the FS inspection. And if the FS finds problems, the operator
can address them and send the (dated) imagery to confirm the issues have been fixed,
thus potentially saving the FS an additional trip. This approach would also save the
operator money in terms of fines, shutdowns, and legal exposure.

During the reclamation phase, operators can clearly follow these stages toward
meeting final compliance. Here, the imagery acquisition could be semi-annually or
annually, and with the right ground-based vegetation training samples and expertise,
they could potentially detect the type and amount of seeded grass mixture, as well as
differentiate noxious weeds and invasive species from the computer.

New developments in photogrammetry software now allow sUAV-generated
maps to tile directly into geographic information systems (GIS) software such as
ESRI’s ArcGIS, eliminating various manual steps and streamlining the entire pro-
cess (DroneDeploy 2021c). This indeed could be a game changer for managing oil
and gas site inspections.

The pole aerial video greatly aids the inspection process. As mentioned, not only
is the video sharp, showing infrastructure features without distortions, it captures
sound and can be stopped for still images and rewound/forwarded as needed.
However, this method does require researchers or inspectors to actively walk onto
the wellpad when accessible, potentially exposing them to harm such as to H2S gas,
flares, or excessive noise.

Emran et al. (2017) propose using UAVs equipped with (methane) gas detectors
to inspect and map landfills and natural gas infrastructures as a safer and more viable
alternative to vehicle or in-person visits. We have considered a similar approach to
detecting H2S gas on wellpads; however, because this gas is heavy, it sinks.
Therefore, the sUAV would have to fly quite low, potentially too low, and its rotors
might disrupt and spread the column of gas if present. More research is required in
this area.

Another approach to replace the pole system could be targeted sUAV flights with
the use of goggles, in what is known as first person video or FPV flight. Usually
these sUAVs are quite small and light (can fit in your hand), and aficionados race
them in obstacle courses—not on wellpads. In this case, the experienced pilot could
fly in and out of all types of structures while recording the video feed. Issues of
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image quality, given the small onboard cameras and signal loss, could be an issue,
but recent models are now strong enough to carry a payload, such as a GoPro camera
(IFlight 2021). It still is risky, due to the potential of striking a feature on the wellpad,
but experienced pilots can maneuver these small sUAVs very well.
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The pole video has several advantages. One, it records track locations, allowing
the user to later look for patterns. This could include identifying areas that were not
examined sufficiently, or detecting a cluster, whereby a potential problem was
identified. It’s important to note that the video is of high quality. Second, the user
has solid control of the pole camera and can angle it inside spaces, like a compressor
building, without having to go inside, or place above an oil pit or flare pit while
keeping a safe distance. Third, the video can be stopped and re-watched as needed,
and still images can be extracted. Finally, sounds are also captured in the video,
providing up-to-date conditions of noises on the wellpad, such as compressors and
flares.

Other promising new methods include the use of rovers with 360� cameras and
gas sensors that could be controlled and directed from a safe distance. This ground-
site capture approach is now being used in commercial construction projects, and
with advancements in photogrammetry software analysis, images can be compared
over time and side by side, to follow all phases of the construction project
(DroneDeploy 2020b). As imagery surveillance technology improves and both
(smaller) operators and regulators become more aware of the benefits, the inspection
process will likely begin relying on these methods.

One easy way to get started is to adopt sUAVs and/or pole aerial photography
methods to enhance current oil and gas field surface inspections.
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Appendix: Active Well Compliance Inspection Form
(3 Pages) and 5-Year Final Reclamation Site Inspection Form
(3 Pages)
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Source: Forest Service LMNG Medora Ranger District office in Dickinson, North Dakota



7 Drones and Poles for Low-Elevation Oil and Gas Environmental. . . 199

References

Airborne Drones (2019) Drones in oil and gas industry – (6 areas of application). https://www.
airbornedrones.co/oil-and-gas-industry/. Accessed 27 Jan 2021

Al Amir N, Al Marar MS (2018) Eye in the sky: how the rise of drones will transform the oil and gas
industry. Paper presented at the Abu Dhabi International Petroleum Exhibition & Conference,
Abu Dhabi, UAE, November 2018. Paper Number: SPE-193211-MS. https://doi.org/10.2118/
193211-MS

Baynard CW, Mjachina K, Richardson RD, Schupp RW, Lambert JD, Chibilyev AA (2017) Energy
development in Colorado’s Pawnee National Grasslands: mapping and measuring the distur-
bance footprint of renewables and non-renewables. Environ Manag 59:995–1016. https://doi.
org/10.1007/s00267-017-0846-z

Bernath-Plaisted JS, Koper N (2016) Physical footprint of oil and gas infrastructure, not anthropo-
genic noise, reduces nesting success of some grassland songbirds. Biol Conserv 204. https://doi.
org/10.1016/j.biocon.2016.11.002

Botlink (2021) The 3 main categories of drones and their advantages and disadvantages.
https://botlink.com/blog/the-3-main-categories-of-drones-and-their-advantages-and-disadvan
tages. Accessed 24 Oct 2021

Casana J, Kantner J, Wiewel A, Cothren J (2014) Archaeological aerial thermography: a case study
at the Chaco-era Blue J community, New Mexico. J Archaeol Sci 45:207–219. https://doi.org/
10.1016/j.jas.2014.02.015

Cho J, Lim G, Biobaku T, Kim S, Parsaei H (2015) SafetAy and security management with
unmanned aerial vehicle (UAV) in oil and gas industry. Proc Manuf 3:1343–1349. https://doi.
org/10.1016/j.promfg.2015.07.290

Colorado Oil and Gas Conservation Commission (n.d.) Practice and procedure 2 CRR 404-1.
https://www.sos.state.co.us/CCR/GenerateRulePdf.do?ruleVersionId¼6140&fileName¼2%20
CCR%20404-1. Accessed 12 Feb 2021

CSUR (Canadian Society for Unconventional Resources) (n.d.) Understanding well construction
and surface footprint. http://www.atlanticaenergy.org/pdfs/natural_gas/Environment/Under
standing_Well_Construction_CSUR.pdf. Accessed 21 Feb 2021

Curran MF, Cox SE, Robinson TJ, Robertson KJ, Sherman ZA, Adams TA, Strom CF, Stahl PD
(2019) Spatially balanced sampling and ground-level imagery for vegetation monitoring on
reclaimed well pads. Restor Ecol 27(5):974–980. https://doi.org/10.1111/rec.12956

Curran M, Hodza P, Cox SE, Lanning SG, Robertson BL, Robinson TJ, Stahl PD (2020) Ground-
level unmanned aerial system imagery coupled with spatially balanced sampling and route
optimization to monitor rangeland vegetation. J Vis Exp 160:e61052. https://doi.org/10.3791/
61052

Dabbiru L, Samiappan S, Nobrega RAA, Aanstoos JA, Younan NH, Moorhead RJ (2015) Fusion of
synthetic aperture radar and hyperspectral imagery to detect impacts of oil spill in Gulf of
Mexico. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS). https://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7326165

Dekker J (2021) Evaluation on datasets: personal communication. Minerals Area Manager, USFS
Forest Service, Little Missouri National Grasslands, North Dakota

Di Stéfano S, Karl JW, Bailey DW, Hale S (2020) Evaluation of the automated reference toolset as a
method to select reference plots for oil and gas reclamation on Colorado Plateau rangelands. J
Environ Manag 265:110578. https://doi.org/10.1016/j.jenvman.2020.110578

Digital Aerolus (2021) Drones in the oil and gas industry. https://digitalaerolus.com/drones-in-the-
oil-and-gas-industry/. Accessed 27 Jan 2021

DJI (2021) Phantom 4 Pro V2.0 Specs. https://www.dji.com/phantom-4-pro-v2/specs. Accessed
26 Feb 2021

Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in adult male. Ann Saudi Med 30(1):
76–80

https://www.airbornedrones.co/oil-and-gas-industry/
https://www.airbornedrones.co/oil-and-gas-industry/
https://doi.org/10.2118/193211-MS
https://doi.org/10.2118/193211-MS
https://doi.org/10.1007/s00267-017-0846-z
https://doi.org/10.1007/s00267-017-0846-z
https://doi.org/10.1016/j.biocon.2016.11.002
https://doi.org/10.1016/j.biocon.2016.11.002
https://botlink.com/blog/the-3-main-categories-of-drones-and-their-advantages-and-disadvantages
https://botlink.com/blog/the-3-main-categories-of-drones-and-their-advantages-and-disadvantages
https://doi.org/10.1016/j.jas.2014.02.015
https://doi.org/10.1016/j.jas.2014.02.015
https://doi.org/10.1016/j.promfg.2015.07.290
https://doi.org/10.1016/j.promfg.2015.07.290
https://www.sos.state.co.us/CCR/GenerateRulePdf.do?ruleVersionId=61401
https://www.sos.state.co.us/CCR/GenerateRulePdf.do?ruleVersionId=61401
https://www.sos.state.co.us/CCR/GenerateRulePdf.do?ruleVersionId=61401
https://www.sos.state.co.us/CCR/GenerateRulePdf.do?ruleVersionId=61401
http://www.atlanticaenergy.org/pdfs/natural_gas/Environment/Understanding_Well_Construction_CSUR.pdf
http://www.atlanticaenergy.org/pdfs/natural_gas/Environment/Understanding_Well_Construction_CSUR.pdf
https://doi.org/10.1111/rec.12956
https://doi.org/10.3791/61052
https://doi.org/10.3791/61052
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7326165
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7326165
https://doi.org/10.1016/j.jenvman.2020.110578
https://digitalaerolus.com/drones-in-the-oil-and-gas-industry/
https://digitalaerolus.com/drones-in-the-oil-and-gas-industry/
https://www.dji.com/phantom-4-pro-v2/specs


¼

200 C. W. Baynard et al.

DroneDeploy (2020a) Optimizing today’s asset inspections, session 293296. DroneDeploy Annual
Conference. https://ddc.dronedeploy.com/agenda/session/293296

DroneDeploy (2020b) Why and how to use drones in construction and infrastructure, session
347745. DroneDeploy Annual Conference. https://ddc.dronedeploy.com/agenda/session/34
7745

DroneDeploy (2021a) DroneDeploy for Oil & Gas. Manage operations at scale with digital replicas
of sites and assets. https://www.dronedeploy.com/solutions/oil-and-gas/. Accessed 27 July 2021

DroneDeploy (2021b) Visible atmospheric resistant index (VARI). https://support.dronedeploy.com/
docs/understanding-ndvi-1#visible-atmospherically-resistant-index-vari. Accessed 23 Feb 2021

DroneDeploy (2021c) DroneDeploy for Esri. The drone data solution for GIS professionals. https://
www.dronedeploy.com/product/esri-integration-lp/. Accessed 27 July 2021

Dukowitz Z (2018) Interview with ecologist and FAA certified remote pilot Dr. Richard Alward.
UAV Coach. https://uavcoach.com/drones-ecology/. Accessed 21 Feb 2021

EIA (Energy Information Administration) (2020) North Dakota state profile and energy estimates,
profile analysis. https://www.eia.gov/state/analysis.php?sid ND. Accessed 15 Feb 2021

Emran BJ, Tannant DD, Najjaran H (2017) Low-altitude aerial methane concentration mapping.
Remote Sens 9(8):823. https://doi.org/10.3390/rs9080823

ESRI (2021) Introduction to Ortho mapping. https://pro.arcgis.com/en/pro-app/latest/help/data/
imagery/introduction-to-ortho-mapping.htm. Accessed 24 Oct 2021

FIFA (Féderation Internationale de Football Association) (2015/2016) Laws of the Game. https://
img.fifa.com/image/upload/datdz0pms85gbnqy4j3k.pdf. Accessed 29 June 2021

Gómez C, Green DR (2017) Small unmanned airborne systems to support oil and gas pipeline
monitoring and mapping. Arab J Geosci 10:202. https://doi.org/10.1007/s12517-017-2989-x

Green AW, Aldridge CL, O’Donnell MS (2017) Investigating impacts of oil and gas development
on greater sage-grouse. J Wildl Manag 81(1):46–57. https://doi.org/10.1002/jwmg.21179

Hausamann D, Zirnig W, Schreier G, Strobl P (2005) Monitoring of gas pipelines – a civil UAV
application. Aircr Eng Aerosp Technol Int J 77(5):352–360. https://doi.org/10.1108/
00022660510617077

IFlight (2021) Nazgul Evoque F5. https://shop.iflight-rc.com/Nazgul-Evoque-F5-with-Caddx-
Polar-Vista-Digital-HD-System-pro1628. Accessed 24 Oct 2021

Jakes AF, DeCesaera NJ, Jones PF, Gates CC, Story SJ, Olimb SK, Kunkel KE, Hebblewhit M
(2020) Multi-scale habitat assessment of pronghorn migration routes. PLoS One 15(12):
e0241042. https://doi.org/10.1371/journal.pone.0241042

JPL (Jet Propulsion Lab). What is UAVSAR? (2014) https://uavsar.jpl.nasa.gov/education/what-is-
uavsar.html. Accessed 28 July 2021

Kheraj S (2020) A history of oil spills on long-distance pipelines in Canada. Can Hist Rev 101(2):
161–191. https://doi.org/10.3138/chr.2019-0005

Kridsada L, Chatchai L, Manop C, Thana S (2016) Sustainability through the use of unmanned
aerial vehicle for aerial plant inspection. Paper presented at the Offshore Technology Confer-
ence Asia, Kuala Lumpur, Malaysia, March 2016. Paper Number: OTC-26576-MS. https://doi.
org/10.4043/26576-MS

Liu P, Li X, Qu JJ, Wang W, Zhao C, Pichel W (2011) Oil spill detection with fully polarimetric
UAVSAR data. Mar Pollut Bull 62(12):2611–2618. https://doi.org/10.1016/j.marpolbul.2011.
09.036

Londe DW, Fuhlendor SD, Elmore D, Davis CA (2019) Landscape heterogeneity influences the
response of grassland birds to energy development. Wildl Biol 1(11):1–11. https://doi.org/10.
2981/wlb.00523

Lubchenco J, McNutt MK, Dreyfus G, Murawski SA, Kennedy DM, Anastas PT, Chu S, Hunter T
(2012) Science in support of the Deepwater horizon response. Proc Natl Acad Sci 109(50):
20212–20221

Lustenberger P, Schumacher F, Spada M, Burgherr P, Stojadinovic B (2019) Assessing the
performance of the European natural gas network for selected supply disruption scenarios
using open-source information. Energies 12(24):4685. https://doi.org/10.3390/en12244685

https://ddc.dronedeploy.com/agenda/session/293296
https://ddc.dronedeploy.com/agenda/session/347745
https://ddc.dronedeploy.com/agenda/session/347745
https://www.dronedeploy.com/solutions/oil-and-gas/
https://support.dronedeploy.com/docs/understanding-ndvi-1#visible-atmospherically-resistant-index-vari
https://support.dronedeploy.com/docs/understanding-ndvi-1#visible-atmospherically-resistant-index-vari
https://www.dronedeploy.com/product/esri-integration-lp/
https://www.dronedeploy.com/product/esri-integration-lp/
https://uavcoach.com/drones-ecology/
https://www.eia.gov/state/analysis.php?sid=ND
https://www.eia.gov/state/analysis.php?sid=ND
https://doi.org/10.3390/rs9080823
https://pro.arcgis.com/en/pro-app/latest/help/data/imagery/introduction-to-ortho-mapping.htm
https://pro.arcgis.com/en/pro-app/latest/help/data/imagery/introduction-to-ortho-mapping.htm
https://img.fifa.com/image/upload/datdz0pms85gbnqy4j3k.pdf
https://img.fifa.com/image/upload/datdz0pms85gbnqy4j3k.pdf
https://doi.org/10.1007/s12517-017-2989-x
https://doi.org/10.1002/jwmg.21179
https://doi.org/10.1108/00022660510617077
https://doi.org/10.1108/00022660510617077
https://shop.iflight-rc.com/Nazgul-Evoque-F5-with-Caddx-Polar-Vista-Digital-HD-System-pro1628
https://shop.iflight-rc.com/Nazgul-Evoque-F5-with-Caddx-Polar-Vista-Digital-HD-System-pro1628
https://doi.org/10.1371/journal.pone.0241042
https://uavsar.jpl.nasa.gov/education/what-is-uavsar.html
https://uavsar.jpl.nasa.gov/education/what-is-uavsar.html
https://doi.org/10.3138/chr.2019-0005
https://doi.org/10.4043/26576-MS
https://doi.org/10.4043/26576-MS
https://doi.org/10.1016/j.marpolbul.2011.09.036
https://doi.org/10.1016/j.marpolbul.2011.09.036
https://doi.org/10.2981/wlb.00523
https://doi.org/10.2981/wlb.00523
https://doi.org/10.3390/en12244685


7 Drones and Poles for Low-Elevation Oil and Gas Environmental. . . 201

Marcellus Shale Coalition (2012) Recommended practices: site planning, development and resto-
ration. MSC RP 2012-1 April 26, 2012. https://marcelluscoalition.org/wp-content/
uploads/2013/03/RP_Site_Planning.pdf. Accessed 12 Feb 2021

Marinho CA, de Souza C, Motomura T, da Silva AG (2012) In-service flares inspection by
unmanned aerial vehicles (UAVs). 18th World Conference on Nondestructive Testing,
16–20 April 2012, Durban, South Africa. https://www.ndt.net/article/wcndt2012/papers/655_
wcndtfinal00656.pdf. Accessed 20 Feb 2021

McCormick S (2012) After the cap: risk assessment, citizen science and disaster recovery. Ecol Soc
17(4):31. https://doi.org/10.5751/ES-05263-170431

McKim C (2020) UW student looks to transform reclamation monitoring. Wyoming Public Media.
https://www.wyomingpublicmedia.org/post/uw-student-looks-transform-reclamation-
monitoring#stream/0. Accessed 25 Feb 2021

Mehrotra N, Srinivasan (2019) Analysing drone and satellite imagery using vegetation indices.
Technology for Wildlife. https://www.techforwildlife.com/blog/2019/1/22/analysing-drone-
and-satellite-imagery-using-vegetation-indices. Accessed 23 Feb 2021

Minnick TJ, Alward RD (2015) Plant-soil feedbacks and the partial recovery of soil spatial patterns
on abandoned well pads in a sagebrush shrubland. Ecol Appl 25(1):3–10. https://doi.org/10.
1890/13-1698.1

Minnick TJ, Alward R, Langton AM, Koenemann G, Johnston DB (2018) 9: Using a drone and
multispectral camera to obtain accurate and complete information on reclamation success: well
pad and habitat modification studies in western Colorado. Ecological Society of America
Annual Meeting. New Orleans Ernest N. Morial Convention Center-339. https://eco.confex.
com/eco/2018/meetingapp.cgi/Paper/73783. Accessed 21 Feb 2021

Murray J (2020) Seven major oil and gas firms using drones in their operations. NS Energy. https://
www.nsenergybusiness.com/news/oil-and-gas-drones/. Accessed 7 Feb 2021

Nasen LC, Noble BF, Johnstone JF (2011) Environmental effects assessment of oil and gas lease
sites in a grassland ecosystem. J Environ Manag 92(1):195–204. https://doi.org/10.1016/j.
jenvman.2010.09.004

National Park Service (2020) Geologic formations: how badlands buttes came to be. Badlands
National Park. https://www.nps.gov/articles/000/badl-geologic-formations.htm. Accessed
27 Feb 2021

NDDMR (North Dakota Department of Natural Resources) (2019) Oil and Gas: ArcIMS viewer.
https://www.dmr.nd.gov/OaGIMS/viewer.htm. Accessed 4 Feb 2019

Nelson JR, Grubesic TH (2018) Oil spill modeling: computational tools, analytical frameworks, and
emerging technologies. Prog Phys Geogr Earth Environ. https://doi.org/10.1177/
2F0309133318804977

North Dakota Geological Survey (1997) Overview of the petroleum geology of the North Dakota
Williston Basin. https://www.dmr.nd.gov/ndgs/resources/. Accessed 14 Feb 2021

Olive A (2018) Oil development in the grasslands: Saskatchewan’s Bakken formation and species
at risk protection. Cogent Environ Sci 4(1):1443666. https://doi.org/10.1080/23311843.2018.
1443666

Polinova M, Wittenberg L, Kutiel H, Brook A (2019) Reconstructing pre-fire vegetation condition
in the wildland urban interface (WUI) using artificial neural network. J Environ Manag 238:
224–234. https://doi.org/10.1016/j.jenvman.2019.02.091

Resolve (2021) Stage 3: exploratory drilling. https://www.resolve.ngo/site-communityhealthguidebook/
stage-3-exploratory-drilling.htm#. Accessed 12 Feb 2021

Seaman J (2017) H2S gas—what you need to know about hydrogen sulfide. Blacklinesafety. https://
www.blacklinesafety.com/blog/h2s-gas-need-know. Accessed 15 Jan 2021

Thompson SJ, Johnson DH, Niemuth ND, Ribic CA (2015) Avoidance of unconventional oil wells
and roads exacerbates habitat loss for grassland birds in the North American great plains. Biol
Conserv 192:82–90. https://doi.org/10.1016/j.biocon.2015.08.040

https://marcelluscoalition.org/wp-content/uploads/2013/03/RP_Site_Planning.pdf
https://marcelluscoalition.org/wp-content/uploads/2013/03/RP_Site_Planning.pdf
https://www.ndt.net/article/wcndt2012/papers/655_wcndtfinal00656.pdf
https://www.ndt.net/article/wcndt2012/papers/655_wcndtfinal00656.pdf
https://doi.org/10.5751/ES-05263-170431
https://www.wyomingpublicmedia.org/post/uw-student-looks-transform-reclamation-monitoring#stream/0
https://www.wyomingpublicmedia.org/post/uw-student-looks-transform-reclamation-monitoring#stream/0
https://www.techforwildlife.com/blog/2019/1/22/analysing-drone-and-satellite-imagery-using-vegetation-indices
https://www.techforwildlife.com/blog/2019/1/22/analysing-drone-and-satellite-imagery-using-vegetation-indices
https://doi.org/10.1890/13-1698.1
https://doi.org/10.1890/13-1698.1
https://eco.confex.com/eco/2018/meetingapp.cgi/Paper/73783
https://eco.confex.com/eco/2018/meetingapp.cgi/Paper/73783
https://www.nsenergybusiness.com/news/oil-and-gas-drones/
https://www.nsenergybusiness.com/news/oil-and-gas-drones/
https://doi.org/10.1016/j.jenvman.2010.09.004
https://doi.org/10.1016/j.jenvman.2010.09.004
https://www.nps.gov/articles/000/badl-geologic-formations.htm
https://www.dmr.nd.gov/OaGIMS/viewer.htm
https://doi.org/10.1177/2F0309133318804977
https://doi.org/10.1177/2F0309133318804977
https://www.dmr.nd.gov/ndgs/resources/
https://doi.org/10.1080/23311843.2018.1443666
https://doi.org/10.1080/23311843.2018.1443666
https://doi.org/10.1016/j.jenvman.2019.02.091
https://www.resolve.ngo/site-communityhealthguidebook/stage-3-exploratory-drilling.htm
https://www.resolve.ngo/site-communityhealthguidebook/stage-3-exploratory-drilling.htm
https://www.blacklinesafety.com/blog/h2s-gas-need-know
https://www.blacklinesafety.com/blog/h2s-gas-need-know
https://doi.org/10.1016/j.biocon.2015.08.040


¼

¼

¼

202 C. W. Baynard et al.

University of Wyoming (2020) UW student’s well pad reclamation research draws international
attention. https://www.uwyo.edu/uw/news/2020/05/uw-students-well-pad-reclamation-
research-draws-international-attention.html. Accessed 24 Oct 2021

US DOT PHMSA (Department of Transportation Pipeline and Hazardous Materials Safety Admin-
istration) (2018) General Pipeline FAQs. https://www.phmsa.dot.gov/faqs/general-pipeline-
faqs. Accessed 24 Oct 2021

USDA (2019a) NAIP coverage 2000–2018. https://www.fsa.usda.gov/Assets/USDA-FSA-Public/
usdafiles/APFO/status-maps/pdfs/NAIP_Coverage_2018.pdf. Accessed 26 Feb 2021

USDA (2019b) FSGeodata Clearinghouse, download national datasets. https://data.fs.usda.gov/
geodata/edw/datasets.php

USDA (2021) NAIP imagery. https://www.fsa.usda.gov/programs-and-services/aerial-photogra
phy/imagery-programs/naip-imagery/. Accessed 26 Feb 2021

USDA Forest Service (2021a) Oil & gas permitting & production. https://www.fs.usda.gov/detail/
dpg/landmanagement/resourcemanagement/?cid fseprd496742. Accessed 19 Feb 2021

USDA Forest Service (2021b) Dakota Prairie Grasslands. Little Missouri National Grassland.
https://www.fs.usda.gov/recarea/dpg/recarea/?recid 79469. Accessed 27 Feb 2021

USDA Forest Service (2021c) Dakota Prairie Grasslands. Land & Resource Management. https://
www.fs.usda.gov/land/dpg/landmanagement. Accessed 27 Feb 2021

USDA Forest Service Dakota Prairie Grasslands (2019a) Compliance Inspection, Dakota Prairie
Grasslands, F18-2800-2019v1. Document provided by US Forest Service, Dakota Prairie
Grasslands Medora Ranger District

USDA Forest Service Dakota Prairie Grasslands (2019b) 5 year final reclamation site inspection
form Dakota Prairie Grasslands: F18-2800-2019 v1. Document provided by US Forest Service,
Dakota Prairie Grasslands Medora Ranger District

Viswambharan V (2018) Visible atmospherically resistant index (VARI) Analytic. https://www.
arcgis.com/home/item.html?id 13f98de823604c3baed7476ad0bf9281. Accessed 23 Feb 2021

Webb D (2019) Agency uses drones to monitor gas patches. The Daily Sentinel. https://www.
gjsentinel.com/news/western_colorado/agency-uses-drones-to-monitor-gas-patches/article_23
9b15d6-0e57-11e9-b6c0-10604b9f6eda.html. Accessed 21 Feb 2021

Weidner K (2017) Natural gas exploration: a landowner’s guide to leasing in Pennsylvania.
PennState Extension. https://extension.psu.edu/natural-gas-exploration-a-landowners-guide-to-
leasing-in-pennsylvania. Accessed 12 Feb 2021

Zhang J, Virk S, Porter W, Kenworthy K, Sullivan D, Schwartz B (2019) Applications of unmanned
aerial vehicle based imagery in turfgrass field trials. Frontiers in Plant Sci 10(279). https://doi.
org/10.3389/fpls.2019.00279

Zhe M, Zhang X (2021) Time-lag effects of NDVI responses to climate change in the Yamzhog
Yumco Basin, South Tibet. Ecol Indic 124:107431. https://doi.org/10.1016/j.ecolind.2021.
107431

https://www.uwyo.edu/uw/news/2020/05/uw-students-well-pad-reclamation-research-draws-international-attention.html
https://www.uwyo.edu/uw/news/2020/05/uw-students-well-pad-reclamation-research-draws-international-attention.html
https://www.phmsa.dot.gov/faqs/general-pipeline-faqs
https://www.phmsa.dot.gov/faqs/general-pipeline-faqs
https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/APFO/status-maps/pdfs/NAIP_Coverage_2018.pdf
https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/APFO/status-maps/pdfs/NAIP_Coverage_2018.pdf
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
https://www.fs.usda.gov/detail/dpg/landmanagement/resourcemanagement/?cid=fseprd496742
https://www.fs.usda.gov/detail/dpg/landmanagement/resourcemanagement/?cid=fseprd496742
https://www.fs.usda.gov/detail/dpg/landmanagement/resourcemanagement/?cid=fseprd496742
https://www.fs.usda.gov/recarea/dpg/recarea/?recid=79469
https://www.fs.usda.gov/recarea/dpg/recarea/?recid=79469
https://www.fs.usda.gov/land/dpg/landmanagement
https://www.fs.usda.gov/land/dpg/landmanagement
https://www.arcgis.com/home/item.html?id=13f98de823604c3baed7476ad0bf9281
https://www.arcgis.com/home/item.html?id=13f98de823604c3baed7476ad0bf9281
https://www.arcgis.com/home/item.html?id=13f98de823604c3baed7476ad0bf9281
https://www.gjsentinel.com/news/western_colorado/agency-uses-drones-to-monitor-gas-patches/article_239b15d6-0e57-11e9-b6c0-10604b9f6eda.html
https://www.gjsentinel.com/news/western_colorado/agency-uses-drones-to-monitor-gas-patches/article_239b15d6-0e57-11e9-b6c0-10604b9f6eda.html
https://www.gjsentinel.com/news/western_colorado/agency-uses-drones-to-monitor-gas-patches/article_239b15d6-0e57-11e9-b6c0-10604b9f6eda.html
https://extension.psu.edu/natural-gas-exploration-a-landowners-guide-to-leasing-in-pennsylvania
https://extension.psu.edu/natural-gas-exploration-a-landowners-guide-to-leasing-in-pennsylvania
https://doi.org/10.3389/fpls.2019.00279
https://doi.org/10.3389/fpls.2019.00279
https://doi.org/10.1016/j.ecolind.2021.107431
https://doi.org/10.1016/j.ecolind.2021.107431


Chapter 8
Application of UAS to Detect Infrequent
and Local Large-Scale Surficial
Displacements: Critical Examples from
the Fields of Landslide and Erosion
Research

M. J. Stumvoll, M. Konzett, E. M. Schmaltz, and T. Glade

Abstract Both complex, slow-moving landslides and soil erosion depict the chal-
lenge that small process rates and changes in surface height can occur—yet over a
larger area and, respectively or on different parts of an affected area or mass. While
changes in the order of only millimetres per observation period are common for soil
erosion, changes in surface height in the order of a few centimetres per observation
period or year are observable for complex, slow-moving landslides. Structure-from-
motion on aerial photography (SfM), unmanned aerial system (UAS)-based LiDAR
(unmanned aerial vehicle laser scanning (ULS)) and terrestrial laser scanning (TLS)
were applied within these two different fields of research to assess the user-friendly
applicability of change detection in multi-temporal 3D surface models. Results are
showcased by examples from landslide and erosion research in Austria. The study
sites are used for livestock farming, hay production and cropland farming,
respectively.

Examples demonstrate the applicability of SfM and ULS to be facing a variety of
challenges. SfM and ULS registration errors prohibit or limit the evaluation of
erosion processes using only variable ground control points (GCPs). The same can
be asserted for the SfM-based digital terrain models (DTMs) of difference (DoDs)
with respect to slow sliding processes. Vegetation cover has the highest impact with
respect to data noise in data acquisition, SfM calculation and – pursuing data post-
processing – on further data registration. Vegetation filtering is crucial, yet a time-
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consuming step, and limited in the case of SfM-based models. Fixed GCPs seem to
be mandatory for registration of consecutive time steps. Yet, they can hardly be
realized in natural systems with anthropogenic use. UAS-based SfM – and with
constraints also ULS – are often described as the solution to investigate natural
processes with “low-costs”. However, the “matter of expense” is not limited to the
UAS hardware. High definition and expensive D-GNSS devices are mandatory for
optimal GCP measurement. Post-processing is time- and resource-consuming. Accu-
racy evaluation of intermediate and final results requires expert’s knowledge.
UAS-based SfM and ULS is no easy-to-use and straightforward technique, espe-
cially when it comes to the investigation of detailed, large-scale processes such as
soil erosion and slow-moving landslides.
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Keywords sUAS · Landslides · Surface erosion · LiDAR · ULS · TLS · Structure
from motion

8.1 Application of UAS in Landslide and Erosion Research

The application of unmanned aerial systems (UAS) has strongly increased in earth
science and geomorphology, mainly due to improvements of portable global posi-
tioning systems (GPS) and inertial measurement units (IMUs) as well as an increased
affordability of UAS (Hackney and Clayton 2015). As airborne devices, UAS
platforms provide the opportunity to hold manifold sensors, such as optical sensors
(compact RGB- or thermal image cameras) or light detection and ranging (LiDAR)
devices, which tremendously extends the spectrum of applicable methods and fields
of research for UAS applications.

Structure-from-motion (SfM) photogrammetry used on the basis of aerial photo-
graphs from UAS rapidly developed for geosciences objectives in recent years
(James and Robson 2012; Eltner et al. 2016; Smith et al. 2016; Aber et al. 2019b).
They are frequently used for geomorphometric analyses (Pike et al. 2009; Mancini
et al. 2013), geomorphic process monitoring (Marzolff and Poesen 2009; Oleire-
Oltmanns et al. 2012) and the quantification of process rates (Immerzeel et al. 2014;
Lucieer et al. 2014; Smith and Vericat 2015). Application of UAS-based techniques
can therefore cover a variety of scales from plot (0.1 m) to basin (~100 m to up to
~1000 m) (Nex and Remondino 2014; Giordan et al. 2018). Here, the focus lies on
the detailed, large-scale (small) processes of soil erosion and slow-moving land-
slides, thereby requiring high-resolution on basin scale.

While the application of SfM is relatively widespread in erosion studies (Eltner
et al. 2014; Smith and Vericat 2015; Hänsel et al. 2016; Eltner et al. 2018; Candido
et al. 2020; Meinen and Robinson 2020), the application of UAS-based LiDAR
(unmanned aerial vehicle laser scanning (ULS)) has mostly been used in the
monitoring of forests (Wieser et al. 2017; Liang et al. 2019; Prata et al. 2020) and
landslide research (Pfeiffer et al. 2019; Zieher et al. 2019). In recent years, the



utilization of ULS in change detection studies focusing on alpine grasslands (Mayr
et al. 2019), riverbeds (Backes et al. 2020) or coastal sand dunes (Sofonia et al. 2019)
has increased. One of the key advantages of laser scanning compared to SfM is that
some laser pulses are able to penetrate through sparse vegetation. This allows for
measuring both vegetation (height) and bare soil (Carrivick et al. 2016), additionally
facilitating an improved vegetation filtering. This is a crucial advantage in erosion
studies if the study site is vegetated. However, the absence of ULS as a method for
large-scale change detection is most likely based on point cloud accuracies, which
tend to be lower or of the same magnitude compared to SfM but are coupled to
higher acquisition costs.
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In landslide research, a similar range of applications and related challenges can be
observed. From a range of techniques for surface investigation of landslides, terres-
trial laser scanning (Jaboyedoff et al. 2012; Abellan et al. 2016; Telling et al. 2017
and references therein) and UAS-based SfM have increasingly been applied in the
last decade (for a concise review see Giordan et al. 2018). However, a variety of
challenges arise in evaluating short- and long-term process behaviour of complex,
slow-moving landslides (van Asch et al. 2007). With regard to landslide monitoring,
change detection (changes in volume and direction over time) utilizing high-
resolution, multi-temporal TLS- or UAS-based digital terrain data is only one of
many fields of application (Niethammer et al. 2009; Niethammer et al. 2012; Lucieer
et al. 2014; Turner et al. 2015; Eker et al. 2017; Peppa et al. 2017; Cignetti et al. 2019
to name only a few). The combination or rather comparison of both TLS- and
UAS-based techniques is focus of an increasing number of studies in landslide
research, concentrating, for example, on costs, applicability and accuracy
(Rothmund et al. 2013; Hsieh et al. 2016; Casagli et al. 2017; Cook 2017; Zang
et al. 2019). Non-linear behaviour as well as slow and small process rates of only a
few centimetres or less per year (very slow to extremely slow, refer to Cruden and
Varnes (1996)) impede the applicability of these techniques. High accuracies of
change detection in a range of only a few centimetres per time step are hard to detect
without extremely good conditions of data acquisition (non to sparse vegetation) and
extremely precise post-processing regarding the co-registration of multiple time
steps. Prokop and Panholzer (2009) found a limit of �0.05 m of change detection
per observation period utilizing multi-temporal TLS data on sparsely vegetated
slopes. Similar results were found by Kasperski et al. (2010) with �0.30 m. Cook
(2017) found a value of �0.30 m in one study comparing UAS to TLS data, an error
value of up to �0.10–0.15 m in another where only using UAS-based SfM (Cook
and Dietze 2019). Only few studies investigate slow landslide surface displacements
(cm/a or less) with UAV-based SfM on densely grass-covered slopes or compare the
applicability of SfM and TLS-based approaches for such processes.

Although the application of UAS-platforms with SfM photogrammetry has been
described as a low-cost alternative to other remote sensing techniques such as TLS,
aerial photogrammetry and LiDAR (ALS) (Giordan et al. 2015; Cook 2017), several
limitations concerning the accuracy of results and applicability in different environ-
ments have been identified (Rothmund et al. 2017; Onnen et al. 2020). In addition to
the accuracy in spatial referencing routines, UAS-based SfM photogrammetry



methods are prone to errors when it comes to the multi-temporal compilation of
highly resolved digital terrain models (DTMs) for a quantitative surface change
detection in DTMs of Difference (DoDs). Those errors can emerge from a decreased
accuracy of the orthophotos for example by flight routines that are inappropriate for
the purpose, unfavourable environmental conditions (dense vegetation cover, sun-
light conditions, etc.) or too low sensor resolutions resulting in a bad image quality.
Several recent studies focus on reducing these limitations or on finding smart
workarounds (Cook and Dietze 2019; Ludwig et al. 2020).
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This chapter presents and critically discusses the applicability of UAS-based SfM
and LiDAR (ULS and TLS) for detailed, large-scale (small) processes covering areas
up to basin scale that are typical for soil erosion and slow-moving landslide pro-
cesses. Examples for both processes are described in detail, covering general infor-
mation on the processes, information on the respective study sites, data acquisition
and post-processing and results. Results are discussed critically for both processes,
especially with respect to the limitations.

8.2 Slow-Moving Landslides

8.2.1 General Information

Landslides are a natural phenomenon, shaping the earth’s relief (Glade et al. 2005;
Crozier 2010). From the different landslide types and processes (Varnes 1978;
Cruden and Varnes 1996; Hungr et al. 2014), slow to very or extremely slow
processes can depict a variety of velocities of 13 m/month to less than 16 mm/year
(Cruden and Varnes 1996). Additionally, respective processes do behave
non-linearly. Process activity can vary significantly over time, depending on the
systems state, therefore complicating a clear distinction of process velocity within a
short period of observation (Cruden and Varnes 1996; van Asch et al. 2007). The
term “slow-moving” landslide can be sometimes misleading, both regarding the
process type and rate; for a concise review on slow-moving landslides, the reader is
referred to Lacroix et al. (2020). Slow processes can further turn into faster pro-
cesses, for example from sliding into flowing. Cruden and Varnes (1996) define this
sequence of movement as complex. According to this definition, the term slow-
moving and complex landslide is applied here to describe a retrogressive earth
slide – earth flow system, which has shown different phases of activity in the last
10 years on different parts of the landslide mass. Major activation occurred in 2011
(subsidence via sliding by 2 m in 2 weeks), reactivation in 2013 (formation of earth
flow with 20 m/h) and processes have slowed down significantly since then to only a
few centimetres to decimetres per year on the parts affected by sliding – as far as
known. The detection of small changes in surface height induced by slow process
velocities is of major interest to further improve our understanding of past, recent
and future complex landslide dynamics.
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8.3 Study Area: Hofermühle Landslide

8.3.1 Description of Site

The site to be used as example on the application of UAS-based SfM for the
investigation of slow-moving landslide processes is located in the district of
Waidhofen a.d. Ybbs, Lower Austria, Austria (Fig. 8.1a). The type, style and
conditions being present for this particular process and study site are presumably
exemplary for similar sites in the region, considering both preconditioning (geology,
climate) and variable conditioning (land use, anthropogenic influences).

The site is located in the Flysch Zone (Penninic units), a geologically predestined
zone wedged between Helvetic and Austroalpine units, which is known to be
extremely prone to landslide processes in Austria (Schwenk 1992; Petschko et al.
2014; Tilch 2014; Stumvoll et al. 2019; Steger et al. 2020). Within the 0.15 km2

hydrological catchment of the Hofermühle torrent, landslide processes can be
defined as complex, being constituted by shallow earth sliding in the middle and
gently inclined part of the catchment nearby the torrent, accumulation of material
and resulting earth flowing down the steepening torrent path (Fig. 8.1b). While
intense precipitation events are assumed to be the main trigger of flowing processes,
both precipitation and snow melt are assumed to trigger sliding processes (Schweigl
and Hervás 2009). Areas affected by recent sliding are grass covered, the respective

Fig. 8.1 Location of study area. (a) Location of the study site in the SW of Lower Austria, Austria;
geological map after Weber (1997). (b) Hydrological catchment of the Hofermühle torrent. (c) Main
study area, including Subsystems I and II. (d) Changes in surface elevation between 2009 and 2019
for Subsystem I based on ALS and TLS data (Stumvoll et al. 2021). Mesh-based change of surface
elevation is displayed as maximum (positive or negative) height difference [m], excluding values
between�0.05 and + 0.05 m (noise). Relief shadings in (a + b) are based on an Austrian 10 m DEM
(BMDW 2015) and a 1 m ALS DEM (NOEL GV 2009), respectively. Relief shading in (b + c) is
based on a 0.05 m TLS DEM (2019-12-05), showing also a simplified morphological mapping
(Stumvoll et al. 2021). Orthophoto in (b) from NOEL GV (2011)



pasture being used for hay production and mowed three to four times a year
(Fig. 8.1c). Areas of older processes and more pronouncedly affected prohibit
agricultural use and are covered by shrubbery (Fig. 8.1c process area: landslide
[main]). The torrents path, being closely connected to the landslide, is accompanied
by high trees, coniferous on the orographic right, deciduous on the left.
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The area is monitored since 2015 with a variety of both surface and subsurface
techniques (Stumvoll et al. 2021, 2022), including TLS and UAS. Vegetation is the
main factor of uncertainty, regarding surface data acquisition and respective data
post-processing and interpretation. Recent studies showed the main landslide area,
known to be active since 2011 latest, is expanding (Stumvoll et al. 2021). Two
related areas can be identified, both of which show individual landslide characteris-
tics as well as a clear connection to the main landslide, which thereby is further
retrograding upslope (Subsystems I and II) (Fig. 8.1c). Current findings by Stumvoll
et al. (2021) indicate the sliding processes to be slowing down since most recent
main activations in 2011 and 2013. Yet, respective processes are known to behave
non-linearly. For the respective study, high-resolution raster (0.05 m) and mesh-
based DEMs were generated via multi-temporal TLS data, starting in 2015. DoDs
were generated on mesh-based DEMs. Assuming a range of�0.05 m for vegetation-
and registration-induced errors as ‘no change’ still allowed for the detection of large-
scale changes in the area of a few centimetres to decimetres. The respective magni-
tudes or dimension of change are common when it comes to investigate such slow-
moving processes on such temporal resolution (e.g. Prokop and Panholzer 2009).
Between 2009 (additional ALS data) and 2019, the area underneath the main scarp in
Subsystem I (rotational slide) showed a max. change in surface elevation of approx.
�0.50 m, most of which appeared between 2009 and 2015 (major landslide activa-
tion 2011 and 2013) (Fig. 8.1d). In the following years, changes of �0.15–0.20 m
were detected between 2016 and 2018. No major changes were detected after 2018,
except small and locally confined displacements of up to �0.05 m (Stumvoll et al.
2021).

8.3.1.1 Description of Research Aims

Within 5 years of intensive monitoring (2015–2020), changes in height and alter-
ations of formations of the landslide surface and its surrounding have been of
greatest interest; respective monitoring is planned to be extended to at least
10 years. To investigate process style, rates and related tendencies, multi-temporal
high-resolution digital elevation data with precise (relative) position accuracy is
required, especially on this scale of landslide process rates (~cm to dm/a). The
area has subsequently been captured via aerial photography utilizing UASs starting
in 2017. The data has been post-processed utilizing basic SfM workflows and
acquired additionally to TLS data (starting 2015) to pursue the following questions:
(a) What are the methodological advantages and disadvantages of a UAS-based
approach compared to TLS with respect to both data acquisition and post-
processing? (b) What kind of initial resolution and position accuracy can be achieved



with UAS-based SfM DEMs compared to TLS-based DEMs? (c) Is it possible to
visualize real surface change with UAS-based data, GCPs and basic SfM calcula-
tions without in-depth post-processing of resulting point clouds and in-depth eval-
uation of the absolute and relative accuracy? d) Is UAV-based SfM a less cost- and
time-consuming alternative to TLS for this setting? What are the implications of
respective results?
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8.3.2 Flight Routines and Post-processing

The four UAS flights used for this study were conducted between June 2017 and
December 2020. For information on type of vehicle, camera parameters, flight
parameters and results on mean ground sampling distance (GSD), DEM resolution
and GCP position accuracy, please refer to Table 8.1. Flights were conducted
manually for the first two campaigns (KR615 Hexacopter, Fig. 8.2a).

An implemented flight path planner was used for the second two flights to
improve picture overlap, coverage and flight altitude with respect to flight time
and battery capacity (Fig. 8.2b, c). Flight paths were chosen in a way that the entire
main study area (Figs. 8.1c and 8.3a) was covered and especially areas with a high
potential to be threatened by slope failures (e.g. upslope scarp areas, Subsystems I;
Fig. 8.3b-e) are repeatedly covered by the photographs in two directions (70% side,
80% front picture overlap).

Flight altitude could not be adapted to the slope due to trees; relative altitude
therefore increases downslope. Multiple ground control points (GCPs, Fig. 8.2d)
were distributed in the observation area around the landslide and measured with a
high-definition GNSS (Leica Viva CS15/GS15; APOS real-time position correction
via SIM card; ~3 mm, horizontal and ~ 5 mm vertical accuracy; EPSG: 32633). Even
though additional flights were conducted between the four listed in Table 8.1, only
these were selected because (a) they had GCPs and (b) TLS data of similar or same
acquisition times were available.

UAS data was post-processed in Agisoft Metashape Professional utilizing a basic
and simple SfM workflow. Geotags (EXIF data) of raw RGB imagery were removed
initially, as they were only available for epochs 3 and 4, and photos aligned (high
precision). Ground control points (GCPs) were imported as markers and linked to
images. Camera alignment was optimized and dense point clouds generated (high
precision, mild filtering). DEMs and Orthomosaics were computed based on dense
point clouds (Fig. 8.3) and exported as tiffs. Further post-processing was performed
in ESRI ArcGIS Pro and is raster based (2.5D). The authors are aware of the fact that
true 3D point-to-point distances (e.g. M3C2) are closer to reality (Lague et al. 2013).
However, the aim of this study is to compare and evaluate the relative accuracy of
DoDs based on both TLS and UAS, not the absolute. Initial mean ground sampling
distance of the UAS data ranged from 1.31 to 2.92 cm/pix; calculated raster
resolution of UAS-based DEMs ranged from ~0.02 m and ~ 0.07 m; DEMs were
all resampled (cubic) to 0.10 m raster grid size to improve comparability.
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Table 8.1 Information on UAS flight conditions, hardware, SfM results and TLS data epochs used
for the investigation of the Hofermühle landslide

Date of UAS
campaign

Epoch 1 2017-
06-13

Epoch 2 2018-06-
14

Epoch 3 2019-
05-25

Epoch 4 2020-
12-07

Field conditions Minor, high grass
height

Minor, high grass
height

Good, fresh cut
grass

Good, low
grass height

UAS type/model KR615
Hexacopter

KR615
Hexacopter

DJI Matrice 200 DJI Mavic Pro

Camera model Sony
DSC-RX100M3

Sony
DSC-RX100M3

DJI XT2 Hasselblad
L1D-20c

Geotag EXIF No No Yes Yes

Camera
resolution

5472 3648 5472 3648 4000 3000 5472 3648

Focal length 8.8 mm 8.8 mm 8 mm 10.26 mm

Number of
images

415 587 266 474

Flying altitude
[mean]

60.2 m 81.2 m 122 m 55.8 m

Coverage area 0.0545 km2 0.109 km2 0.16 km2 0.0608 km2

Height range of
covered area [m]

643 to 562 658 to 518 655 to 510 648 to 543

Ground resolu-
tion survey data
[mean GSD]

1.4 cm/pix 1.91 cm/pix 2.84 cm/pix 1.19 cm/pix

Ground resolu-
tion DEM

2.79 cm/pix 3.82 cm/pix 5.67 cm/pix 2.38 cm/pix

Point density
[mean]

1280 points/m2 684 points/m2 311 points/m2 1770 points/m2

Tie points 28,136 398,078 184,587 191,223

GCP count 6 12 10 21

GCP X error [m] 0.0215 0.0050 0.0024 0.0104

GCP Y error [m] 0.0345 0.0040 0.0033 0.0138

GCP Z error [m] 0.0531 0.0011 0.0006 0.0109

GCP total error
[m]

0.0668 0.0065 0.0041 0.0204

Date of TLS
campaign

2016-09-15 2018-06-06 2019-05-25 2020-11-18

Field conditions Good, low grass
height, 1 scan
position only

Minor, high grass
height, 1 scan
position only

Good, fresh cut
grass, 1 scan
position only

Good, low
grass height,
2 scan
positions

(UAS pilots: 2017-06-13 Sabine Kraushaar, 2018-06-14 and 2019-05-25 Elmar Schmaltz, 2020-12-
07 Robert Kanta)

TLS-based DEMs from similar or same times of acquisition were used for DoD
comparison and validation (accuracy assessment). A mean point distance of 0.055 m
(0.004� angular resolution; 800 m distance to main study area; for hardware spec-
ifications refer to Riegl LMS (2020), for detailed information on data analysis refer
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Fig. 8.2 (a–c) UAV hardware used for flight campaigns at the study site and (d) exemplary ground
control point. Main landslide area in the background of the first and second photograph (area with
shrubbery). (©Photographs: see graphics)

Fig. 8.3 UAS-based orthomosaics of the Hofermühle landslide. (a) Overview of area covered by
UAS flights (main study area, see Fig. 8.1c) by the example of epoch 4 (2020-11-18). (b–e) Detail
for Subsystem I given for 4 consecutive epochs. (UAS pilots: 2017-06-13 Sabine Kraushaar, 2018-
06-14 and 2019-05-25 Elmar Schmaltz, 2020-12-07 Robert Kanta)

to Stumvoll et al. (2021)) enabled the generation of DEMs with 0.05 m raster
resolution. Intensive data post-processing ensured both absolute (MSA onto ALS
data) and relative accuracy of consecutive time steps. The TLS-based point clouds
were filtered with respect to vegetation using Riegl RiSCAN Pro standard vegetation
filter. This showed acceptable result in most cases, as TLS can penetrate vegetation



�

and give information on the real surface. For comparison with UAS data, TLS DEMs
were resampled to 0.10 m.
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Fig. 8.4 UAS- and TLS-based DoDs for Subsystem I of the Hofermühle landslide (for location, see
Fig. 8.1c, d). Change of surface elevation is displayed as raster height difference [m] for UAS-based
DEMs (left columns) and TLS-based DEMs (right columns) of 0.10 m raster grid size, excluding
values between �0.05 and + 0.05 m (a–f), between �0.10 and + 0.10 m (g–l) and between �0.15
and + 0.15 m (m–r). (UAS pilots: 2017-06-13 Sabine Kraushaar, 2018-06-14 and 2019-05-25
Elmar Schmaltz, 2020-12-07 Robert Kanta)

For four-time steps (epochs), DoDs were calculated utilizing 3D Analyst Tool
Raster Minus in ArcGIS Pro. Different error values of “no change” were applied to
illustrate the importance of high accuracies; values of change in raster-based surface
height were excluded for all values �0.05 m (Fig. 8.4a–f), �0.10 m (Fig. 8.4g–l)
and � 0.15 m (Fig. 8.4m–r) for both the UAS- (Fig. 8.4 left column of respective
error value) and TLS-based DoDs (Fig. 8.4 right column of respective error value),
respectively, and results are shown for one of the main active areas (Subsystem I)
(refer to Figs. 8.1d and 8.3b–e). For data description and interpretation, it should be
stated that changes in surface height of more than +0.05 m and less than �0.05 m
could be proven to represent real change (both surface and non-surface) for the
TLS-based DoDs (Stumvoll et al. 2021).

8.3.3 Results

For the UAS-based DoD, epochs 1 to 2 (2017-06-13 to 2018-06-14, Fig. 8.4a, g, m)
show an overall negative change in surface height, in some places < 0.25 m. In



contrast, the TLS-based DoD for epochs 1 to 2 (2016-09-15 to 2018-06-06,
Fig. 8.4b, h, n) depict an overall positive change. Even though epoch 1 differs,
with the UAS epochs covering 9 months less, the trend should be the same – but is
not. TLS-based DoDs can be assumed correct; while the 2016 data had good data
acquisition conditions, the 2018 data depicts high grass heights, which could by
some part be removed via vegetation filtering. The grass height changes are reflected
in parts by the positive values of changes in surface height.
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A higher error value of “no change” therefore should be applied; yet, considering
a threshold of more than �0.05 m, both real negative in the upper and real positive
changes in the lower part of Subsystem I would not be detectable (Fig. 8.4b – for
comparison refer to Fig. 8.1d). The UAS-based DoDs are not able to depict the real
surface change or even the trend of surface change for these two epochs, most
probably due to poor position accuracy of the 2017-06-13 data (Table 8.1, 0.067 m
total GCP RMSE, 0.053 m GCP RMSE for z), even though mean ground sampling
distance (GSD) was low (0.014 m/pix). However, GSD can be assumed to vary
intensively, as flight altitude changed due to the inclination of the slope.

A different case is perceptible for epochs 2 to 3 (2018-06-06, respectively,
�06-14 and 2019-05-25). Both UAS- (Fig. 8.4c, i, o) and TLS-based DoDs
(Fig. 8.4d, j, p) depict a negative change in surface height. Part of this negative
change can be assumed alteration in grass height; 2018 data had high grass condi-
tions, and 2019 data had low and fresh cut. Assuming changes of �0.15 m to
represent real surface change (Fig. 8.4o+p) rather than grass height change still
shows the results to be overestimated for the UAS-based DoD – even though
GCP-based z RMSE was ~0.001 m for both UAS-based DEMs (Table 8.1). For
the 2018 TLS data, parts of the respective grass vegetation could be removed via
filtering; this might explain some of the UAS-based overestimation.

Data acquisition conditions were good regarding epoch 4 for both the UAS
(2020-12-07) and the TLS campaign (2020-11-18), but not as good as for epoch
3 (freshly cut grass). Again, DoDs show differing results: the UAS-based rather
negative (Fig. 8.4e), the TLS-based rather positive changes (Fig. 8.4f) for an error
value of �0.05 m. The positive change for TLS-based DoDs is due to grass – the
line-like feature in the middle of Subsystem I represents the newly sowed path of a
trench dug end of 2018. The grass is different from the surrounding natural pasture,
obviously depicting growth even towards the end of the vegetation period
(November). Negative changes can be detected in the same or similar locations as
were visible for the other DoDs, representing the area right underneath the newly
developing head scarp (refer to Fig. 8.1d). These areas of negative changes in surface
height correspond with the UAS-based DoDs (Fig. 8.4e, k, q), yet they overestimate
the negative changes. Position accuracy of the respective UAS-based DEMs (GCP
total RMSE 0.004 and 0.02 m, respectively) still seemed to be acceptable to indicate
almost “no change” for an error value of �0.15 m (Fig. 8.4q) – similar to the
TLS-based DoD (Fig. 8.4r) – even though GSD of epoch 3 (0.0284 m/pix) was
lowest of all epochs.

While results for the first DoD, covering epochs 1 to 2, differ completely, results
for the second (2–3) and third (3–4) show at least the same tendency. Yet, SfM-based



DoDs overestimate negative surface change for both, even though they were
acquired at almost the same date as TLS data. GCPs were the only measure of
position accuracy for the SfM-based DEMs. While GCPs are needed to improve
geometry, also in the context of absolute metric distances, they can be a source of
error when comparatively analysing different epochs (Cook and Dietze 2019 and
references therein). The co-alignment of consecutive epochs without GCPs,
resulting in a precise relative but no absolute position accuracy, could be an
approach. The four UAS epochs were additionally processed following Cook and
Dietze (2019) for comparison of respective results. Errors in height were in the range
of 0.50 to more than 1.00 m, probably due to the fact that there a no non-vegetated
and stable areas that can be used for appropriate tie point generation – a limitation,
which has been mentioned by the authors (Cook and Dietze 2019). Results are
therefore not presented here.
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8.3.4 Discussion

Both UAS- and TLS-based surface investigation approaches have methodological
advantages and disadvantages with respect to both data acquisition and post-
processing. The study site is easily accessible by car, GNSS reception and APOS
real-time correction typically show high quality. TLS data acquisition can be done
by one person and takes approx. 1–2 h (two scan positions, ~30 min per scan plus
change of location). UAS data acquisition normally takes 2–3 persons; GCPs layout
and measurement takes approx. 1 h, the flight 30 min. With TLS, the entire
watershed can easily be captured (see Fig. 8.1b), while UAS data coverage – also
with respect to battery capacity, resolution and data volume – is confined to the main
study area (see Fig. 8.1c). Precision with respect to real ground data is highly
dependent on the vegetation cover. Trees alongside the torrent and in the lower
part of the catchment cause data shadowing underneath (UAS) and in an uphill
perspective (TLS). Grass cover and height are the most important limiting factors for
the main areas of interest. This holds true for both techniques. Time of data
acquisition should therefore be selected carefully and focus on times of low or no
grass cover (November–February), which was improved in the last years – yet also
depends on snow cover (possible from December to March), the farmer (mowing)
and the availability of hardware and staff. The TLS is able to partly penetrate grass
cover and capture real surface data, even from 1000 m distance (opposite valley
side). Higher grass cover can be filtered from the TLS point clouds, as information
on real surface data is also available. This does not hold true for the UAS-based SfM
data, making it nearly impossible to distinguish real surface data via post-processing.

TLS data post-processing includes data registration, filtering and DEM/DoD
calculation. Correct absolute and relative data registration of consecutive time
steps is time-consuming and requires high computing capacity. The same holds
true for vegetation filtering. TLS-based 3D point clouds covering the entire water-
shed typically have approx. 25 Mio points and ~ 500 MB after vegetation filtering.



Before filtering, the same point clouds can have up to 120 Mio points or more
and ~ 3.5 GB data size. Yet, after establishing one project with correctly registered
epochs, the addition of a new epoch is not that complicated. UAS post-processing
includes photo quality examination, SfM computation with photo alignment, GCP
marker localisation, dense cloud and DEM calculation. GCPs were used as only
measure of position accuracy; further registration via ICP-based MSA (Besl and
McKay 1992) was not performed for the UAS-based point clouds. Stable areas of
“no change” are necessary for MSA registration. This can be assumed for areas
further away from the main study area, which are covered with TLS. UAS coverage
is smaller, and areas close to the main landslide cannot be assumed stable. Addi-
tionally, the grass cover of the study area shows a high diversity both over the year
and over the area of investigation. Vegetation filtering is nearly impossible due to
low or no ground points in areas of vegetation cover, therefore further impeding a
co-registration of different epochs based on “surface” information, as it can be done
for the TLS data.
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Regarding surface resolution of point clouds and DEMs, respectively, one major
difference between UAS-based SfM and TLS lies in the routine of data acquisition,
apart from differences inherent to the technique. TLS (LiDAR)-based point clouds
are absolute metric data, the initial measurements depict real distances and the
absolute position of these distances in space (Heritage and Large 2009).
UAS-based SfM calculates points. Camera positions and orientations as well as
3D features of known distance need to be known exactly in classical photogramme-
try. In SfM, feature locations are automatically extracted in multiple pictures using a
so-called iterative bundle adjustment and camera position and orientation can be
calculated. In creating a sparse cloud with these extracted feature locations, the
algorithms then use all available pixels to calculate dense point clouds (Westoby
et al. 2012; Aber et al. 2019a).

The impact of various sources of uncertainty is influencing the calculation of
point positions – the absolute, metric accuracy of a respective point cloud is hard to
evaluate (Eltner et al. 2016 i.a.). TLS data is acquired using the same point distance
of 0.004� and the same scan positions each time. A mean resolution of ~0.05 m can
be achieved for the main study area. UAS data was acquired with differing hardware
(vehicles and cameras), flight altitudes, picture overlap, flight paths and GCP count
and position – and therefore differing resolution of SfM-based surface models,
impeding the comparability of resulting models. Mean GSD of SfM data ranged
from 1.31 to 2.92 cm/pix; calculated raster resolution of DEMs ranged from ~0.02 m
and ~ 0.07 m – and is therefore in a similar order as the TLS data. Yet, the point
density is a mean value for the entire area covered; there is no stable value. It could
be argued that in the years which have already past and are still to come to maintain
the long-time monitoring of this particular slow-moving landslide, the likelihood of
changing devices is high – especially when considering the rapid development
which has happened in the area of UAS-based SfM research. It seems therefore
definitely necessary to develop a routine or protocol of UAS-based SfM considering
technological advancements and changes in platforms as proposed by Eltner et al.



(2016) to be able to accurately process and analyse multi-temporal data from one
study site taken under different conditions.
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UAS data can be a powerful, flexible and especially low-cost tool to generate
accurate and reliable DEMs and resultant products to be applied in landslide
research – as demonstrated, for example, by Lucieer et al. (2014), Giordan et al.
(2015), Turner et al. (2015), Clapuyt et al. (2016), Cook (2017) and Giordan et al.
(2018). In reference to the “matter of expense”, low-cost UAS data is even consid-
ered a necessary tool to improve future landslide research, especially with respect to
long-term monitoring projects (Lacroix et al. 2020). This might of course be true in
many cases, especially considering areas difficult to access (Clapuyt et al. 2017) or
regarding the immediate need of data after a landslide event for hazard monitoring
(Gomez and Purdie 2016). However, the requirements on initial study site conditions
are high – in the sense of, for example, atmospheric conditions, vegetation cover,
stable areas for fine registration (MSA) and high-precision GNSS devices for GCP
measurements (Aber et al. 2010a; Gomez and Purdie 2016; Gomes Pessoa et al.
2021) – to obtain results which can be useful when investigating surface changes on
such detailed scale as it is the case with slow-moving landslides.

In-depth knowledge regarding camera properties, software algorithms, impact of
GCP number and spatial pattern, vegetation filtering inter alia are necessary to
evaluate UAS- and SfM-based results (Aber et al. 2010b; Clapuyt et al. 2016;
Eltner et al. 2016; Sanz-Ablanedo et al. 2018; Anders et al. 2019; Gomes Pessoa
et al. 2021). Expertise on these terms is no small “matter of expense” and requires
experts’ knowledge. In our case, we used different kinds of UASs, ranging from
commercial DJI products to non-commercial and specialized drones – none of which,
with the exception of the DJI Mavic Pro, was less expensive than 2000€, not
including the cameras. An expensive Leica GNSS (~50.000€) with real-time position
correction was used to measure GCPs – and still the measurements uncertainties
especially in z-direction (vertical) are too high to generate accurate and reliable
DEMs. Additionally, software prices of over 3000€ (Agisoft Metashape, Pix4D)
are not that different from TLS post-processing software. Post-processing of data is
time-consuming for both TLS- and UAS-based data, yet TLS data can be used for
co-registration right away with no uncertainties about internal distortion or geometric
inaccuracies; this is not the case for UAS-based SfM data. Internal precision of the
UAS and SfM-based DEMs is associated with the SfM Algorithm, the external
precision with the GCPs (position, setting), which is mostly done by calculating
the RMSE of ground control points compared to check points (Clapuyt et al. 2016;
Sanz-Ablanedo et al. 2018). Both were not evaluated quantitively by calculating, for
example, the RMSE of measured to real GCP location, because flight and camera
settings as well as GCP locations show large variations for all four epochs and there
are no fixed (true) GCPs (Sanz-Ablanedo et al. 2018). The only evaluation of the
RMSE for all GCPs was calculated by Agisoft Metashape (see Table 8.1), and this
can be an overestimation of the real accuracy (Sanz-Ablanedo et al. 2018). This needs
to be improved in future studies to enhance comparability of UAS-based SfM results.

Additional post-processing, advanced vegetation filtering (Anders et al. 2019)
and co-registration utilizing MSA could improve the relative position accuracy;



however, UAS data would still have the disadvantage that (a) it does not cover the
entire watershed due to high data volume and respective intensive or rather
unmanageable data post-processing for an increasing number of time steps (long-
term monitoring). (b) There are vegetation-induced data gaps and uncertainties,
which are partly also the case with TLS data. However, TLS is still able to penetrate
parts of the vegetation and to obtain information on the real ground surface (Anders
et al. 2019). (c) As mentioned in other studies, the reproducibility of consecutive
UAS-based DEMs is hampered due to the fact that it is a passive remote sensing
technique, therefore strongly influenced by illumination conditions (e.g. clouds,
haze) (Clapuyt et al. 2016). Additionally, UAS hardware has experienced an incred-
ible development in the last decade (Giordan et al. 2018); with respect to long-term
monitoring projects, this too can impede comparability of consecutive UAS and SfM
campaigns. (d) The evaluation of results and error assessment requires detailed
experts’ knowledge. Optimized GCP layouts differ in literature (Sanz-Ablanedo
et al. 2018), the measurement is time-consuming and requires a high-definition
D-GNSS as acquisition errors propagate throughout SfM processing and DEM
generation. As these GCP measurements are still not sufficient with respect to the
relative position accuracy of consecutive time steps, intensive post-processing with
respect to data registration will be required. Even then, it is not sure whether position
accuracy will be enough to detect real surface change at the respective site due to the
order of process magnitude and other influences on data accuracy.
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8.4 Soil Erosion

8.4.1 General Information

The wide spectrum of water-induced erosion types are defined by their size and area
of impact. They range from splash erosion triggered by the impact of one individual
rain drop to rill and gully erosion as a result of incision by concentrated water runoff.
Even though the size of the process is part of its definition, the limits are vague.
According to the Soil Science Society of America (2001), rill erosion is defined as
the process forming small channels of only several centimetres depth, while gully
erosion further deepens the rills leading to channels of a depth > 0.5 m.

In an agricultural setting, if crop rotation is performed, the soil is, inter alia,
affected through linear erosion initiated in predefined rills. These predefined rills can
be the result of the cultivation process, such as trenches between rows in potato
farming or furrows by seed drilling.

During an erosive event, interrill eroded sediments are transported into rill
channels by overland flow, where the concentrated runoff is faster and therefore
increases the total sediment transport efficiency (Bruno et al. 2008). Thus, rill
erosion is considered the primary sediment-producing process (Bruno et al. 2008;
Stefano et al. 2013). Especially, in a setting where plants are cultivated in rows, the
concentrated flow in the trenches forms rills and produces sediment. Detection of rill



erosion, as well as the monitoring of the rills, is consequently a crucial management
tool in order to reduce soil loss.
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On small scale study sites – for example, plots or small areas (~0.5 ha) – various
studies have shown the potential and possibilities of SfM to detect small erosional
features (Eltner et al. 2014; Smith and Vericat 2015; Hänsel et al. 2016; Eltner et al.
2018; Candido et al. 2020). Nevertheless, with upscaling of the study area size, the
errors also increase and therefore reduce the reliability of identified erosion and
deposition processes (Smith and Vericat 2015; Eltner et al. 2018; Meinen and
Robinson 2020).

Unmanned laser scanning (ULS), on the other side, has to the authors’ knowledge
not been applied to measure or monitor small scale erosion processes. The main
application has been in forestry (Wieser et al. 2017; Liang et al. 2019; Prata et al.
2020) and landslide monitoring (Pfeiffer et al. 2019; Zieher et al. 2019), while the
utilization for surface change detection is rather new (Mayr et al. 2019; Sofonia et al.
2019; Backes et al. 2020).

The presented case studies were conducted on in-use agricultural fields. One of
the fields was cultivated with corn, while not 2 potatoes, but 2 fields! potatoes were
planted. Since for both crops crop rotation is crucial, each study observed only 1 year
on each field. Therefore, the focus of the case studies and this work is put on the
detection of the smallest large-scale features – annual rill and linear sheet erosion –

ranging from a few millimetres to a few centimetres.

8.5 Study Area: Böheimkirchen – Example for Linear
Erosion

8.5.1 Description of Site

The first study site is located in Böheimkirchen, Austria (Fig. 8.5a). It is an
agricultural field of approximately 2 ha on which corn is cultivated along the contour
(Fig. 8.5b+c). The straight field has a mean slope of 9.3�. The selected field is located
in a transitional zone between two soil types: Planosol in the lower-lying southern
and western parts and Gleyic Cambisol in the north and north-eastern, upper parts of
the field. Texture classes of the top horizon are silty loam and loamy sand,
corresponding to grain size distributions of 10-62-28% and 38-49-13% (sand-silt-
clay), respectively. This data is based on the Austrian Soil Survey (ÖBK); soil
samples were not taken during the 2020 study.

8.5.1.1 Description of Research Aims

The aim of the study is to be able to predict, without explicitly modelling surface
runoff, whether it can be expected to flow along the tillage direction (WNW-ESO in
this case) or in the direction of the topographical slope (SSW in this case). By



default, the latter is expected to be true – mainly due to the fact that the tillage
direction or orientated roughness is not directly represented at DEM resolutions of
>0.1 m cellsize (Nunes et al. 2018). Efforts have been made in this direction for
example by Takken et al. (2001), who developed an algorithm based on several
parameters (slope, angle between topographic and tillage direction, oriented rough-
ness) to decide for each cell, which of the two possible directions (tillage or
topographic) is more likely and then combine the resulting flow directions
(correcting the conflicting flow directions created in the process). Other sources on
the topic are for example Ludwig et al. (1995) or Souchere et al. (1998).
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Fig. 8.5 Location of the Böheimkirchen study site and areas/profile of examination. (a) Location of
the study site in Austria close to the Alpine foreland. (b) Orthomosaic of the agricultural field. (c)
Zoom in for rill examination. (d) Profile along slope of the point clouds generated with SfM and
LiDAR. Denoised LiDAR cloud was cleaned applying SOR- and Noise Filter in CloudCompare.
SfM cloud is displayed in RGB colours, while original and denoised LiDAR clouds are shown in
red and black, respectively. Relief shading of (a) is based on an ALS-derived Austrian 10 m DEM
(BMDW 2015), and (b) and (c) on the DEM, with a cellsize of 9 mm, generated with SfM of the
survey (2020-06-03)

The actual effort of the study is twofold: (1) apply the algorithm of Takken et al.
(2001) and find out if it is able to predict the surface runoff regime (flow in tillage or
topographic direction) recorded by the UAS mission, i.e. which is visible in the
orthophoto and represented by the DEM elevation. (2) use the high-resolution DEM
from the UAS mission directly in order to create an alternative approach that is better
able to reproduce the runoff pattern that is evident in the data. Approach number 2 is
only expected to yield results when a large range of different field conditions,
geometries and topographies are investigated.
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8.5.2 Flight Routines and Post-processing

The UAS flight took place after a 20 mm/day precipitation event in June 2020 – the
precipitation data is only available in a daily format, yet since erosion was triggered,
it can be assumed that the precipitation fell in a shorter period than in a day. A DJI
Matrice 600 octocopter mounted with a Sony Alpha 6000 camera and a Riegl
MiniVUX-1UAV laser scanner was used for image and LiDAR data acquisition
(cf. Fig. 8.6). Flying altitude was set to 25–45 m above ground resulting in a ground
sampling distance (GSD) of 0.61–1.11 cm/pixel. Side and frontal overlap of images
were set to 80% and 75%, respectively, leading to a total amount of 623 images.

Using Agisoft Metashape and RiProcess for each data acquisition method a point
cloud and digital surface model were generated. Point densities have mean values of
16,000 points/m2 for SfM and 1000 points/m2 for LiDAR point clouds. While a root
mean square error of 0.023 m was observed for the ground control points with SfM,
no registration errors were determined for the LiDAR cloud. The study is still
ongoing with no results published yet. Nevertheless, the high-resolution point clouds
and DEMs are in use to qualitatively analyse the observed rills (Fig. 8.5c) and will be
used here to present noise challenges of ULS point clouds (Fig. 8.5d).

Fig. 8.6 DJI Matrice 600 with (a) the mounted LiDAR Riegl MiniVux-1UAV laser scanner and
(b) the Sony Alpha 6000 optical camera
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8.5.3 Results

Comparison of two derived point clouds shows a high noise in the LiDAR data,
whereas SfM generated a more precise cloud. This is especially visible in the street
section of the profile (Fig. 8.5d), where mean differences of the z extent account for
0.0026 m in the SfM cloud and 0.0495 m in the raw LiDAR cloud. Through the
application of Statistical Outlier Removal Filter (SOR) and Noise Filter, which are
integrated within CloudCompare, this noise could be reduced to 0.0159 m. Filtering
of the point cloud reduced point density to 640 points/m2, which should still be
sufficient for topographic change detection (Resop et al. 2019). Through multiple
iterations of filtering, the precision of ULS point clouds gets reduced continuously
but at the cost of losing points, which requires individual evaluation for each survey.
These precision drawbacks of ULS data can be problematic in further processing and
analysis and therefore need consideration whether the method is applicable for the
investigated process.

8.5.4 Study Area Herzogbirbaum and Hollabrunn – Example
for Change Detection

8.5.4.1 Description of Sites

Two agricultural fields in the Austrian Weinviertel were chosen for the investigation
(Fig. 8.7a). The first site is in Herzogbirbaum, while the second one is situated –

about 15 km distant – in Hollabrunn.
The area of interest of the Herzogbirbaum field has a mean slope of 4� and is

approximately 290 m long, and 50 m wide, leading to an area of 1.4 ha (Fig. 8.7b).
The soil the site is located on is a Chernozem, with a silty loam soil texture,
consisting of 27% clay, 67% silt, and 6% sand.

The site of Hollabrunn is approximately 2 ha of size and has a mean slope of 4.5�,
whereas the upper and lower parts have a lower slope than the middle section. The
soil the site is situated on is as well twofold: The upper and lower parts are classified
as Chernozem disrupted in the middle section by a band of Kulturrohboden
(degraded chernozemic soil due to agricultural use). The chernozemic soil’s texture
is classified as loam, with 20% clay, 47% silt, and 33% sand, while the
Kulturrohboden has a higher silt proportion – 17-52-31% clay, silt, and sand,
respectively – and therefore is classified as silty loam. Additionally, the middle
section is characterized by a high proportion of coarse fluvial rocks.

On both sites, the cultivated potatoes were planted before the first flight. Culti-
vation was done using the same machinery and along the topographical slope.
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Fig. 8.7 Location of the two change detection study sites and close-ups of the Herzogbirbaum
study site. (a) Position of Hollabrunn and Herzogbirbaum in the north-eastern of Austria. (b)
Orthomosaic of the Herzogbirbaum study area on 2020-06-10 showing a vegetation cover of
74%. (c) Orthomosaic and vegetation filtered point clouds of a more detailed scenery. Relief
shading of (a) is based on an ALS-derived Austrian 10 m DEM (BMDW 2015)

8.5.4.2 Description of Research Aims

The aim of this study is to investigate the soil erosion reduction in potato farming
through different measurements. Conventionally potatoes are planted in rows,
resulting in the area between the rows as the optimal location for surface runoff.
The three counter measurements – greening, dyking, and greened dykes between the
rows – are contrasted with the conventional method by using the UAS data to assess
which method resulted in the lowest soil loss.

8.5.5 Flight Routines and Post-processing

Five UAS flights per study site were conducted between April and September of
2020 for image acquisition, whereas on the latter three flights, additionally LiDAR



data was taken. For each of the sites, the first two flights of the season were
performed using a DJI Matrice 200 quadrocopter with a nadir-faced Zenmuse XT2
camera – whereas only optical photographs were used. The latter three surveys were
operated using a DJI Matrice 600 hexacopter with a mounted Riegl MiniVUX-
1UAV laser scanner and a Sony Alpha 6000 camera (refer to Fig. 8.6). Flying
altitude for all surveys was set to 25 m above ground resulting in a ground sampling
distance of 0.99 and 0.62 cm/pixel for the Zenmuse XT2 and Sony Alpha
600, respectively. Frontal overlap of the images was set between 80% and 85%
and side overlap to 75–80%.

8 Application of UAS to Detect Infrequent and Local Large-Scale. . . 223

Processing was done with Agisoft Metashape for observed photographs and
RiProcess for LiDAR data. Root mean square error (RMSE) of ground control
points used in SfM procedure varied between 0.012 m and 0.032 m. Level of
detection was calculated using the standard deviation of the RMSE for each flight,
resulting in a level of detection (LoD) range of 0.038 m and 0.071 m. The vegetation
classifier of Agisoft Metashape was applied on all clouds with mixed results
depending on the vegetation cover. Mean point densities of the raw LiDAR point
clouds varied between 1700 and 2500 points/m2. On the dataset of June, where
vegetation filtering was necessary and still possible, the TerrainFilter module of
OPALS was applied. The resulting point clouds had a mean point density of
350–400 points/m2. This is on the lower end to be suitable for surface change
detection (Resop et al. 2019), but it includes areas where because of the dense
vegetation no ground points at all could be observed, for example, top of rows. Since
the areas between the rows are way more important – in which a high point density
can be observed – the actual point density in the areas of interest should be higher
than 350–400 points/m2.

8.5.6 Results

Small scale volume changes calculations – for example, rill erosion – with these
datasets have shown to be difficult for various reasons: (a) Vegetation cover has
shown to be a crucial limiting factor in the study. While vegetation cover for the first
two flights was rather low – ranging between 0% and 9% – it increased severely after
the second flight reaching up to 74% in June (third survey) and even 97% in July
(fourth survey) in Herzogbirbaum. In Hollabrunn, vegetation cover was generally
lower than in Herzogbirbaum, with coverage reaching 50% in June and 73% in July.
Before the fifth flight in September, haulm destruction was performed on the plants,
leading to dried-out potato plants covering the soil. While vegetation can easily be
filtered for the second flight, later flights have proven to be difficult. Vegetation
filters applied on point clouds generated with SfM struggle to deliver consistent
vegetation-free point clouds with datasets where the observed vegetation cover is
higher than 50%. Using LiDAR, a tolerable vegetation-free point cloud can be
generated with vegetation covering about 75% of the soil. In the case of the June
Herzogbirbaum survey (Fig. 8.7c), this leads to a sparse vegetation free point cloud



with a large area in the northeast of the area of interest where no ground points could
be classified when filtering the SfM cloud. On the contrary, the filtered LiDAR cloud
still has enough ground points – even though they are sparser in the area where no
ground points could be observed with SfM – to feature the soil surface. (b) Since the
farmer actively uses the field, it was not possible to install fixed checkpoints on the
field, which were either high enough to surpass vegetation but not hinder (spraying)
machines or impede the farmer’s work. As a compromise, soil anchors were placed
on the ridges of the potato dams, in which GCPs were put before each survey. This
setup worked fine until the third survey, from which again vegetation was so dense
that the GCPs could not be placed in the soil anchors. (c) It was also observed that
using three-dimensional control points in a LiDAR study is necessary. Planar control
points – like those usually used in an SfM study – do not result in a high enough
point density on the control point surface and result in a higher error. (d) As a result
of the aforementioned difficulties, a satisfying point cloud registration could not be
achieved. Since the field per se in constant change – soil subsidence, vegetation
growing – fixed checkpoints or at least checkpoints at the same location in each
survey, showed to be crucial.
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8.5.7 Discussion

To measure large-scale erosion processes with remote sensing techniques, various
criteria must be fulfilled. Foremost, the LoD must be smaller than the actual process
extent. In most large-scale erosion investigations with UAV-generated point clouds,
this will be the most limiting factor. But also, vegetation – and consequently filtering
of vegetation – as well as, mainly in the case of ULS, cloud density play crucial
roles. In this regard, both techniques used in this work come with their virtues and
drawbacks. While SfM struggles to filter vegetation covering more than 50% of the
ground, the point density and precision of a SfM point cloud are superior to a point
cloud generated with ULS. Regarding change detection, each point cloud used in
this work, even though flight routes were planned with high overlaps, low flying
altitude, and a cross-pattern, has a high RMSE, and therefore, the LoD of two clouds
were too high to assess large-scale erosion quantitively.

Referring to SfM, Eltner et al. (2018) and Candido et al. (2020) have proven that
it is possible to generate point clouds with an optimized setup, of which the RMSE is
within a few millimetres. Investigating small areas – from plot scale to small fields
reaching up to 20 � 70 m – and working with fixed targets are both measures to
increase data reliability (Eltner et al. 2018). Additionally, their areas of interest were
kept free of vegetation which further reduces uncertainties within the data since
significant vegetation makes SfM unsuitable as a method (Candido et al. 2020).
Within the framework of this study, these optimizations were not able to be made.
The field size was given in the case of Böheimkirchen. In the case of Herzogbirbaum
and Hollabrunn, the extent of the experimental setup determined the width and
length of the area of interest. Since all fields were in active use and cultivated,



vegetation growth was unavoidable, resulting in inadequate (Eltner et al. 2018;
Candido et al. 2020) datasets after June for Herzogbirbaum and July for Hollabrunn.
Fixed targets were not installed since they would have needed to surpass vegetation
and be lower than spraying machinery.
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The studies of Eltner et al. (2018) and Candido et al. (2020) further highlighted
and supported previous investigations that once you measure surface changes in a
sub-centimetre range, soil erosion and deposition is not the only process altering the
soil topography – swelling and shrinking (Eltner et al. 2018; Kaiser et al. 2018;
Candido et al. 2020), consolidation and surface crusting (Eltner et al. 2016; Eltner
et al. 2018; Candido et al. 2020), raindrop impact and soil compaction (Hänsel et al.
2016; Candido et al. 2020), or disturbance by animals cause changes on the soil
surface (Candido et al. 2020). Additionally, they advise performing SfM investiga-
tions on large-scale (Candido et al. 2020) to medium-sized (Eltner et al. 2018) plots
or fields since, with increasing plot size, data reliability decreased (Smith and Vericat
2015; Eltner et al. 2018; Meinen and Robinson 2020).

As mentioned before, the quality of ULS point clouds is less vulnerable to
vegetation but more limited by its point density. Two factors influencing point
density aside from the flight routine are vegetation and precision of the point cloud
since in order to filter vegetation and deviating points, point density will decrease.
However, the lower limit of a suitable point density is strongly connected to the
extent of the investigated process. For example, a point density of 300–400 points/
m2 might be sufficient to investigate a large landslide, while the investigation of
small erosion features most likely needs a point density higher than 2000 points/m2.
With this in mind, ULS has shown its potential to monitor erosion or mass move-
ment processes of a larger scale and magnitude than presented in this work in various
landscapes (Mayr et al. 2019; Sofonia et al. 2019; Backes et al. 2020). To discuss the
RMSE of ULS point clouds, values found in literature will be used since the
registration error of those was not determined in this work. The reported registration
errors vary between 0.05 � 0.31 m (Sofonia et al. 2019) and 0.46 m (Backes et al.
2020). Babbel et al. (2019) and Mayr et al. (2020) reported higher errors in densely
vegetated areas than on bare earth regions or buildings. How these uncertainties
influence the quality of a vegetation-filtered point cloud has not been established, as
far as we know. Mayr et al. (2020), who initially reported a registration error of
0.19 m, was able to reduce this error with a target-based registration to 0.041 m.
Corresponding to SfM, fixed reference targets for point cloud registration, in general,
showed to be crucial to reduce registration errors (Cramer et al. 2018; Haala et al.
2020; Mayr et al. 2020). Nevertheless, the reported vertical accuracies of 0.03 m
(Cramer et al. 2018) and 0.09 m (Babbel et al. 2019) or the 3D mean absolute error of
0.041 m by Mayr et al. (2019) are still too high to monitor large-scale erosion.
Therefore, Mayr et al. (2020) concluded that a ULS investigation is suitable if the
surface changes are greater than 0.2 m. Using a hybrid georeferencing method
(Mandlburger et al. 2017; Glira et al. 2019) with both imagery and LiDAR data,
Haala et al. (2020) reduced the elevation accuracy to 0.8 cm. An error below 1 cm
should be sufficient to assess the impact of a large-scale erosion event quantitatively.
Therefore, the hybrid georeferencing method seems to enhance not only the



registration errors of ULS data but also the applicability of point clouds generated
with UAVs.
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Both methods – SfM and ULS – are limited by registration errors to reliably make
statements on large-scale erosion processes. While precise ground control point
measurements are needed for the georeferencing of a cloud, registering two different
point clouds requires fixed targets in a survey. Depending on the setting, vegetation
filtering can be crucial to monitor surface changes. We found that vegetation filtering
with LiDAR is possible even at a high level of coverage (75%), whereas SfM seems
to be limited to a coverage of about 50% because of a lack of ground observations.
Moreover, recent studies have pointed out that SfM and LiDAR are not competing
techniques but rather enhance the results if combined (Haala et al. 2020).

8.6 Conclusion

UAS-based SfM and LiDAR (ULS) were applied within two different fields of
research (landslide and erosion research) to assess the user-friendly applicability of
DEM-based change detection and the informative value of respective DoD calcula-
tions for the detailed investigation of large-scale (small) processes. Both complex,
slow-moving landslides and soil erosion depict the challenge of small process rates
and changes in surface height. These occur not only locally but also over larger areas
and, respectively, on different parts of an affected area. While changes in the order of
only millimetres per observation period are common for soil erosion (annual rill- and
linear sheet erosion), changes in surface height in the order of a few centimetres per
observation period or year are observable for parts of a complex, slow-moving land-
slide (e.g. rotational, retrogressive sliding). The investigation of both processes faces
similar challenges when it comes to high-resolution change detection, despite the
differences in their inherent nature. Challenges recognized for both examples in this
study include, but are not limited to:

• UAS application has become significantly more user-friendly in the last years.
Vehicle size, battery capacity, flight path planers and internal GNSS receivers – to
mention a few sticking points – have improved. Flight parameters (altitude,
picture overlap, point distance, etc.) have to be chosen with care with respect to
the required resolution of respective surface models, data size used for post-
processing and battery capacity.

• Flight altitudes of only a few meters are commonly used in plot-scale soil erosion
research to generate high resolutions, especially with respect to SfM. This would
not be feasible for the agricultural fields (rill erosion) investigated here. The flight
altitudes for the soil erosion sites of 25–45 m should also be used when investi-
gating the landslide processes, where altitudes of 60–120 m were applied.
However, only one small landslide part was investigated there; the entire water-
shed is of interest to explore the process in its entirety. Again, the lower altitudes
are more desirable but not feasible – vegetation cover (trees) prohibit low flight



8 Application of UAS to Detect Infrequent and Local Large-Scale. . . 227

altitudes and data size would increase drastically over time, complicating data
processing. Both fields of research therefore face the same problem of generating
data, which is detailed enough but can capture the entire area of interest.

• Fixed GCPs are necessary to obtain accurate registration over consecutive time
steps. However, this is not always feasible. For example, areas affected by sliding
at the Hofermühle are used for hay production; areas affected by soil erosion are
in-use agricultural fields. The possibilities to install fixed GCPs are limited or
impossible, especially as there are none or few areas of “no change” (streets,
houses) in close vicinity of the respective study areas. While such areas would be
available further away, they are not covered by the UAS flights as this would
drastically increase the number of photographs and data post-processing efforts.
In addition, the further away they are, the less accurate is their impact on the
overall point cloud calculation. However, GCPs are needed to (a) improve the
geometry of SfM-based models, (b) to enable the absolute referencing of surface
models to, for example, compare with other georeferenced data and (c) to enable
vertical and horizontal positioning and co-registering of consecutive models. The
fact that there are no stable or distinct features or areas in close vicinity to the
respective study sites requires the use of alternating GCP layout; their measure-
ment accuracy is one important source of uncertainty for these kinds of detailed
scenarios.

• Data post-processing includes the generation of surface models utilizing SfM
algorithms for aerial RGB pictures. Point clouds are calculated with this method,
whereas with ULS – and TLS, which has been used for data comparison – points
are measured (absolute distances). LiDAR, too, inherits certain measurement
uncertainties but is a direct, metric measurement of distances. Data inaccuracies
related to distance calculations with SfM are more complicated to determine.
Point cloud calculations with insufficient data (overlap, flight height differences,
GCPs) can lead to internal distortions and incorrect geometries, which do not
occur with LiDAR. The evaluation of respective clouds is difficult. Additionally,
the influence of dense vegetation cover (grass, potato plants) can prohibit ground
point detection for SfM, while LiDAR can still partly penetrate vegetation.
Without ground points, a model of the bare earth cannot be calculated – it rather
seems likely that in the case of densely grass-covered areas (landslide), the grass
itself represents the surface after SfM calculation. Without real surface informa-
tion, small changes in surface height cannot be calculated, respectively
quantified.

• Data registration of consecutive time steps is the most important step in post-
processing – and one most problematic. As mentioned, variable GCPs showed to
be not accurate enough in both fields of research and were not sufficient for
accurate vertical positioning of consecutive models. The installation of fixed
GCPs is practically impossible. Therefore, co-registration with, for example,
MSA may improve relative positioning of multiple time steps. However, this is
again somewhat limited. Planar surfaces, areas of no change and clearly distin-
guishable true ground point information are needed for all time steps for this
adjustment to deliver accurate results. The highest factor of uncertainty in this
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context is again vegetation. The filtering of vegetation prior to MSA is possible
for LiDAR-derived surface models, both in soil erosion and landslide research;
SfM-derived models hamper the separation of real surface data. Choosing a
reasonable time of data acquisition could improve this impact, for example,
seasons of sparse vegetation cover and leaf density (winter). However, this may
not align with time-sensitive research aims. Soil erosion in agricultural fields is of
interest especially during the growing season. Respective landslide areas can be
snow covered in winter. Additionally, apart from snow melt, precipitation is of
high importance regarding triggering of events, not only for erosion. Precipitation
values are highest in summer, where vegetation cover is highest, too. And last, the
co-registration utilizing MSA is CPU-intensive. Considering the quantity of data
which needs to be processed over time (long-term monitoring), this might become
an issue when working with such high-resolution data.

UAS-based SfM and LiDAR are powerful tools when it comes to the investiga-
tion of natural processes, but their applicability is facing a variety of challenges when
it comes to detailed, large-scale processes such as soil erosion and slow-moving land-
slides (sliding). Inaccuracies in SfM and ULS registration limit the evaluation of
erosion processes using only variable GCPs. The same can be asserted for the
SfM-based DoDs with respect to slow sliding processes. Vegetation cover has the
highest impact with respect to data noise in data acquisition, SfM calculation and –

pursuing data post-processing –further data registration. Vegetation filtering is
crucial, yet a time-consuming step, and limited in the case of SfM-based models.
Fixed GCPs seem to be mandatory for registration of consecutive time steps;
however, they can hardly be realized in natural systems with anthropogenic use.
UAS-based SfM – and with constraints also ULS – are often described as the
solution to investigate natural processes with “low-costs”. Yet, the “matter of
expense” is not limited to the UAS hardware. High-definition and expensive
D-GNSS devices are mandatory for optimal GCP measurement. Post-processing is
time- and resource-consuming. Accuracy evaluation of intermediate and final results
requires expert’s knowledge.
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Chapter 9
Polar and Cryospheric Remote Sensing
Using sUAS

Clare B. Gaffey, Anshuman Bhardwaj, Karen E. Frey, and Lyndon Estes

Abstract Monitoring efforts for remote high-latitude and high-altitude glacierized
regions heavily rely on remote sensing. Rapid ongoing changes in polar and
cryospheric environments owing to contemporary climate change have attracted
more attention towards these regions than ever before. Satellite remote sensing has
its own limitations related to low sun angles in high latitudes, high acquisition costs
for high-resolution images, and persistent cloud cover over ice-dominated land and
ocean surfaces. As such, over the past several years, small unoccupied aerial systems
(sUAS) have become a viable data collection tool to address the challenges related to
spaceborne or expensive airborne remote sensing for monitoring the cryosphere and
polar regions. This chapter discusses sUAS adaptations for collecting data on snow,
glaciers, permafrost, polar biology, the ocean, and atmosphere; the challenges of
conducting sUAS operations in polar latitudes; and the advantages and disadvan-
tages of the technology. It also provides resources that can be used to guide future
efforts in applying sUAS to polar and cryospheric research.

Keywords sUAS · UAV · Polar · Glaciology · Cryosphere · Remote sensing

9.1 Introduction

Polar regions present some of the planet’s harshest conditions for environmental data
collection. Persistent freezing temperatures, dangerous terrain such as sea ice or
glacial crevasses, passing polar bears, and aircraft icing all complicate work in the
Arctic. Further, conducting research with appropriate logistical support is expensive
in remote regions. Frequent cloud cover and limited or no sunlight for months of the

C. B. Gaffey (*) · K. E. Frey · L. Estes
Graduate School of Geography, Clark University, Worcester, MA, USA
e-mail: cgaffey@clarku.edu

A. Bhardwaj
School of Geosciences, Meston Building, King’s College, University of Aberdeen, Aberdeen,
UK

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Konsoer et al. (eds.), sUAS Applications in Geography, Geotechnologies and the

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-01976-0_9&domain=pdf
mailto:cgaffey@clarku.edu
https://doi.org/10.1007/978-3-031-01976-0_9#DOI


year confound observations from satellite-based optical sensors. Unoccupied aerial
systems (UAS) have increasingly been used as a tool to overcome some of these
challenges to analyze various aspects of cryosphere and high latitude processes.
Ocean, atmosphere, biology, and ice studies have benefited from the increasing
accessibility of UAS technology. This chapter explores numerous applications that
have been successfully pursued, the advantages and disadvantages of the technol-
ogy, potential future uses in this realm, and helpful resources to prepare and
empower prospective cold-region UAS researchers.
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9.1.1 UAS and Its Components

The parameters of what constitutes a small UAS (sUAS) or larger categories have
been developed by states and organizations to best fit their individual context. For
Antarctic operations, these categories have been defined as “small” for UAS
weighing less than 2 kg, “medium” for those between 2 and 25 kg, and “large” for
systems greater than 25 kg (CONMAP 2016). Organizations for Arctic operations
have cited sUAS as any system weighing less than 5 kg (Storvold et al. 2015). Still,
countries in these regions are free to develop their own definitions depending on
their needs. For example, Iceland distinguishes size categories of UAS based on the
environments they are flown in (urban versus rural) and also based on purpose
(commercial or leisure). In the US, the Federal Aviation Administration (FAA)
regulates operations of sUAS, defined as any drone weighing under 25 kg. Similarly
but differing in categorization, the US National Aeronautics and Space Administra-
tion (NASA) has classified two categories of sUAS. Category I are considered
models or sUAS that are less than or equal to 25 kg, and category II sUAS are
between 25 and 150 kg (UNOLS2019). The cryosphere and polar applications
discussed in this chapter fit the description of NASA’s Category I of sUAS and of
the FAA’s standard sUAS.

There are three major types of sUAS with some nuance between them. These
categories are (i) multirotors, which are suitable for covering shorter distances and
have hovering capability, (ii) fixed-wings, which can fly farther and for longer
periods of time; and (iii) hybrid models of the two that incorporate the benefits of
each. Hybrids, though expected to become more popular, are currently costlier and
rarer in environmental monitoring studies compared to multirotors and fixed-wing
aircraft. The main components of a sUAS are the aerial platform and the ground
control station. The aerial platform includes the airframe, sensor payload, naviga-
tion, and power system. The ground control station controls the movement of the
aerial platform and requires a communication system to relay information between
the station and platform (Giordan et al. 2020).

Off-the-shelf platforms that are ready to fly upon purchase have been successfully
used for several polar and cryosphere studies (e.g., Rohner et al. 2019; Rossini et al.
2018). While convenient, ready-to-fly systems have some limitations that can impair
the collection of the high quality data that is required for scientific research. Icing
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and the voltage drop of batteries provide additional risks in cold conditions. Lithium
polymer (LiPo) batteries are sensitive to cold-weather drainage, yet LiPo batteries
are widely used for sUAS owing to their lower weight, high capacity, and discharge
rates (Reagan 2020). Increased payload (weight) of sUAS contributes to battery
drain in cold conditions. Lithium-ion polymer batteries can provide better perfor-
mance at low temperatures than LiPo batteries (Grepow 2020) However, users’
choice of battery for off-the-shelf sUAS is limited by the manufacturer. Still, cold
temperatures reduce the performance of both LiPO and lithium-ion battery types,
and steps to minimize exposure to low temperatures preflight are through the use of
hand warmers, insulation, and flight practices such as pre-survey hovering to
maintain battery health (Carter 2019).
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Additional challenges in flying can occur in situations when pilot commands need
to override the preinstalled flight software, such as removing legal altitude safe-
guards when monitoring mountain glaciers. Flying in mountainous terrain also
increases the risk of the sUAS losing its Global Navigation Satellite System
(GNSS) connectivity which increases collision risk. In cases where mountains or
other structures limit visibility and degrade communication between the GNSS
constellation and the sUAS, autonomous flight is risky and most commercial
platforms prohibit takeoff (Stoven-Dubois et al. 2018). This risk can be reduced
when GNSS is disabled in place of manually flying in attitude mode. Another
common internal command is the “return to home” feature that is installed as a
fail-safe in prebuilt systems, though it may be executed in unwanted situations and
prevent pilot commands from overriding it. An example situation may be when
taking off from the deck of a ship which has drifted from its initial “home” position.
If the sUAS battery reserves run low or it loses connection with the controller during
flight, the sUAS will likely automatically travel to and attempt to land at its initial
position from takeoff. However, that initial location may be open water due to the
drift of the ship (Raoult et al. 2020). Nevertheless, for many research applications,
off-the-shelf sUAS have demonstrated their suitability. Da-Jiang Innovations (DJI)
(https://www.dji.com/) is the most popular, ready-to-fly brand for multirotor systems
in recent polar and cryosphere studies (Gaffey and Bhardwaj 2020). Chandler et al.
(2020) quantified landscape changes of an Icelandic glacier snout, covering an
0.5 km2 area using a DJI Phantom 3 quadcopter. Alonzo et al. (2020) used a DJI
Phantom 4 to create dense point clouds to estimate shrub biomass for 85 � 85 m
plots, flying at 55 m above ground level to achieve a ground sample distance of
~1.5 cm. Still, other studies encountered challenges with using the off-the-shelf
system. For example, Alfredsen et al. (2018) found that the default DJI Phantom
3 camera was limited by poor lighting conditions when used for mapping river ice. In
another study, Van der Sluijs et al. (2018) used a DJI Inspire 1 Pro to map permafrost
thaw features but found that their chosen preinstalled Zenmuse X5 camera had a
relatively slow-rolling shutter that produced motion distortions that had to be
corrected post-flight. The ease of off-the-shelf sUAS is enticing, but research into
systems, familiarity with environmental conditions of the study site, and taking
advantage of test flights are all encouraged to build confidence in the fit of
particular sUAS for any application. For scientific inquiry, users may choose to

https://www.dji.com/


build their own sUAS by assembling the various parts needed for flight, navigation,
communication, and sensing, which provides investigators with customization capa-
bility of its specifications and allows pilots to have more control over how a sUAS
may behave. The former benefit is useful when thinking about various payloads,
sampling capabilities, and other factors that are the center of a study design. The
benefit of granting pilots greater control is that it is helpful when it is unclear how
built-in software will behave in certain conditions, or if the pilot is able to override
internal commands.
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9.1.2 Brief History of sUAS for Polar and Cryospheric
Applications

In 1997, the Arctic Research Consortium of the United States (ARCUS) prepared a
report titled “Logistics Recommendations for an Improved U.S. Arctic Research
Capability” that included a recommendation to employ remotely piloted aircraft to
increase efficiency and comprehensiveness of data acquisition (ARCUS 1997). The
first Arctic UAS flight for academic purposes was flown in April 1999 in Utqiaġvik
(formerly Barrow), Alaska, with funding support from the US Department of
Energy’s Atmospheric Radiation Measurement Program (ARM) (Curry et al.
2004). The aircraft flown was a fixed-wing Aerosonde (www.aerosonde.com) that
was meant to obtain meteorological observations. Before long, two of these aircraft
were lost due to airframe icing and one was lost to carburetor icing. Following the
losses to the extreme arctic environment, efforts funded by the National Science
Foundation Office of Polar Programs adapted Aerosonde to the cold climate and
supported the development of miniaturized instruments to be efficiently carried by
the sUAS. These initial instruments supported data collection to measure radiative
fluxes, cloud and precipitation characteristics, and capture sea ice imagery. Updated
versions of the Aerosonde with varying payloads were tested and flown from the
Alaskan site over a five-year period (2000–2005) (Crowe et al. 2012; Curry et al.
2004). Since the development of the Aerosonde and the increased capacity for sUAS
technology in general, the inclusion of sUAS platforms for polar studies has grown.
A previous review (Bhardwaj et al. 2016a) identified one of the first sUAS applica-
tions in glaciology (Hodson et al. 2007), which used sUAS-collected imagery in
Svalbard to resolve spatial gradients in the ratio of supraglacial cryoconite (i.e.,
windblown dust and microbes that create small depressions on glacier surfaces). This
type of application is only possible with centimeter-resolution imagery that freely
accessible satellite imagery cannot provide. Beyond 2007, the number of published
studies in polar and cold regions that utilized sUAS for environmental monitoring
continued to grow, and we explore additional applications in Sect. 9.2 below.

http://www.aerosonde.com
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9.1.3 General Research Design Using UAS

Several steps are involved when conducting an analysis using sUAS (Fig. 9.1).
Though the environmental applications vary widely, there are some common steps
that are true for all flights. Pre-planning is an essential first step that involves
researching the legality of performing flights within a region of interest. Many
countries require sUAS operators to obtain state-issued licenses in order to legally
fly for commercial or academic purposes. Other steps may include registering sUAS
components and/or acquiring permits and permissions, especially if flying near
airports or other restricted areas. Beyond purchasing a sUAS, learning to fly, and

Fig. 9.1 Example workflow for a research project involving sUAS



securing permissions, plans have to be made that suit both the study design and
ensure safe operations for people and the greater environment. Considerations of
how to retrieve equipment will need to be addressed prior to flights as crashes, lost
signals, wind gusts, and technical failure are all possible and likely scenarios.
Performing extensive site reconnaissance in advance of flights is recommended to
identify obstructions and alter flight altitude or survey path if needed (Duffy et al.
2018). Inspection of the study area surroundings is also recommended when drafting
a retrieval plan for equipment should the mission fail. Reconnaissance should be
done well in advance using high resolution imagery, which is available with freely
available tools such as Google Earth (https://earth.google.com/web/) as well as in
person to identify potential obstacles at various scales. Conditions in the Arctic are
often cold, wet, and windy, which can lead to icing. Ice fog can create low visibility
situations, and insects or other wildlife may become distractions to the pilot during
operations. The Arctic region also introduces technical challenges, such as limited
GNSS coverage and extreme magnetic declination that has the potential to confound
automatic flight controls. In general, high latitudes are less well served by GNSS
compared to equatorial regions (Sheridan 2020). Determination of which type of
region-specific GNSS (e.g., GPS, GLONASS, BEIDOU, GALILEO) to use should
be done during mission planning. Typically, the quality of GNSS positioning is
dependent on having at least four satellites with wide spacing between them. Specific
guidance on how to select GNSS type based on location and how to calculate the
geometric dilution of precision, an index to indicate the quality of spacing between
satellites, is offered in Sheridan (2020). Installing redundant GNSS devices on sUAS
and other steps can be taken to better safeguard operations. There are several options
for collecting GNSS data, including on-board real-time kinematic (RTK) and post-
processed kinematic (PPK) technologies, which would require a base station in the
vicinity of the flight. The inclusion of a base station is especially important for
repeated flights if end products will be compared with additional flights or other
means of geospatial data. For more details on the unique challenges polar regions
impose on sUAS operations and suggestions for how to mitigate them, please refer to
Gaffey and Bhardwaj (2020).
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Following the initial study design that includes considerations of both what data
would best suit the research objective and what is feasible given the environment
(both natural and political), the flight design should be meticulously planned. While
flight-day conditions will likely cause deviations from Plan A, a well-planned
mission will be able to adapt and recover. Examples of evidence of good planning
involve having spare parts handy as well as the tools required to install them or make
repairs. Test flights in locations that mimic the intended field site are highly
recommended. These can greatly help investigators tune the sensor and flight
parameters needed to provide high-quality data. Testing sensor response to surface
brightness (e.g., fresh snow or varying illuminations with vegetation or structure
shadows) at the expected altitude, orientation, shutter, and traveling speed are among
some examples of flight variables that the study design will ultimately need to
consider. Calculations that incorporate desired image overlap, size of study area,
and vertical terrain variations can be done with mission planning software ahead of

https://earth.google.com/web/


time to maximize the usability of the resulting data. Decisions on the roles of pilots
and observers, where the sUAS will take off and land, the survey design, and the
length of time the sUAS is deployed will need to be made ahead of time. Another
important part of preflight planning is to have the best available short-to-medium
range weather forecast (up to 10 days in advance) prior to the planned field visit. This
helps to avoid most windy or rainy/snowy periods within the day to ensure stable and
consistent imaging.
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Once the flights are completed, it is important to immediately check the data for
its completeness and quality. Several backups of this data on different storage
devices should be made to mitigate any hardware failure. After the data have
undergone standard quality control and georeferencing (find more specifics on this
in Eltner et al. (2016) and Assmann et al. (2019)), structure from motion photogram-
metry (SfM) products can be created. SfM software reconstructs three-dimensional
geometries from images. Many applications involve an RGB camera flown on a
sUAS to create 3-D point clouds and meshes that then can be developed into digital
surface models (DSMs) as well as orthomosaics (2-D reconstructions of the entire
study area stitched together based on tie point matching individual images). From
these products, scientists are able to apply further quantitative methods of inquiry to
examine a wide range of natural processes.

9.2 Applications

9.2.1 Overview of Topics

The studies discussed below are a sampling of the many applications that have been
executed successfully. This chapter focuses on polar research and includes examples
of sUAS-based studies of the cryosphere conducted in non-polar regions, such as
mid-latitude montane glaciers. sUAS have been applied to studies of aerosols and
black carbon, oceanic and sea ice processes, glacier dynamics, and the ecosystem
resilience of flora and fauna. Categories of applications that are discussed here fall
within snow research, glaciology, ecology, permafrost, ocean, and atmosphere.

9.2.2 Snow Research

The most widespread application of sUAS in cryospheric research has been for
estimating snow depth. Snow depth measurements are traditionally done using
manual measurements with probes, but this can be troublesome over large areas or
complex terrain, while requiring interpolation to provide continuous estimates
within a region of interest. Remotely-sensed measurements are better suited to
detecting nuance over continuous surfaces. In most cases, this has been done by
differencing snow-free and snow-covered DSMs, using a baseline snow-free DSM



generated from either sUAS (most common and most recommended method for
maintaining DSM consistency), LiDAR, or satellite image sources. Recently, some
researchers have flown radar sensors to directly measure depth (e.g., Jenssen et al.
2020). With the advent of lightweight drone-mounted radar sensors, real-time snow
depth monitoring with high accuracy is expected to become more common in the
coming years (e.g., Jenssen and Jacobsen 2020; Tan et al. 2017).

242 C. B. Gaffey et al.

Snow cover can be particularly troublesome to measure with optical sensors.
Freshly fallen snow forms homogenous surfaces that provide few of the textural
differences that SfM software needs for generating tie points (Mali and Kuiry 2018).
Depending on the sun and sensor angles, glare from the bright reflectance of snow
and ice can also saturate image pixels (Bühler et al. 2016). This effect can also distort
heterogenous surface cover that may include dark shadows, vegetation, or bare
ground which contrasts with patches of snow cover, causing artifacts to emerge
owing to varying sensor exposure needs (Lamsters et al. 2019). Additionally,
vegetation has been found to further hinder snow depth estimates as short vegetation,
such as tall grasses or shrubs compressed by snow, can result in an underestimation
of snow depth when using a snow-free digital surface model baseline that includes
vegetation. In fact, this type of canopy can become compressed to the point where it
can produce “negative” snow depths on difference maps (Nolan et al. 2015). Other
changes in surface topography beneath the snow cover can also contribute to this
type of error including frost heave (Nolan et al. 2015), permafrost creep (Goetz et al.
2019), or erosion (Avanzi et al. 2018). To overcome some of these challenges,
Cimoli et al. (2017) suggested applying image content enhancement by increasing
the contrast between the pixels without reducing the dynamic range and radial lens
distortion correction, which improves the image geometry for SfM processing.
Further, maintaining a fine ground sampling resolution that sufficiently distinguishes
the intersection of snow and vegetation can help alleviate errors (Fernandes et al.
2018). Measuring ground control points in the same locations in the snow-on and
snow-off DSMs supports accurate georeferencing when using the differencing
technique (Goetz and Brenning 2019). Though more expensive, sUAS flown
LiDAR also increases the accuracy of snow depth estimates, particularly in vege-
tated areas (Harder et al. 2020).

9.2.3 Glaciology

Glaciology has been one the most popular subjects for sUAS investigation within
polar and cryospheric studies (Gaffey and Bhardwaj 2020). Repeated sUAS surveys
to create SfM orthomosaics and DSMs have been helpful tools for analyzing glacier
dynamics and surface changes. Postprocessing of these products has been used to
monitor plume dynamics (Jouvet et al. 2018), flow velocity (Jones et al. 2018), and
calving events (Ryan et al. 2015), as well as to inspect hazards (Fugazza et al. 2018),
calculate melt and ablation (Bash et al. 2018), and more. An example of the SfM
products and the glacial process information that can be extracted is in Fig. 9.2. Here,



orthophotos and DSMs collected on flights on different days are used to determine
changes in velocity fields of a glacier terminus. A detailed description of the
processing steps between data collection and glacier surface tracking can be found
in Benoit et al. (2019).

9 Polar and Cryospheric Remote Sensing Using sUAS 243

Fig. 9.2 Example of orthophotos (a–c), DSMs (d–f), and velocity fields (e–i) showing the lead-up
to and aftermath of a calving event that occurred on Greenland’s Store Glacier in July 2017.
(Reproduced with permission from Chudley et al. (2019a) under CC 4.0 (https://creativecommons.
org/licenses/by/4.0/legalcode))

Many studies used processes similar to this one to determine flow and calving
rates of glaciers worldwide. A notable study that included this type of workflow was
done by Jouvet et al. (2018), who took advantage of the temporal resolutions UAS
provided to fly over the terminus of Greenland’s Bowdoin Glacier every 12 h (with
two exceptions) between July 7 and July 18, 2016, totaling 22 flights. This provided
high spatial and temporal resolution velocity fields capable of detecting changes in
surface ice flow rates, as well as daily snapshots depicting the stages of the calving
front and breakup of the ice mélange (i.e., a mixture of sea ice, icebergs, and snow
that is discharged from the marine-terminating glacier).

Other observations centered on glacier hydrology used sUAS imagery to monitor
drainage of ice-dammed marginal lakes, supraglacial lakes, and streams (e.g.,
St. Germain and Moorman 2019). Among additional in situ geophysical tools,
Chudley et al. (2019b) used bathymetric maps created from depth-corrected
sUAS-derived DSMs to investigate drainage events of supraglacial lakes on the
Greenland Ice Sheet (Fig. 9.3). They were able to observe process differences in
supraglacial lakes on fast-flowing and slow-flowing sectors of the ice sheet. This
work adds to increased understanding of ice sheet hydrology, which is essential for
predictions of global sea level rise.

https://creativecommons.org/licenses/by/4.0/legalcode
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Fig. 9.3 Tom Chudley and Poul Christoffersen of the Scott Polar Research Institute launch a
Skywalker X8 on the Greenland ice sheet to map ice dynamics. (The image also appears in Chudley
et al. (2019a) and is reproduced with permission under CC 4.0. (https://creativecommons.org/
licenses/by/4.0/legalcode))

Studies focused on calculating mass balance and detecting the melt of glaciers
have been conducted globally. Outside of the polar regions, examples of such studies
have taken place in China and the greater Himalayan region (Brun et al. 2016; Che
et al. 2020), Switzerland and the extended Alps (Rossini et al. 2018), Canada (Bash
and Moorman 2020), and tropical glaciers such as those in the Peruvian Andes
(Wigmore and Mark 2017). Detection and quantification of features on glaciers and
ice sheets have also received substantial attention, such as ice cliffs (Kraaijenbrink
et al. 2016), cryoconite holes (Cook et al. 2020), crevasses (Florinsky and
Bliakharskii 2019), and debris cover (Vincent et al. 2016). While most of these
studies used RGB cameras, a few adapted additional sensors. For example,
Kraaijenbrink et al. (2018) flew a thermal infrared sensor over a section of Lirung
Glacier in the central Himalaya of Nepal to identify ground objects, validate
radiometric values with a hand-held infrared sensor, and ultimately estimate debris
thickness on the glacier. However, difficulties arose as the thermal imager increased
energy consumption, which decreased the potential sUAS flight time. Additionally,
the glacial surface temperature conditions rapidly changed, impeding the feasibility
of performing multiple flights. Still, the spatial variability of glacier surface temper-
atures was not replicated with Landsat 8 thermal imagery, nor would the satellite be
able to provide revisit times suitable for diurnal studies. Therefore, sUAS thermal
data collection was concluded to be more appropriate for estimating the thickness of
small- to moderate-scale debris.

https://creativecommons.org/licenses/by/4.0/legalcode
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9.2.4 Other Polar Applications

9.2.4.1 Flora and Fauna

Unlike longer-term processes such as those centered on glacier movement that
should be monitored over several years or multiple seasons, studying the phenology
of Arctic vegetation requires repeated data collection over the summer season. The
short and rapidly progressing growing season at high latitudes further constrains
studies that rely on satellite imagery that are limited by low sun angles and persistent
cloud cover. For these reasons, sUAS are becoming a prevalent tool for monitoring
tundra vegetation (Beamish et al. 2020). Multirotors flown at low altitudes are a
popular method for monitoring different aspects of Arctic and Antarctic vegetation.
Riihimäki et al. (2019) used a DJI Phantom 4 quadcopter flown at 30 m above
ground level (AGL) to estimate the fractional cover of tundra vegetation. The study
classified the proportional presence of vegetation and used models of fractional
vegetation cover to upscale the measurements to satellite imagery, allowing a
much larger area to be characterized than that which could be captured by sUAS
flights. Such upscaled analysis can be useful for evaluating the extent of phenomena
such as greening that is caused by Arctic “shrubification” (e.g., Sturm et al. 2001).

Several shrub cover, vegetation height, and land cover classification applications
have been published. Fraser et al. (2016) used sUAS SfM to build a model of
vegetation heights and classified eleven types of tundra vegetation in their
2-hectare study site near Tuktoyaktuk, Northwest Territories, Canada. In Alberta,
Lovitt et al. (2017) used a multirotor flown at 110 m AGL to evaluate the role of
vegetation in shaping the surface complexity of peatland areas. In a 0.4 km2 peatland
site in Finland, Räsänen and Virtanen (2019) used sUAS optical imagery with
machine learning techniques to create detailed maps of vegetation and ground
cover classes. Compared to similar land cover maps created from high-resolution sat-
ellite imagery (two maps produced from WorldView-2 (2 m resolution) and
PlanetScope (3.7 m resolution)), the highest classification accuracy was achieved
by the sUAS imagery.

Antarctic cyanobacterial mats have been a focus of study by several investigators
(e.g., Lucieer et al. 2014; Malenovský et al. 2017). Turner et al. (2014) flew visible,
multispectral, and thermal infrared cameras to resolve components of moss ecosys-
tems. Sotille et al. (2020) calculated the normalized difference vegetation index from
sUAS and satellite imagery to broadly identify lichens, mosses, and algae in ice-free
areas of Hope Bay on the Antarctic Peninsula. Bollard-Breen et al. (2015) used a
custom-built fixed-wing sUAS to identify cyanobacterial mats, estimate their extent,
and discriminate between mat types. They were also able to detect human distur-
bances on the mat in the form of footprints. Unfortunately, the mats are fragile and
take years to recover after a shoe-print impact, so the authors encouraged the use of
sUAS technology for future examinations of the mats when possible.
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Animal population surveys and behavior studies conducted with sUAS have also
been performed. Some studies used sUAS as a tool to determine thresholds of noise
and/or the proximity to which the animal of interest becomes disturbed by sUAS
presence (e.g., Mustafa et al. 2018; Rümmler et al. 2018). Through this exercise,
Weimerskirch et al. (2018) determined that for a sample of eleven seabird species in
the Crozet Islands of the South Indian Ocean, a DJI Phantom 3 flown above 50 m
relative to the animals provided negligible impacts. Imagery collected by sUAS has
aided studies in identifying mass and body conditions of pinnipeds (Goebel et al.
2015; Krause et al. 2017) and estimating populations of seabirds and pinnipeds
including distinguishing demographics such as pups versus adults (Lee et al. 2019;
Korczak-Abshire et al. 2019; Zmarz et al. 2018). In a comparison of three aerial
platforms for monitoring populations of marine species that visit the water surface
often (i.e., whales, seals, and porpoises), sUAS were considered more logistically
sensible than kites or blimps and were ultimately the recommended platform for
aerial surveys of marine animals (Verfuss et al. 2019). For survey purposes, sUAS
are a non-invasive tool that can save humans the effort of negotiating potentially
dangerous terrain, while minimizing human-wildlife interaction.

9.2.4.2 Permafrost

Permafrost is perennially frozen soil that exists at high latitudes and in alpine
environments. Monitoring permafrost is currently of great interest largely because
of the threats it poses when thawing. In many areas, warming temperatures borne of
climate change have been thawing previously permanent frozen soil (Park et al.
2016). Human infrastructure built upon thawing permafrost destabilizes and creates
costly and hazardous damage. More indirectly, immense amounts of organic mate-
rial that were previously locked away in the frozen soil are able to decompose as the
permafrost thaws, adding more greenhouse gases (both CO2 and CH4) to the
atmosphere and further accelerating climate change (Park et al. 2016). Moreover, a
direct health impact of thawing permafrost can be in the form of exposure to
previously hibernating ancient microbes (Graham et al. 2012).

The formation and degradation of permafrost over time can create identifiable
landforms that provide indications of the morphology and stability of frozen ground.
Features of permafrost landscapes such as pingoes (Hodson et al. 2019), ice wedge
polygons (Kartoziia 2019; Zhang et al. 2020), and thermokarst lakes and ponds
(Freitas et al. 2019) have been the target of sUAS optical imaging. Such surface
manifestations of permafrost are often too small to be identified or monitored using
freely available medium resolution satellite imagery. One interesting effort by Van
der Sluijs et al. (2018) used both fixed-wing and multirotors UAS to carry five
optical and one thermal sensor to identify thaw slump features. Additionally, they
collected high-resolution soil stratification images along a headwall, which would
have been a dangerous task to sample otherwise. By comparing a previously
available LiDAR survey as a baseline with repeated sUAS surveys, they were able
to quantify the annual volume of displaced material owing to thaw processes. The



thermal imagery described terrain characteristics and processes of slump
development.
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Furrows, ridges in rock glaciers, and other patterned ground indicative of perma-
frost can be difficult to distinguish on images that are coarser than a few meters in
resolution. Lousada et al. (2018) flew a sUAS to map ice-wedge polygon networks
and found that these systems could only be analyzed adequately with 20 cm/pixel
imagery or finer, precluding the use of free satellite imagery. Van der Sluijs et al.
(2018) also noted that permafrost dynamics such as injection ice and terrain uplift
were difficult to detect prior to the general use of sUAS. Therefore, high spatial
resolutions obtained by sUAS have benefitted monitoring capabilities of these types
of features.

9.2.4.3 Ocean and Atmosphere

The measurement of atmospheric characteristics using sUAS is unique from the
applications discussed previously that largely used optical sensors to detect ground
objects. sUAS are well suited to collecting basic physical atmospheric measurements
of temperature, humidity, and pressure, but they have also been fitted for more
intricate tasks such as collecting air samples. While there are not many available
studies or datasets of UAS-collected atmospheric properties in the polar regions,
there have been notable works of this kind above sea ice. The developers of the
Aerosonde, the U.S. Department of Energy Atmospheric Radiation Measurement
(DOE ARM), established a facility at Oliktok Point, Alaska, just 260 km from their
initial station in Utqiaġvik. There, ARM has been involved in the development,
support, and operations of UAS, with the goal of routine Arctic sampling. At this
facility, de Boer et al. (2018) collected measurements of the thermodynamic state,
turbulence, radiation, aerosol properties, cloud microphysics, turbulent fluxes, and
albedo over sea ice to provide a detailed characterization of the lower atmosphere
with UAS and tethered balloons. In the Weddell Sea of Antarctica, Jonassen et al.
(2015) used multirotors and fixed-wing UAS to collect stratified air samples and
physical properties for atmospheric boundary layer profiling above sea ice. In the
Arctic, the Alaska Center for UAS Integration (ACUASI, https://acuasi.alaska.edu/)
at the University of Alaska, Fairbanks, has been using a ~115 kg fixed-wing UAS to
measure meteorological variables and sea ice extent, thickness, ridging, melt ponds,
and other characteristics. The international MOSAiC expedition (Multidisciplinary
Drifting Observatory for the Study of Arctic Climate) of 2019–2020, a year-long
cruise in the Central Arctic Ocean, also included sUAS in their arsenal for data
collection. Researchers from the University of Colorado, Boulder (Fig. 9.4), used a
fixed-wing sUAS to collect information on the atmospheric boundary layer and
surface albedo over sea ice. With the increasing amount of experience that started
with some of the early adapters mentioned here, sUAS are expected to grow as a
persistent tool for unraveling ocean-atmosphere interactions.

https://acuasi.alaska.edu/
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Fig. 9.4 John Cassano and Gina Jozef of the University of Colorado, Boulder, prepare to launch a
DataHawk2 fixed-wing UAS above Arctic Ocean sea ice during the MOSAiC expedition. The
DataHawk2 is equipped to measure sea ice surface and atmospheric infrared radiation, high
frequency (turbulent) wind velocity and temperature, pressure, and relative humidity. Additional
recorded measurements of airspeed, ground speed, and altitude provide high-frequency 3-D wind
speed and direction estimates. (Photograph taken by Delphin Ruché)

9.3 Discussion

9.3.1 Advantages and Disadvantages of the Technology

sUAS can be described as an emerging technology whose adaptation has largely
come from decentralized, ground-up efforts within many corners of environmental
monitoring. As such, investigators have independently adjusted parameters around
study designs and data collection. This tendency has resulted in a wide diversity of
processing procedures, which highlights the need identified by Manfreda et al.
(2018) to harmonize and standardize the approaches used for acquiring and
preprocessing sUAS-collected data. Manfreda et al. (2018) called on researchers to
define a clear and referenced workflow that includes the planning and acquisition of
data, the generation of SfM products, and best practices to assess the accuracy and
precision of SfM products by means of comparative experiments to assess the
reliability of different procedures to identify the most appropriate methodology for
environmental monitoring. Though consistency resulting from harmonization may
be preferable for the quality of UAS-based monitoring and the reproducibility of
methods, it is worth mentioning that it may also undermine observational flexibility,
which is an important feature of sUAS investigations. Such flexibility is required for



extreme polar environments, where improvisation may be needed during field
campaigns. Nevertheless, despite the need for operational flexibility, greater harmo-
nization would undoubtedly benefit sUAS operations in the cryosphere. This need
for harmonization extends from details around preflight planning all the way to
postprocessing and extraction of information. Best practices covering mission and
flight planning, sensor configuration, calibration, and correction are examples of
some of the gaps that currently exist (e.g., Manfreda et al. 2018). Despite this, efforts
are being made towards defining best practices for individual tasks such as building
the most robust ground control point network, and comparing SfM software and the
user-chosen parameters within to produce accurate products (e.g., Hendrickx et al.
2019; Sanz-ablanedo et al. 2018; Tahar 2013; Tonkin and Midgley 2016). Addi-
tionally, studies are being produced that offer standardized workflows based on the
target of study. With the aim of promoting comparable and reproducible sUAS imag-
ery for multispectral imaging vegetation, Assmann et al. (2019) proposed a
workflow for sUAS data collection and processing based on personal experience
in the Yukon Territory, Canada, synthesized with protocols suggested by the High
Latitude Drone Ecology Network (https://arcticdrones.org/). Organizations and
working groups tailored to specific fields have made strides to publish advice and
create common standards, some of which are discussed in Sect. 9.3.3.
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Table 9.1 Summary of advantages and disadvantages of sUAS as a tool for polar and cryospheric
studies

Advantages Disadvantages

Lower cost than manned vehicle oper-
ations.
High-resolution data collection.
On-demand.
Temporally flexible, revisit time can be
shaped to study design.
Wide variety of miniaturization of
sensors.
Under-cloud flights collect data at
times when satellites cannot.
Ability to access potentially hazardous
areas.
Freedom of customization to fit needs.
Limits disturbance to fragile land-
scapes (e.g., microbial mats).

Limited payload.
Cold conditions can cause battery drain and icing, spa-
tially constraining study area survey.
Increased responsibility of safety on the researcher.
Communication of flight activity with airspace and
relevant authorities.
Knowledge of UAS design and maintenance required.
Extra parts will always be needed.
Potential legality issues and extra permitting.

A summary of the advantages and disadvantages of the use of sUAS in polar and
cryospheric applications is in Table 9.1. Though the advantages are universal for
many environmental applications, the unique challenges of working in harsh, cold-
climate areas add disadvantages to the list. Having spare parts and the tools to
assemble them is always recommended, but in remote environments, the level of
required planning increases. Still, sUAS provide capabilities that benefit certain
situations. For example, the usage of sUAS for surveys eliminates the risk of
trampling vegetation in fragile high-latitude ecosystems. Additionally, sUAS

https://arcticdrones.org/


surveys reduce the risk to human life when accessing remote areas such as islands for
animal surveys (Zmarz et al. 2018) or investigating hard-to-reach potential hazards
such as those associated with glaciers in areas heavily trafficked by tourists (Fugazza
et al. 2018).
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Several studies successfully acquired high-resolution imagery in difficult-to-
access areas. An example of this was capturing the evolution of ice morphology in
the Antarctic by Li et al. (2020), who repeatedly flew a sUAS to monitor the
formation of ice dolines. The sUAS flights were performed with both LiDAR and
a camera to model the ice morphology and the authors found that the camera SfM
was most cost-effective, while the LiDAR was superior in resolving fine features.
However, unlike camera-based SfM that can be insensitive to crevasse features,
LiDAR is not sensitive to illumination differences and is capable of resolving snow
morphology, including crevasse topography and texturally homogeneous fresh snow
(Li et al. 2020). Other studies of ice morphological features found that UAS-based
optical cameras were a useful tool for monitoring surface-level changes (e.g.,
geometry, orientation, patterns), but reconstruction of crevasse depth is complicated
by low illumination and inefficient relational sensor orientation (Chudley et al.
2019a; Ryan et al. 2015). Although the cost of LiDAR sensors has been decreasing
and the miniaturization of sensors has allowed the platforms to be more effectively
used as payloads for sUAS, the price of sensors is still too high to be considered for
many researchers. For more information on LiDAR technologies best suited for
sUAS, please see Bhardwaj et al. (2016b).

High-altitude missions in areas such as mountain glaciers and ice sheet environ-
ments introduce additional challenges of lower air density and cold temperatures that
decrease sUAS battery life drastically. Flying at high altitudes requires additional
consideration of the type and specifications of the sUAS to be used. Companies such
as SkymineUAV (https://www.skymineuav.com/), which primarily caters to the
high-altitude mining industries, sell specialized software and hardware and offer
training that can be applied to data gathering in alpine environments. In the case of
building a custom sUAS, Paredes et al. (2017) provided several suggestions for both
multirotor and fixed-wing sUAS designs to best perform in these types of environ-
ments. While fixed-wing systems are better suited for high-altitude flying because
most of the vehicle’s frame is utilized in generating lift, multirotors can successfully
offer extended flight times and carry heavier payloads in these environments when
utilizing larger propellers (in diameter and/or length) coupled with high-voltage
batteries.

9.3.2 Potential Uses for sUAS in the Future

The applications explained above offer a representative yet relatively small pool of
examples across the cryosphere and polar sciences. There is still much to be learned,
synthesized, and improved upon for standardized methods of using sUAS for data
collection. Beyond this, there are areas of scientific research where sUAS has the

https://www.skymineuav.com/


potential to be a useful tool but has been underutilized or even unattempted. Some
suggestions for future applications of sUAS in the polar regions are listed in
Table 9.2. However, several innovative planetary research applications are also
emerging. For example, polar and several other cold-arid, high-altitude environ-
ments are considered the best Mars analogues on Earth, and recent studies have used
sUAS to effectively characterize Mars analogue features in high-latitude and high-
altitude cryospheric settings (Bhardwaj et al. 2019; Sam et al. 2020a, b). Considering
that NASA has sent the first sUAS to Mars with the agency’s Mars 2020 rover
mission, more such analogue studies employing sUAS in polar environments are
bound to provide immense scope for comparable planetary geomorphological
research.
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A limitation of sUAS data collection is the spatial constraint on the area that can
be surveyed compared to larger aircraft. However, the choice between sUAS
platforms can be tailored to fit research design needs. For example, fixed-wing sUAS
are less dependent on battery power in relation to flight time and distance covered
than multirotor platforms. Large-scale data coverage of sUAS is less available
compared to traditional remote sensing systems. To expand the footprint of sUAS-
collected data, we recommend using sUAS as a scaling tool to connect to satellite
data via models. This approach has been used in some studies outlined in this
chapter, such as in modeling fractional cover of tundra vegetation (Riihimäki et al.
2019), yet much potential remains. Upscaling sUAS with satellite or airborne
imagery could additionally be applied to many of the suggested future applications
in Table 9.2.

9.3.3 Resources for Updated Legalities in Polar Regions
and Helpful Organizations

sUAS platforms offer increased autonomy for researchers who would otherwise hire
manned aircraft for data collection. However, the use of sUAS places greater
responsibility on the researcher to ensure a safe and legal operation. Though a
sUAS flight may be technically possible in an area of interest, jurisdiction over
airspace and rules on the operation of sUAS may preclude operations. Acquiring
permits, when necessary, can take several months, so planning well in advance of a
flight is encouraged particularly in difficult-to-access areas, such as the polar regions.
The Arctic Monitoring and Assessment Programme (AMAP) Unmanned Aircraft
Systems Expert Group (UASEG) has compiled an aircraft systems operator’s hand-
book that includes many considerations for safety and useful information on Arctic
airspace authorities (Storvold et al. 2015). We recommend consulting this handbook
prior to flight planning in high latitude areas. In fact, AMAP has undertaken
considerable efforts to open airspace in the Arctic for research sUAS endeavors. In
2008, the UASEG was formed from a meeting of the eight Arctic nations (Canada,
Finland, Greenland/Faroe Islands/Denmark, Iceland, Norway, Russia, Sweden, and
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Table 9.2 PossibleUAS capabilities in key Arctic research topics

Topics

Lower atmosphere
Oceanic and sea ice
processes Glacier monitoring

Ecosystem
dynamics

Aerosols and black
carbon Sea ice properties Glacier mass balance Terrestrial
Optical particle
counters for measur-
ing aerosol concen-
tration and size
distribution.
Filter samplers for
aerosol composition.
Cloud condensation
nuclei.
Spectrometers for
measuring aerosol
and surface spectral
radiative properties.

Precision GNSS and
laser altimeter for
measuring sea ice
thickness (free-
board) and rough-
ness.
Ground-penetrating
radar for measuring
snow on ice.
Camera for charac-
terizing sea ice
types, concentra-
tions and melt pond
fractions.
Spectrometers for
sea ice spectral
albedo
measurements.

Laser altimeter or laser
scanner for mapping sur-
face elevation and thereby
glacier mass and year to
year total glacier mass
changes.
Ground-penetrating radar
(GPR) for facies character-
ization, englacial and sub-
glacial drainage, and
changes in accumulation
and melt.

Hyperspectral
imagers with very
high resolution for
vegetation map-
ping and monitor-
ing of vegetation
health.
Multispectral for
land cover classifi-
cations to scale up
with satellite imag-
ery.
LiDAR or optical
point clouds to
monitor vegetation
height and bio-
mass.
Hyperspectral/
multispectral/
GPR- based moni-
toring of perma-
frost degradation.
Terrestrial habitat
monitoring using
high-resolution
RGB and thermal
cameras.

Clouds Oceanproperties Glacier dynamics Marine
Cloud particle
imager for measur-
ing cloud particle
size and shape distri-
bution in water,
mixed phase and ice
clouds.
Radiometers for
measuring cloud
radiative properties.

IR thermometer for
measuring sea sur-
face temperature.
Synthetic aperture
radar for measuring
surface winds and
waves.

Camera (visual or infrared),
for estimating calving rates
and dynamic mass loss
rates compared to mass loss
by melting.
Synthetic aperture radar/
optical feature tracking for
estimating glacier flow
velocities.

Cameras (visual or
infrared) for
marine bird or
mammal surveys.
Hyperspectral
mapping of
shallow-water
benthic habitats.

Surface energy
fluxes Oceancolor Glacier hazards
Turbulent flux
probes and radiome-
ters for measuring
ocean-ice-atmo-
sphere energy

Imaging spectrome-
ter for measuring
ocean color to
determine nutrient
and chlorophyll

Bathymetric LiDAR for
glacial lake volume estima-
tion.
Thermal and RGB cameras
for glacial lake outlet and
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Table 9.2 (continued)

exchange and char-
acterizing the effects
of leads and melt
ponds.

concentrations.
Monitoring harmful
algal blooms.

dam monitoring.
LiDAR/RGB/thermal sen-
sors for studying ice ava-
lanches, landslides, and
other mass movements.

Meteorology Energy transport
Glacial/
periglacialgeomorphology

Air temperature,
humidity, wind, and
pressure.
Dropsondes for pro-
file measurements
through the atmo-
spheric boundary
layer.

Infrared probe for
measuring sea sur-
face temperature.
Synthetic aperture
radar for measuring
ocean currents
(along with track
interferometry).

RGB cameras for mapping
and reconstructing past
glacial events in a valley.
GPR for finding status of
buried ice in periglacial
environments.

Biogeochemistry Glacier albedo
CH4, CO2 and N2O
sensors for in situ
concentrations and
flux estimates.

Multispectral sensors for
monitoring glacier albedo
changes owing to black
carbon deposition.

Adaptedwith permission fromAMAP’sEnabling Science use ofUAS forArctic EnvironmentalMon-
itoring, Ch. 7, Crowe et al. (2012) and Gaffey and Bhardwaj (2020). Reproduced under CC 4.0
(https://creativecommons.org/licenses/by/4.0/legalcode) with additional applications inserted

Similar to AMAP, organizations have created handbooks and guidelines for safe
operations in the Antarctic as well. The Council of Managers of National Antarctic
Programs (COMNAP) UAS working group has created guidelines for UAS missions
in Antarctica with contributions from the Scientific Committee on Antarctic
Research (SCAR) and encouragement from the Antarctic Treaty Consultative Meet-
ings (ATCM) andCommittee for Environmental Protection (CEP) (USATCM

United States) where they and observer countries unanimously agreed that UAS
represented a key tool for understanding climate change in the Arctic and its global
impact (Crowe et al. 2012). UASEG hosted meetings with civil aviation authorities
to work towards increasing access in the Arctic for scientists to use these technol-
ogies. Still, regulations vary among countries and rules are still being developed,
updated, and changed. Owing to this, scientists still need to research specific
restrictions for Arctic locations though the hope remains that eventually a harmo-
nized regulatory environment will develop in the future (Table 9.3).

2014).
The purpose of this operator’s handbook was to identify and manage risks and offer
strategies to mitigate those risks, which is particularly important in unique and
protected environments such as Antarctica. Recommendations covered include
record keeping of flights and accident incident reporting, identification of all major
components of the UAS, and routine sharing of operational and certification infor-
mation in support of facilitating best practices (CONMAP 2016).

Lastly, an operator’s guide with helpful advice for marine-based missions
comes from the University-National Oceanographic Laboratory System

https://creativecommons.org/licenses/by/4.0/legalcode


(UNOLS) Scientific Committee for Oceanographic Aircraft Research (SCOAR)
(UNOLS2019). While this report is tailored to US flight operations, particularly in
its detailed discussions of legality and obligations stemming from the Federal
Aviation Administration (FAA), features are included that would benefit ship-
based plans irrespective of national jurisdiction. Included are helpful guidance
such as decision-making flow charts for pre-cruise planning, communication plans
for Antarctic operations, and other preflight, shipboard, and post-cruise consider-
ations. Duffy et al. (2018) provide accounts of first-hand experience and advice for
managing sUAS operations from a moving ship. As an additional resource, they
credit much of what they have learned to DIYdrones.com, an online community that
includes blogs, discussions, and specialized groups to support sUAS endeavors
everywhere.
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Table 9.3 Summary of networks and resources helpful for planning sUAS missions in polar
regions

Name Description URL Link

Arctic Monitoring & Assess-
ment Programme (AMAP)

A working group of the Arctic Council
that has created UAS operator hand-
books specific to the Arctic.

Amap.no

Council of Managers of
National Antarctic Programs
(COMNAP)

Similar to AMAP, but created hand-
books focused on Antarctic operations.

Comnap.aq

University-National Oceano-
graphic Laboratory System
(UNOLS)

Their scientific Committee for Ocean-
ographic Aircraft has produced an
operator’s handbook for marine-based
flights.

Unols.org

International Society for Atmo-
spheric Research using
Remotely piloted Aircraft

A professional organization to support
knowledge exchange for atmospheric
and environmental research with UAS.

Isarra.org

International Conference on
Unmanned Aerial Systems
(ICUAS) Association

A nonprofit organization to promote
overall UAS usage and hosts annual
conferences.

Icuas.
comUasconferences.
com

UAVCoach An online community with UAS pilot
training and other resources.

Uavcoach.com

High Latitude Drone Ecology
Network (HILDEN)

A network of high-latitude ecologists
that share protocols and experience
with using UAS.

Arcticdrones.org

DIY Drones An online community to support
effective purchasing, building, and
usage of UAS.

DIYdrones.com

9.4 Conclusions

Environmental monitoring and scientific inquiry into the cryosphere and polar
regions, though varied in scope, have benefited from the increased application of
sUAS technology. sUAS adds flexibility to investigations of the biosphere,

http://diydrones.com
https://www.amap.no/
https://www.comnap.aq/
https://www.unols.org/
http://www.isarra.org/
https://Icuas.comUasconferences.com
https://Icuas.comUasconferences.com
https://Icuas.comUasconferences.com
https://uavcoach.com/
https://arcticdrones.org/
https://diydrones.com/


atmosphere, cryosphere, remote sensing, and the intersections between them that
might have required temporal, radiometric, or spatial resolution needs that were not
previously met by available satellite or manned aircraft imagery. While examples of
snow depth, glaciology, ecology, and atmospheric data collection were covered here,
there is still much untapped potential, including the applications suggested in
Table 9.2. Future studies adopting a multi-sensor approach for monitoring polar
and cryospheric subjects can reveal more holistic details. If the last decade was more
about the development of UAS technology in general, the next decade should be
dedicated to making this tool easily customizable as per project needs. Most
importantly, considering the high costs of field investigations in extreme environ-
ments and the accelerating rate of climate change, researchers and institutions across
the globe should move towards forming mutual data sharing policies, including
protocols for uniform data compilation, archiving, and dissemination protocols.
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Chapter 10
Coastal Dune Eco-geomorphology: sUAS
Applications and Opportunities

Alex Smith, Brianna Lunardi, Elizabeth George, Jacob Lehner,
and Chris Houser

Abstract Coastal dune systems are dynamic in response to regional environmental
controls and form complex networks of stable and active surfaces operating over
multiple scales. As these systems adapt to climate change, it is critical to increase
the spatiotemporal monitoring record to provide further insight on the
eco-geomorphological processes and feedbacks affecting coastal dune evolution
through time. Since the 2010s, small unoccupied aircraft systems (sUAS) have
been increasingly used for monitoring topographic change and classifying vegeta-
tion in coastal dune environments. Concurrently, advances in survey methodologies
have limited the error and uncertainty of measuring multitemporal change. Further
opportunities remain for applying sUAS and the large datasets they produce
to address knowledge gaps and test conceptual models of coastal dune
eco-geomorphology. The aim of this chapter is to briefly introduce some of the
fundamental concepts on the biotic and abiotic processes at work in coastal
dune systems, review sUAS studies that have monitored coastal dune
eco-geomorphology, present findings and considerations from ongoing coastal mon-
itoring studies conducted by the authors, and discuss further opportunities to apply
sUAS in coastal dune research. Specifically, this chapter focuses on (1) vegetation
zonation and distribution in coastal dunes; (2) aeolian processes, dune building, and
the role of vegetation; (3) coastal dune disturbances, recovery, and vegetation
feedbacks; and (4) topographic change, error, and uncertainty.
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10.1 Introduction

Coastal dune systems are comprised of complex ‘mosaics’ of stable and active sand
surfaces that evolve in response to aeolian and hydrological processes operating over
a range of scales (Carter et al. 1990a; Hesp 2002; Houser et al. 2017). Often in sandy
coastal environments, backshore vegetation affects sedimentation processes and has
a fundamental role in the initiation and stabilization of foredunes (Hesp 2002) and in
foredune recovery following storm events (Houser et al. 2015, 2018). Foredunes
provide protection for inland habitats from abiotic processes including sand burial,
salt spray and flooding during periods of high-water levels and wave run-up.
Continual monitoring of coastal dune eco-geomorphology is critical to improving
our understanding of the processes and feedbacks controlling these systems. Addi-
tionally, increasing the spatiotemporal record of observations can be used to inves-
tigate how these systems are adapting to climate change (e.g., sea level rise and
change in storm frequency and/or magnitude) and increased anthropogenic impacts.
Small unoccupied aircraft systems (sUAS) offer an efficient and low-cost method to
simultaneously collect vegetation and topographic data that can be used to monitor
environmental changes over time. As a result, the number of studies using sUAS to
monitor coastal dune dynamics is likely to increase rapidly over the coming years.
To best utilize this technology and the large datasets it produces, it is important not
only to improve surveying methodologies and to limit uncertainty but also to address
knowledge gaps through innovative applications and by promoting further collabo-
ration between ecologists and geomorphologists (Houser et al. 2021).
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The purpose of this chapter is to provide a brief background on some of the biotic
and abiotic processes operating within coastal dune systems, review sUAS studies
that have been used to monitor these systems, present additional findings and
considerations from coastalmonitoring studies conducted by the authors, and discuss
knowledge gaps and further opportunities to apply sUAS for coastal dune research.
Furthermore, this chapter will focus primarily on studies that have used structure
from motion (SfM)photogrammetry to produce RGB orthomosaics, multispectral
vegetation indices, and digital surface models (DSM) or ‘bare earth’ digital terrain
models (DTM). A technical review of sUAS data collection and SfM processing is
beyond the scope of this work but can be found in a number of papers (e.g., Westoby
et al. 2012; Mancini et al. 2013). Therefore, the remainder of this chapter will
introduce fundamental coastal dune system concepts and discuss sUAS applications
to monitor (1) vegetation zonation and distribution in coastal dunes; (2) aeolian
processes, dune building, and the role of vegetation; (3) coastal dune disturbances,
recovery, and vegetation feedbacks; and (4) topographic change, error, and
uncertainty.
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10.2 Vegetation Zonation and Distribution
in Coastal Dunes

In oceanic and lacustrine environments, the zonation of coastalvegetation is con-
trolled by cross-shore gradients of environmental processes such as tides, waves, and
wind that essentially filter plant communities based on their unique tolerance levels
(Maun 2009). While a range of biotic (e.g., herbivory; Gedge and Maun 1994) and
abiotic (e.g., sand abrasion; Rozema et al. 1985) stressors can affect the germination
and survival of propagules, seedlings, and plants, zonation in coastal dune systems is
thought to be primarily controlled by species tolerance to sand burial (Maun 1998)
and salt spray (Du and Hesp 2020). In the most exposed backshore environments,
species growing on the beach and foredune have developed unique adaptations to
tolerate or avoid adverse environmental conditions (Hesp 1991). Aeolian processes
or wind-blown sand (see Sect. 10.3.1) can cause the episodic burial of plants
depending on the synchronization of sediment supply and transport competency
(e.g., Houser 2009). Harmful effects of burial include a decrease in light required for
photosynthesis, reduction in oxygen due to increased pore moisture content or soil
compaction, and exposure to soil pathogens (Armstrong 1980; Maun and Riach
1981; Baldwin and Maun 1983). Alternatively, sediment burial can cause an
increased ‘vigour’, defined by Maun (1998) as, ‘an improvement in growth charac-
ters (physiological, ecological) of an individual plant and (or) increase in density,
cover, and biomass per unit area’. The tolerance, or limit at which plants can survive
and emerge from burial, depends on the species type, propagation from either seeds
or rhizomes, inter- and intra-species variability in seed mass, depth and duration of
burial, and life cycle stage (Maun 1998, 2009). For instance, buried seedlings of
Ammophila breviligulata may fail to emerge at depths greater than 6 cm, whereas
mature plants can emerge from a single burial event of up to 100 cm (Maun and
Lapierre 1984, 1986). Most backshore vegetation species can tolerate a certain range
of burial, beyond which it will be lethal.

Salt spray develops when breaking waves produce bubbles that burst and eject
salt particles into the overlying airflow (Boyce 1954; Du and Hesp 2020). The
production of salt spray increases with higher energy nearshore conditions, concom-
itant with an increase in wave height, surfzone width, and number of breaking waves
(Hesp 1988). Landward of the swash zone, soil salinity is controlled by the rate of
salt spraydeposition and precipitation that redistributes salt through soil leaching or
by washing off salt accumulated on vegetation (Boyce 1954; Maun 2009; Du and
Hesp 2020). During onshore winds, the rate of salt spraydeposition generally
increases with wind velocity (Boyce 1954; Randall 1970; McDonald et al. 1982)
and decreases with distance from the shoreline (Barbour 1978). Topographic con-
trols can also affect salt spraydeposition, with exposed stoss slopes of foredunes and
secondary dune ridges experiencing higher depositional rates than sheltered lee
slopes and interdune areas (Randall 1970). The accumulation of salt on plants can
be influenced by the size, shape, and orientation of leaves, with small, thin, and
horizontal leaves more efficient at trapping salt than large, wide, and vertical leaves



(Boyce 1954; Barbour 1978; Maun 2009; Du and Hesp 2020). Salt spray and soil
salinity can inhibit seed germination, cause tissue necrosis, reduce resource alloca-
tion for plant reproduction, and can lead to a decrease in plant biomass (Boyce 1954;
Seneca 1969; Barbour 1970; Cheplick and Demetri 1999). Plants may increase salt
tolerance or limit exposure by increasing leaf thickness through hypertrophy, shed-
ding old leaves, epicuticular wax, low profile growth patterns, and extrusion of salt
from roots (Boyce 1954; Randall 1970; Clayton 1972; Ahmad and Wainwright
1976; Hesp 1991; Maun 2009).
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Plant exposure to sand burial and salt spray generally decreases in a landward
direction; however, cross-shore variability in environmental processes can alter the
characteristic zonation in coastal dunes. For example, Dech and Maun (2005) found
distinct gradients of grass, shrub, and tree communities on the lee slope of a blowout
eroding a relic secondary foredune ridge at Pinery Provincial Park, Canada. The
presence or absence of species was controlled by rates of sand burial, consisting
primarily of grass species more typical of the backshore with high growth rates,
rhizome production and clonal propagation (e.g., Calamovilfa longifolia) and trees
capable of forming adventitious roots (e.g., Juniperus virginiana) in areas with high
sedimentation rates. Alongshore, variable exposure to abiotic processes can affect
the distribution of vegetation in coastal dune environments. For example, Silva et al.
(2008) found that changes in vegetation density and species type occurred from
south to north at Moçambique Beach, Brazil. Over several kilometers, shoreline
curvature exposed the northern section of the study site to increased wave and wind
energy that generally led to a decrease in vegetation cover, unless species with a high
tolerance to sand burial and salt spray were present (e.g., Scaevola plumieri and
Spartina ciliata). Therefore, varying gradients of cross-shore vegetation zonation
and alongshore distributions can occur due to non-uniform environmental controls.

10.2.1 Monitoring Vegetation Patterns and Dynamics
with sUAS

Monitoring of cross- and alongshore vegetation patterns can reveal both local and
regional process controls and eco-geomorphological feedbacks within coastal dune
systems. In this regard, sUAS provides an effective tool to delineate complex
vegetation and sedimentation patterns across the beach and dune. To demonstrate
this, we present data collected by the authors at Cavendish, Brackley, and Stanhope
Beaches, within Prince Edward Island National Park (PEINP; Fig. 10.1). sUAS
surveys were conducted during July 2019, coinciding with the peak growing season
for Ammophila breviligulata, which represented the primary species growing on the
upper beach and foredune. The position and density of backshore vegetation were
measured from RGB orthomosaics that were used to create a 1 cm2 binary raster
from a supervised image classification in ArcGIS consisting of bare sand (0) and
vegetation (1). Average vegetation density was then measured using a 1 m2 moving



window to produce a resampled 1 m2 vegetation density raster, ranging from entirely
bare sand (0) to fully vegetated (1). Except for areas with major disturbances (e.g.,
overwash fans and blowouts), the lee slope of the foredune was highly vegetated and
displayed limited alongshore variability across all three sites (Fig. 10.1). As a result,
we focus on the cross-shore and elevational vegetation limits and the average
vegetation density measured between the seaward limit and the foredune crest.
The vegetation limit was taken as the seaward most position where density values
were�0.05 to provide a lower limit of detection and estimate of increased backshore
sedimentation rates (e.g., Keijsers et al. 2015). Cross-shore measurements were
automated and taken every 1 m alongshore and maintained an orientation perpen-
dicular to the shoreline and foredune ridge across the entirety of the study area.
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Fig. 10.1 The cross-shore and elevation vegetation limit and average density plotted alongshore
for three study sites within Prince Edward Island National Park (PEINP), including Cavendish,
Brackley, and Stanhope Beaches. Vegetation limits represent the seaward most position where
vegetation density was �0.05. Average vegetation density was measured between the vegetation
limit and the crest of the foredune. Areas in grey represent historical disturbances from either
blowouts or overwash, bluffs where no foredune was present, stream outlets, and beach access
points or campgrounds where flights were restricted due to the increased number of people

The regional environmental setting is micro-tidal with an average tidal range of
0.7 m and a spring tide elevation of ~1.1 m (Forbes et al. 2004). During the fall and
winter months, the north coast of PEI is exposed to strong storm events that can
generate significant wave heights of up to 7 m and peak wave periods up to 11 s
(Parkes et al. 2006; Manson et al. 2016). Longer-term sea level rise of 3.2 mm y�1,
an average of 0.5 m y�1 of shoreline transgression, frequent fall and winter storm
events, and reduction in winter sea ice cover often results in a cyclical scarp and
recovery foredune state and landward retreat of the system (Forbes et al. 2004;
Ollerhead et al. 2013; Smith et al. 2020a). Vegetation patterns at all three sites reveal
a distinct limit in the cross-shore extent (~10 m) and elevation (~1 m) at which
vegetation can establish near or above the spring tide level. Despite this consistency,
intra-site variability in the vegetation limits is evident alongshore. This appears to be
driven by historical disturbances in areas where the foredune has been breached and
sediment deposited landward through overwash fans or in areas of the foredune that



are being eroded by blowouts (Fig. 10.1). In these locations, and similarly in areas
adjacent to outlet streamchannels, the cross-shore vegetation extent typically
increases in distance (i.e., moves further landward). Among these features, an
increase in the elevation limit only appears to be affected by the presence of
blowouts that maintain a bare sand surface as sediment is transported from the
beach and foredune further inland. Patterns of vegetation density vary more widely
alongshore between the vegetation limit and dune crest and may indicate various
stages of foredune scarping and recovery across the study area. Although these data
represent a limited ‘snapshot’ view of the vegetation patterns during our survey, it is
apparent that sUAS can be used to effectively monitor the alongshore variability of
vegetation limits and density in response to regional environmental controls and
historical disturbances.
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sUASimagery can also be used to differentiate between vegetation species and
zonal communities in coastal dune environments. For example, De Giglio et al.
(2019) used a multispectral camera that captured images in the red, green, and near-
infrared (NIR) bands and used to map the zonation of five simplified cross-shore
vegetation communities located along 350 m of coastline within the Po Delta
Regional Park, Italy. Through photo-interpretation and in situ global positioning
system (GPS) surveys, ground control points were recorded in each class and used
for classification and validation of four supervised approaches. These included pixel-
based (i.e., based on a pixel’s spectral signature) maximum likelihood (ML) and
support vector machine (SVM) and object-based (i.e., based on a segmented group
of pixel’s spectral, geometric, and other contextual information) nearest neighbor
(NN) and SVM algorithms. In this study, the object-based SVM provided the best
overall accuracy (82%). Alternatively, the pixel-based SVM produced a lower
accuracy (76%) but may be better suited for identifying smaller-scale features such
as individual plant canopies or footpaths intersecting the dunes.

Suo et al. (2019) used multispectralimagery and vegetation indices to map the
distribution of plant species within the Brittas-Buckroney dune complex, Ireland.
The sUAS used in this study was equipped with a three-band RGB camera and four
multispectral cameras capturing green, red, red edge, and NIR bands. Additionally,
the multispectral bands were used to calculate multiple vegetation indices including
the normalized differential vegetation index (NDVI), found by:

NDVI ¼ NIR� R
NIRþ R

ð10:1Þ

NDVI is commonly used to monitor the vitality of coastal dune vegetation and
ranges between �1 and 1, often with values >0 representing vegetation. Control
points were classified from an orthomosaic, consisting of seven coastal dune species
in addition to beach, sand, stream, road, and built area, and were used to train and
validate ML classifications from varying combinations of multispectral bands and
vegetation indices. Suo et al. (2019) found an overall accuracy of 69% and 60%
using only the three-band RGB and four-band multispectral sensors, respectively.
When additional spectral bands and indices were included, classification accuracy



generally increased with the best results found from utilizing eight bands that
included RGB, multispectral, and NDVI with an overall accuracy of 78%. It should
be noted that coarser satellite-derived vegetation indices such as NDVI can be
effective for mapping regional to global-scale vegetation coverage in coastal dunes
systems (e.g., Jackson et al. 2019), whereas higher-resolutionsUASimagery can be
used to improve the precision of smaller-scale classifications through the identifica-
tion of individual plant species.
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Laporte-Fauret et al. (2020a) used a multi-method approach that utilized a sUAS-
derived orthomosaic in combination with hyperspectralimagery obtained from aerial
and ground-based measurements. These data were used to classify mobile dune and
grey dune sand surfaces, seven vegetation species, sparse vegetation, and grey dune
vegetation, distributed along 18 km of the Aquitaine coastline, France. Control
points were identified from the orthomosaic and compared to the corresponding
pixel-scale spectra from the aerial and field-based hyperspectralimagery to produce
an end-member spectral library consisting of 550 spectra from 50 samples for each
of the 11 landcover classes. Following the initial division of sand and vegetation
classes using an NDVI threshold (i.e., bare sand �0.061 and vegetation �0.061), a
random forest (RF) classification obtained 100% accuracy for mobile and grey dune
sand surfaces. For the vegetation classes, the overall accuracy of the RF classifica-
tion was improved from 82% to 92% by merging Otanthus maritimus, which often
grows in isolated patches, with the sparse vegetation class. Hyperspectral sensors are
increasingly being integrated with sUAS (e.g., Adão et al. 2017) and have the
potential to improve classifications of isolated or interspersed vegetation species
across spatially extensive coastal dune systems.

Beyond mapping vegetation limits and species distributions, sUAS can also be
used to monitor vegetation dynamics through time. Nolet et al. (2018) conducted
seven sUAS surveys over a 1-year period to determine the optimal response of
Ammophila arenaria to observed burial rates at the Zandmotor, the Netherlands. The
response of vegetation, identified across the study area using a k-means classifica-
tion, was determined by the change in density measured from a 40 cm2 raster grid
and for NDVI values recorded from each 5 cm2 pixel. Topographic changes,
measured at both resolutions (i.e., 5 and 40 cm2), were found by removing all pixels
classified as vegetation, interpolating the surface to create a continuous topographic
raster, and differencing the elevation between two subsequent time series. Nolet
et al. (2018) proposed a Gaussian response curve (GRC; Eq.) for A. arenaria ( f )
along a sand burial gradient (x), found by:

f xð Þ ¼ ae�
1
2 x�bð Þ2=c2 ð10:2Þ

where a is the response (i.e., change in density or NDVI), b is the position of x at the
maximum value for a, and c is the tolerance of the response to x or the standard
deviation for the GCR. The GCR was then fitted to their data set using quantile
regression to parameterize growth rates in response to burial gradients, finding that
the optimal burial rates or b for A. arenaria were ~31 cm per growing season (i.e.,



April–August) for both the NDVI and density response metrics. Additionally, by
extrapolating the regression curves, the maximum tolerance to sand burial at the 95th
quantile (�b + 2c) was estimated at 96 and 78 cm for NDVI and density, respec-
tively. While these observations may not be readily transferable beyond the unique
environmental setting and study period, this work highlights the potential for sUAS
studies to improve our understanding of vegetation response rates to sand burial
(e.g., Maun 1998) and to better parameterize eco-geomorphological models aimed at
capturing the positive feedback between vegetation and dune building processes
(e.g., Baas and Nield 2010).
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10.3 Aeolian Processes, Dune Building, and the Role
of Vegetation

10.3.1 Aeolian Processes and Foredune Development

The transport and deposition of wind-blown sand are responsible for producing a
range of bedforms and landforms in coastal environments, ranging from aeolian
ripples to transgressive dunefields. Aeolian processes across the beach and foredune
are complex and often difficult to predict due to non-uniform patterns of sediment
supply, erodibility, and erosivity. As winds transition from the marine to terrestrial
environment, topographic features such as berms can alter the boundary layer wind
profile, and surface moisture due to tide and swash can limit the upwind sediment
supply and transport across the foreshore and into the backshore (Short and Hesp
1982; Bauer et al. 1990; Bauer 1991; Sherman and Bauer 1993). The rate of
sediment transport across the backshore can be further limited by the fetch length,
depending on the flow velocity, dry beach width, and obliquity of the incident wind
angle (Davidson-Arnott and Law 1996; Bauer and Davidson-Arnott 2003; Delgado-
Fernandez 2010). At the beach-dune boundary, the extension of the foredune into the
boundary layer can cause the development of an adverse pressure gradient that
results in an area of flow stagnation and localized reduction in transport competency
near the dune toe (Walker and Nickling 2003; Hesp et al. 2005; Hesp and Smyth
2019). Streamline compression and acceleration of airflow typically occurs up the
stoss slope and, in the absence of surface roughness features such as vegetation, the
potential for sediment transport increases approaching the dune crest, before flow
detachment and deceleration, sediment fallout, and secondary airflow patterns
develop in the lee (Walker and Nickling 2002; Walker and Hesp 2013; Walker
2020).

Vegetation can further modify aeolian processes in the backshore by increasing
the aerodynamic roughness length (zo) relative to the sand surface (e.g., Olson 1958),
causing a reduction in near-surface wind velocity and limiting further grain entrain-
ment, thereby decreasing sediment transport potential and increasing the rate of
deposition. The efficiency at which vegetation traps sediment is affected by the



density and height of vegetation and wind velocity (Bressolier and Thomas 1977).
For example, Kuriyama et al. (2005) found that during low to moderate wind
conditions, a 95% reduction in sediment flux occurred when vegetation density
reached 28%. Arens (1996) found an exponential decrease in sediment transport
downwind of the leading edge of dense vegetation, but only during low magnitude
velocities. When winds exceeded 10 m s�1, sediment was transported and deposited
across the stoss slope of the dune through ‘jettation’ or topographically accelerated
flow capable of transporting grains through short-term suspension. At higher wind
speeds, vegetation bends and becomes more streamlined, resulting in a reduction in
zo (Hesp 1983). Hesp et al. (2013) found a distinct ‘speed-up’ of flow up occurring
within a vegetation canopy during high wind velocities, in contrast to an earlier study
that recorded a ‘slow-down’ of flow within the canopy during lower velocities (Hesp
et al. 2005), inferring that more grains could be transported through suspension,
saltation across streamlined vegetation, and through increased turbulence transfer to
the bed during high-magnitude wind events.
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If deposition rates are within a species tolerance range, plants colonizing the
backshore can respond with an increased ‘vigour’ by growing vertically and increas-
ing tiller density (Maun 1998). This promotes further deposition and can lead to the
formation of ephemeral dunes if colonized by annual species or incipient dunes if
colonized by perennials (Hesp 1981). This represents a positive feedback between
deposition and vegetation growth that is the primary mechanism for the initiation of
foredunes. For example, Hesp (1984) observed the processes responsible for the
formation of incipient foredunes in Southeastern Australia. Continuous backshore
colonies of Spinifex sericeus seedlings were observed to have the highest growth
rates in areas of maximum backshore deposition and, as a result, promoted further
deposition, leading to the formation of an incipient foredune. Incipient dunes may
intercept the sediment supply to the established foredune, allowing for the seaward
landform to grow in volume. Over time, the incipient foredune may become
established depending on further morphological development and vegetation colo-
nization. The precise definition of foredunes, morphological description, and their
classification largely come from the work of Hesp (1981, 1983, 1984, 1989, 2002).
According to these studies, incipient foredunes are the seaward most dune deposits
within discrete or continuous zones of pioneer plant, seedling, or rhizome-stolon
growth. Established foredunes are typically continuous shore parallel ridges that
form behind the upper beach surface and have been colonized by woody, matted, or
tufted vegetation species.

The morphology of foredunes is also affected by the density of vegetation. If
density is low, the approaching airflow is less perturbed by a relatively small increase
in zo, and sediment transport is able occur more evenly across the stoss slope (Hesp
1983; Keijsers et al. 2015). As a result, foredunes in areas of low-density vegetation
are typically shorter, with rounded crests and elongated stoss slopes (Hesp 1989;
Ruggiero et al. 2018). In contrast, high-density vegetation increases zo and is more
efficient at trapping saltating grains at the upwind edge of vegetation growth (Hesp
et al. 2005; Keijsers et al. 2015). This results in the formation of taller foredunes,
with peaked crests and narrower stoss slopes (Hesp 1989, 2002; Arens et al. 2001;



Ruggiero et al. 2018). This latter effect is often more desirous for coastal managers
due to the protection that taller dunes provide from overtopping and flooding during
storm surge events (Seabloom et al. 1994), which in some areas has led to the
introduction of species such as Ammophila arenaria and Ammophila breviligulata
that grow at higher densities than native dune grasses (e.g., Ruggiero et al. 2018).
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10.3.2 Monitoring Coastal Dune Eco-geomorphology
with sUAS

Coastal dune initiation and evolution can be effectively monitored with sUAS and
used to identify important spatiotemporal controls on dune building processes. For
example, van Puijenbroek et al. (2017) used sUAS surveys to test the influence of
vegetation cover, species type (i.e., Ammophila arenaria, Elytrigia juncea, or both in
combination), initial nebkha dune size, and position relative to the foredune on
subsequent changes in nebkha dune volume occurring over the summer and winter
seasons at Texel Island, the Netherlands. During the summer, nebkha dunes located
seaward of the foredune grew in volume at faster rates, and the volume change of all
dunes was positively correlated with initial dune volume and vegetation cover. Over
the winter, higher growth rates were observed for the landward nebkha dunes, and a
loss of ~8% of all dunes occurred during this period. The volume change for the
landward nebkha dunes was positively correlated to initial dune volume, whereas the
volume change of the seaward dunes was affected by a species type with increased
volume observed for dunes covered by A. arenaria. The influence of vegetation and
morphology on nebkha dune volume change was found to be dependent on season-
ality and position relative to the foredune that influences exposure to storm events
and sediment supply.

sUAS can be used to map sediment supply and transport limiting conditions that
contribute to dune building. For example, bare sand surfaces provide an initial
source of sediment that can be mobilized by the wind and can be accurately classified
from high-resolutionsUASimagery (Fig. 10.2). In the absence of cohesive forces
including surface moisture and salt and algal crusts (Sherman and Hotta 1990), the
erodibility of sand is highly influenced by the grain diameter. Bae et al. (2019) used a
sUAS to capture three-band RGB images at varying heights to conduct a textural
analysis aimed at measuring the characteristic grain size for six classes of beach
sediments, ranging from very fine sand (0.063–0.125 mm) to very fine gravel
(2–44 mm). This study found that the delineation of six classes could be made
with lower altitude flights at 3 and 5 m with a total accuracy of 91% and 80%,
respectively. Fairley et al. (2018) monitored grain sizes up to 0.4 mm and surface
moisture up to 60% in intertidal estuaries in Southwest England and Wales, using a
sUAS equipped with multispectral sensors including green, red, red edge, and NIR
bands. The spectral reflectance values had a positive correlation with grain size and a
negative correlation with surface moisture, both significant at the 95% confidence



level or higher. Given that cross- and alongshore transport gradients can be highly
affected by grain size variability (e.g., Hallin et al. 2019) and surface moisture in the
intertidal zone (e.g., Delgado-Fernandez et al. 2012), monitoring sediment supply
and erodibility with sUAS may improve upon predictions of non-uniform aeolian
processes across the beach and dune.
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Fig. 10.2 Surface roughness features and potential slope-modified sediment flux were identified
and mapped at Pinery Provincial Park, using an RGB ortho-mosaic (a), landcover classification (b),
vegetation density (c), height of the roughness features (d), and flux slope correction (e)

The height and distribution of surface roughness features (e.g., vegetation) and
topographic slope can also affect sediment transport and can be measured using
sUAS. Here, we present data collected by the authors at Pinery Provincial Park
(PPP), Canada. Using a sUAS equipped with a three-band RGB camera, an
orthomosaic with a 10 cm2 pixel resolution was produced along a 1 km section of
a scarped and eroding foredune system on Lake Huron (Fig. 10.2a). A maximum



likelihood (ML) classification of eight simplified landcover classes including bare
sand, low vegetation (e.g., Ammophila breviligulata), medium vegetation (e.g.,
Juniperus communis), high vegetation (e.g., Juniperus virginiana), boardwalk,
gravel, wrack, and large woody debris (LWD; Fig. 10.2b). Classification accuracy
was assessed using a confusion matrix and reported as the overall accuracy percent-
age (A%) and the kappa coefficient (k) which provides a normalized value of the
agreement between classified and ground control points, ranging from no agreement
(0) to perfect agreement (1).
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Similar to the methodology described in Sect. 10.2.1, the orthomosaic was used to
classify the 10 cm2 pixels into a binary raster with bare sand (0) and vegetation (1).
The average vegetation density from all three classes (i.e., low, medium, and high)
was then measured using a 50 cm2 moving window to produce a resampled 50 cm2

vegetation density raster, ranging from entirely bare sand (0) to fully vegetated
(1) (Fig. 10.2c). The height of surface roughness features (Rh) (i.e., vegetation,
boardwalk, wrack, and LWD; Fig. 10.2d) was estimated by the minimum and
maximum point elevation from a structure from motion (SfM)point cloud within a
50 cm2 area, interpolating those values into a raster, and differencing the elevations.
A similar approach using LiDAR data has been found to be a good predictor of
sediment mobility (Pelletier et al. 2009) and aerodynamic roughness length (zo)
(Brown and Hugenholtz 2012). This latter study also found that predictions of zo
could be improved by measuring the variability in canopy heights (Rc; Eq. 10.3) in
areas of uniform vegetation, taken by:

Rc ¼ 1
N

X σhi,j
hi,j

� �
Rh ð10:3Þ

where N is the number of samples, σh is the standard deviation of canopy elevation
values and h is the average canopy elevation within an i x j kernel window, and Rh is
the average roughness height of a given vegetation class. Lastly, a low pass filtered
digital terrain model (DTM) (see Sect. 10.5.2) was converted into a slope raster to
determine the slope correction coefficient (G) (Eq. 10.4; Fig. 10.2e; Bagnold 1973).

G ¼ tan α
cos θ tan αþ tan θð Þ ð10:4Þ

Here, α is the angle of repose for dry sand taken as ~34�. Mapping G across the
surface can be used to predict slope dependent sediment flux rates and has been
previously coupled with computational fluid dynamics (CFD) models to simulate
transport potential over dune and interdune topography (Smith et al. 2017a, b).

The foredune ridge and swale and beach face were separated during classification
due to the presence of recently deposited vegetation mixed in with the wrack,
thereby reducing the model accuracy. Following separation and reclassification,
500 control points were used for validation for both surfaces with a A% of 93%
and 94% and k of 0.90 and 0.91 for the foredune ridge and swale and beach face,



respectively. It should be noted that no attempt to delineate individual species was
made due to limited field identifications and that the simplified vegetation classes
likely contributed to the high accuracy of our classification. The beach is composed
of gravel ridges backed by fine grain sand supplied by the eroding foredune. LWD
and wrack litter the beach and have been deposited near the scarp base by waves and
have average heights of 0.17 and 0.14 m (Table 10.1). The eroding foredune is
highly vegetated with densities ranging between 0.5 and 1, with bare sand surfaces
primarily found in the swale in the NE section of the survey, along deer and human
foot paths, and on the deflation basins and lateral walls of blowouts. Average heights
for low vegetation (0.42 m) and medium vegetation (1.09 m) correspond well to field
observations of A. breviligulata (~0.55 m) and J. communis (~0.96 m) taken during
our survey. Variability in canopy height among the vegetation classes indicates
non-uniform plant morphology that could further influence surface roughness and
sediment transport patterns across the study area.
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Changes in slope may also limit sediment transport in both cross- and alongshore
directions. The beach is relatively flat with a slope correction coefficient or G of
~0.90 before falling to ~0.65 at the scarp base that has formed continuously
alongshore. This localized reduction in flux potential may aide in the deposition of
sediment at the scarp base and could lead to ramp building and foredune recovery
when the lake level drops and sediment supply to the beach increases. Behind the
foredune, the lowest values for G are recorded near the rim of blowouts, and the
highest values occur in the relatively flat swale between the foredune and secondary
dune and deflationary areas within blowouts and landward of the secondary dune
ridge. It should be noted that coarse sand and gravel and a limited fetch length across
the beach and primary and secondary airflow patterns across the dune ridges will also
affect the potential for sediment transport. However, improved predictions of com-
plex transport patterns may be possible by integrating sUAS surveys with in situ
field measurements (e.g., anemometry, sediment traps, moisture probes, etc.). While
this requires further study, there are a number of research opportunities to couple
field-based data with high-spatiotemporal resolutionsUAS surveys to monitor and
predict aeolian transport gradients in coastal environments.

Table 10.1 The area (km2), percent cover (% Total), surface roughness feature heights (Rh), and
canopy height variability (Rc), reported for eight simplified landcover classes including sand,
gravel, large woody debris (LWD), wrack, low vegetation, medium vegetation, high vegetation,
and boardwalk

Sand Gravel LWD Wrack
Low
veg.

Med.
veg.

High
veg. Boardwalk

Area
(km2)

26.43 3.27 0.46 2.19 26.36 5.41 5.53 0.49

% Total 38 5 1 3 38 8 8 1

Rh (m) – –

– – – –

0.17 0.14 0.42 1.09 1.84 0.78

Rc (m) 0.09 – 0.94 –



276 A. Smith et al.

10.4 Coastal Dune Disturbances, Recovery, and Vegetation
Feedbacks

10.4.1 Storm Impacts and Foredune Recovery

Storm events can cause foreduneerosion depending on the elevation of wave run-up,
relative to the dune toe and crest, ranging from collisions to inundation (Edelman
1969; Sallenger Jr 2000). During collision events that can lead to foredune scarping
(Fig. 10.3), vegetation may provide protection through swash attenuation. Feagin
et al. (2019) conducted a flume study to test the ability of above- and below-ground
biomass to limit erosion of a model embryo dune in response to swash incursions. In
this study, four species were tested including Spartina patens, Panicum amarum,
Sesuvium portulacastrum, and Ipomoea pes-caprae. The presence of vegetation was
found to limit erosion in all cases compared to the unvegetated model control.
Above-ground biomass was found to be significantly correlated with a reduction
in dune erosion, whereas the root system or below-ground biomass may initially
enhance erosion due to uprooting; however, excavated roots may then offer protec-
tion from subsequent swash incursions. This study suggests that backshore areas
covered by grasses or graminoids (e.g., S. patens) may be at a higher risk than areas
covered by non-graminoids (e.g., S. portulacastrum) due to higher below versus
above-ground biomass, respectively. Despite this, Feagin et al. (2019) indicate that
graminoid species are more effective at modifying aeolian processes leading to
enhanced dune building which can offer additional protection during storm events
due to an increase in elevation. Other recent flume studies have found plant archi-
tecture (Maximiliano-Cordova et al. 2019) and below-ground biomass, in particular

Fig. 10.3 Examples of post-storm foredune cliffing and scarping at Prince Edward Island National
Park (PEINP), Canada (a, c, d), and County Kerry, Ireland (b, e). Dune cliffs and scarps can
maintain near-vertical slopes following storm events due to cohesive forces including increased
surface moisture and rhizome and root networks (c). Additional slope failure may occur through
grain avalanche chutes (a), slides (d), and slumping (e)



buried shoots (De Battisti et al. 2019), can limit swash-induced erosion of backshore
dunes.
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The density of vegetation has also been found to control the form and extent of
foredune slope failure and post-storm recovery processes. Based on observations
from Magilligan Strand, Northern Ireland, a conceptual model relating scarp pro-
cesses to vegetation density was proposed by Carter and Stone (1989). According to
this study, non-vegetated slopes experience extensive and spatially continuous slope
failure through avalanching in rapid response to wave incursions, basal wetting, and
undercutting. Sparsely vegetated slopes experience a greater depth of basal under-
cutting that can result in multiple tabular slides along ‘pseudoshear’ planes near the
base of the vegetation root system which can offer temporary protection to the
foredune during subsequent wave incursions. Lastly, highly vegetated slopes are
more resistant to basal undercutting and typically maintain a vertical scarp during
storm events, with slumping and shallow rotational slides occurring following the
event. Post-storm, dune scarps begin to dry and experience a reduction in cohesion,
leading to additional slope failures or the formation of small avalanche chutes as the
slope readjusts to the angle of repose (Carter et al. 1990b).

Following storm and scarping events, aeolian processes at the beach-dune bound-
ary can be modified by scarp morphology and incident wind angle. For example, an
adverse pressure gradient and reduction in upwind velocities can become more
prominent with an increase in slope angle and scarp height; however, as winds
approach at a more oblique angle, the reduction in wind speed is less pronounced
(Hesp and Smyth 2019). Flow separation at the scarp base can lead to the formation
of coherent turbulent flow structures which may aide in the development of echo
dunes (Tsoar 1983; Carter et al. 1990b; Piscioneri et al. 2019; Hesp and Smyth
2019). As sediment accumulates at the scarp base, dune ramps allow sediment to
bypass the scarp face and to be transported across the stoss slope (Christiansen and
Davidson-Arnott 2004). Ultimately dune ramps may be ephemeral unless they are
colonized by vegetation which can occur following scarping events through the
establishment of new roots from slump block vegetation, tidal reworking of
fragmented root ‘balls’, propagation of seeds, and expansion of rhizomes (Carter
and Stone 1989; Carter et al. 1990b). Dune erosion and recovery represents a
negative feedback that returns the landform to its initial pre-storm state, but only if
there is adequate time to allow for dune building and increased vegetation coverage
prior to subsequent events (Houser et al. 2015).

10.4.1.1 Monitoring Storm Impacts and Foredune Recovery with sUAS

The rapidity at which sUAS can be deployed to survey extensive sections of the
coastline is ideal for monitoring initial storm impacts, prior to reworking of near-
shore and subaerial sediment and subsequent slope adjustments of scarped
foredunes. For example, Turner et al. (2016) surveyed Narrabeen-Collaroy Beach,
Australia, following a high magnitude storm event with significant wave heights of
8.1 m and maximum wave heights up to 14.9 m. This study reported an average of



20 m3/m of erosion from the subaerial beach system along their ~1 km study area.
Smith et al. (2020a) monitored the impacts of a post-tropical storm at Brackley
Beach, Prince Edward Island National Park (PEINP), with peak significant wave
heights of between 7 and 8 m and a 1.2 m storm surge (DalCoast 2019). The post-
storm survey covered a ~6 km section of the beach-dune system, although uncer-
tainties arising from variability in tide level, wave run-up, and vegetation (see Sect.
10.5) limited the extent at which volumetric changes could be accurately measured,
between the upper swash limit and dune scarp. A total of 11,232 m3 � 2659 m3 of
erosion was observed at the 95% confidence level across the beach and dune. These
patterns were not uniform, with a high variability in dune scarping or cliffing and
deposition or erosion on the upper beach occurring alongshore.
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Guillot et al. (2018) monitored the partial recovery of foredunes using sUAS at
Truc Vert beach, France, following a highly active 2013/2014 North Atlantic storm
season that led to extensive coastal erosion in Western Europe (e.g., Masselink et al.
2016). Alongshore variability in foreduneerosion was associated with the presence
of megacusps that are dependent on the pre-storm nearshore bar morphology and
spacing (e.g., Castelle et al. 2017). Three years following the event, the system
recovered by 40 m3/m or ~60% of its pre-storm volume. Similarly, Laporte-Fauret
et al. (2020b) monitored the recovery of the foredune system at Truc Vert, following
the 2013/2014 storm season. After the initial storm season, the average landward
retreat of the dune toe was 9.3 m along the ~4 km study area. By 2018, the dune toe
advanced seaward by 7.9 on average, followed by further erosion during the 2018/
2019 season, indicating the sensitivity of foredune recovery to subsequent storm
events or seasons. George et al. (2021) monitored the recovery of a beach-dune
system 2 months following a major storm event at Brackley Beach, PEINP. Follow-
ing the storm event, the beach showed limited initial recovery at ~50% of the
pre-storm volume, however, a consistent ramp of 1.9 m3/m formed along the dune
scarp that may aide in foredune recovery by facilitating sediment transport across the
stoss slope.

With increasing accessibility to sUAS and improvement to the instrumentation
integrated with these systems, further research opportunities exist to monitor storm
impacts and recovery. For example, Doughty and Cavanaugh (2019) found that
sUAS-derived NDVI imagery was significantly correlated with field measurements
of above-ground biomass in coastal marsh ecosystems and allowed for a calibrated
model to predict the dried weight of vegetation across their entire study area. A
similar approach could be applied to coastal dune systems to monitor the effective-
ness of above-ground biomass on attenuating wave run-up and mitigating
foreduneerosion during collision events, beyond controlled flume experiments
(e.g., Feagin et al. 2019). Pre- and post-storm classifications of vegetation species
and density, and corresponding patterns of topographic change, could reveal addi-
tional controls on the form and extent of foredune scarping and capture negative
feedbacks resulting in dune recovery (Carter and Stone 1989; Carter et al. 1990b).
Lastly, the integration of advanced survey sensors such as LiDAR topo-bathy could
allow for improved monitoring of storm impacts and recovery by capturing the



morphological controls and sediment transport pathways between the nearshore,
beach, and dune at scales not previously possible.
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10.4.2 Dune Blowouts

Coastal dune morphology, sediment transport gradients, and ecosystems can become
rapidly modified by the initiation and expansion of dune blowouts (Fig. 10.4a).
Blowouts are shallow saucer, deep bowl (Fig. 10.4b), or elongated trough
(Fig. 10.4c) features that erode pre-existing dune or machair environments (Carter
et al. 1990b). These features are typically initiated in areas of localized erosion and

Fig. 10.4 Examples of blowouts and depositional lobes at Pinery Provincial Park, Canada (a, f)
Cape Cod National Seashore, USA (b, c) and on the Sefton Coast, England (c, e). Blowouts can
erode pre-existing dune deposits (a) and develop into shallow saucer, deep bowl (b), or elongated
trough (c) shapes. Lateral and downward deflation of blowouts are limited by the ability to
accelerate airflow, rates of sediment transport, and the proximity to the water table (d) or other
non-erodible surface layer. Sediment is transported through the primary axis and deposited down-
wind of the crest in depositional lobes that increase the rates of burial that can stress or kill
vegetation (e) unless species have a high tolerance (f)



vegetation disturbances and can be caused by a range of biotic and abiotic processes
(Hesp 2002). Although less often depicted in the literature, undisturbed (i.e., not
caused by erosion or vegetation die off) blowout initiation has been described in
areas of low deposition between mobile dune ridges and from initial gaps in the
incipient foredune that persist as the landform develops (Hesp 1984; Carter and
Wilson 1988; Gares and Nordstrom 1988; Carter et al. 1990b). Regardless of
initiation history, blowout expansion and maintenance are controlled primarily by
aeolian processes.
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Blowout expansion typically occurs in the direction of the prominent wind regime
but may also be aligned to high magnitude events occurring from diverging angles
(e.g., Hesp and Walker 2012). The orientation of the initial disturbance may also
control the expansion direction due to significant topographic steering of oblique
airflow into blowouts (Hesp and Hyde 1996; Hesp and Pringle 2001). Winds
entering blowouts may undergo further steering and acceleration through the blow-
out axis and can produce jet flows that increase the rate of sediment transport (Carter
et al. 1990b; Hesp and Hyde 1996). Blowout expansion occurs through rapid
deflation that may be limited by the underlying water table (Fig. 10.4d) or other
non-erodible surface layer, and lateral erosion through basal undercutting, slumping,
and grainfall avalanching (Carter et al. 1990b). As the blowout expands, sediment
supplied from deflation or lateral erosion is transported through the axis and over the
blowout crest (Delgado-Fernandez et al. 2018). Downwind of the crest, flow sepa-
ration, and reduction in wind velocity promote sediment fall out and the formation of
depositional lobes (Smith et al. 2017c). High burial rates across the depositional lobe
may stress or kill vegetation species with a low tolerance to burial (Fig. 10.4e) and
may be colonized by high tolerance species (Fig. 10.4f) that are more typical of
backshore environments (Dech and Maun 2005; Hesp and Martínez 2007).

10.4.2.1 Monitoring Blowouts with sUAS

To the authors’ knowledge, there has yet to be a sUAS study focusing specifically on
blowout evolution in coastal environments; however, Ruessink et al. (2018) moni-
tored the development of foredune ‘notches’ or human excavated features that mimic
trough blowout morphology and dynamical function. This study was conducted at
National Park Zuid-Kennemerland, the Netherlands, where notches have been
created to promote increased sediment transport landward of the foredune in an
attempt to improve biodiversity and connectivity between ecosystems. This study
used multiple aerial LiDAR and sUAS surveys to monitor the topographic and
volume changes that have occurred within a 3-year period following initial notch
excavation. Over time, the notches expanded laterally, causing slope avalanching
and slumping unless upheld vertically by the roots of Ammophila arenaria. The
landward transfer of sediment was observed at a rate of ~22,750 m3/yr., leading to
high levels of accretion beyond the lateral walls and across the depositional lobe of
up to 8 m, infilling of the dune slack backing the foredune, decreased density of
A. arenaria, and burial of shrubs (i.e., Salix sepens). This study highlights the



extensive eco-geomorphological impacts dune notches or blowouts can have on
coastal dune systems.
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Further opportunities exist not only to monitor the rates of volume transfer,
vegetation burial and emergence, and longer-term ecosystem responses associated
with blowout development but also to advance our understanding of the processes
responsible for their evolution. For example, Carter et al. (1990b) described
‘stacked’ blowouts as being a common feature in Ireland that develop on the
downwind ridge of other blowouts near the area separating sediment deposition
and secondary flow reattachment. Similarly, small-scale ‘ridge saucers’ have been
found to form on blowout ridges at Cape Cod National Seashore, USA (Abhar et al.
2015; Smith et al. 2017c). As these features expand through downcutting and lateral
erosion, the ridge separating the two blowouts can collapse, causing cannibalization,
rapid deflation, and asymmetric expansion that ultimately alters sediment transport
pathways through the blowout and across the depositional lobe (Smith et al. 2017c);
however, the processes responsible for initiation, location in which they form, and
longer-term significance of blowout evolution require further study. Additionally,
sUAS studies could be designed to examine blowout closure and vegetation feed-
backs by testing and refining conceptual models of blowout evolution. For instance,
Gares and Nordstrom (1995) proposed a model of cyclical blowout development,
including (1) Initial wind excavated foredune notches (year 1), (2) Rapid deflation
and formation of a depositional lobe (years 2–5), (3) Lateral expansion and progres-
sive reduction in flow acceleration and sediment flux (years 5–10), and (4) Backshore
deposition near the blowout throat, slumping of the lateral walls, revegetation, and
closure (years 10–20). sUAS surveys are ideal to continuously monitor rapid
topographic and vegetation changes often associated with blowouts and may be
used to provide new insight on blowout initiation, expansion, and closure.

10.5 Topographic Change, Error, and Uncertainty

sUAS are increasingly used to monitor multi-temporal topographic and volumetric
changes occurring in coastal dune systems resulting from seasonal or annual change
(Brunier et al. 2016; Casella et al. 2016; Scarelli et al. 2017; Taddia et al. 2017, 2019;
van Puijenbroek et al. 2017; Grottoli et al. 2019; Ruessink et al. 2018; Laporte-
Fauret et al. 2019; Pagán et al. 2019; Hilgendorf et al. 2020; Rotnicka et al. 2020;
Zanutta et al. 2020), storm impacts (Drummond et al. 2015; Turner et al. 2016;
Casella et al. 2020; Smith et al. 2020a) and recovery (Guillot et al. 2018; Laporte-
Fauret et al. 2020b; George et al. 2021), and the impact of urbanization (García-
Romero et al. 2019a, b). A major challenge in coastalmonitoring is the handling of
error and uncertainty that can affect the quality of structure from motion (SfM)
photogrammetry processing, generation of ‘bare earth’ DTMs, and measurements of
topographic or volumetric change. Survey error is quantifiable and is commonly
measured by georeferencing the point cloud to ground control points by taking the
root mean square error (RMSE(x, y, z); Eq. 10.5) from the residuals (e) among all



ground control points (i) for the x, y, and z coordinates, and combining the error
terms using the root sum of squares to produce a universal georeferencing error
(RMSEGR; Eq. 10.6), given by:
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RMSE x,y,zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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ð10:5Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
RMSEGR ¼ RMS2x þ RMS2y þ RMS2z ð10:6Þ

Uncertainty is less tangible and can vary within and between surveys depending
on the presence or alteration of surficial features, environmental conditions, and
topographic representation (Fisher and Tate 2006). SfM studies in coastal environ-
ments are often able to obtain centimeter-scale georeferencing accuracy; however,
significant sources of uncertainty can arise from wave run-up, slope, texture, and
illumination of the surface and the density, distribution, height, and tonal variability
of vegetation (e.g., Mancini et al. 2013; Gonçalves and Henriques 2015; Brunier
et al. 2016; Turner et al. 2016; Scarelli et al. 2017; Guisado-Pintado et al. 2019;
Smith et al. 2020a). Through time, uncertainty can limit the confidence of reported
topographic (Δz; Eq. 10.7) or volumetric (Δv; Eq. 10.8) change measurements,
found by:

Δz ¼ zt2 � zt1 ð10:7Þ

Δv ¼ xyΔz ð10:8Þ

zt1 zt2where and are the surface elevations in the first and second-time series and
x and y are the length and width of the raster cell, respectively. A range of uncertainty
associated with these measurements can be reported by the propagated error (PE;
Eq. 10.9), taken as:

PE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2t1 þ σ2t2

q
ð10:9Þ

σt1 σt2where and are the combined error terms for the first and second time series,
respectively. Note that error sources most often represent RMSEGR, but may also
include interpolation and vegetation error terms (see Sect. 10.5.2). The uncertainty
of topographic change can be reported as Δz � PE and the volumetric change
uncertainty as Δv � xyPE. To limit the uncertainty of reported change, a
two-tailed t-test (Wheaton et al. 2010) can be used to determine the t-score (t;
Eq. 10.10), by:



Δz

!

!
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t ¼
PE

ð10:10Þ

A threshold can then be applied to limit uncertainty between data series by removing
values that fall below an acceptable confidence level (CL). For example, Smith et al.
(2020a) removed values falling below a 95% CL (i.e., |t| > ~1.96), lowering the
percent uncertainty (%U; Eq. 10.11) from reported post-storm volume change from
42% to 23%.

%U ¼ UΔv
Δv 100 ð10:11Þ

Reporting uncertainty or applying CL-based thresholds is important to improve the
confidence that measurements represent actual change, rather than propagated error
between datasets.

Alternatively, Wernette et al. (2020) used a non-uniform probabilistic measure of
uncertainty based on the area of overlap between two error distributions, ranging
from 0 (low confidence) to 1 (high confidence). Wernette et al. (2020) integrated
RMSEGR with DTM interpolation error, measured through ordinary kriging, for
each time series. The intersection of two error distributions (c; Eq. 10.12), assuming
normal distribution, is found by:

c¼

zt2σ
2
t1�σt2 zt1σt2þσt1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zt1�zt2ð Þ2þ2 σ2t1�σ2t2

� �
log

σt1
σt2

� �s 

σ2t1�σ2t2
forzt2>zt1

zt1σ
2
t2�σt1 zt2σt1þσt2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zt2�z1ð Þ2þ2 σ2t2�σ2t1

� �
log

σt2
σt1

� �s 

σ2t2�σ2t1
else

8>>>>>>>>>><
>>>>>>>>>>:

ð10:12Þ

The probability of change (P; Eq. 10.13) is then found by subtracting the area of
overlap between error distributions from one.

P ¼ 1� 1
2
erf

c� zt1ffiffiffi
2

p
σt1

 !
þ 1
2
erf

c� zt2ffiffiffi
2

p
σt2

 !					
					 ð10:13Þ

Here, erf (Eq. 10.14) is the error function with the form:

erf xð Þ ¼ 2ffiffiffi
π

p
Z x

0
e�t2dt ð10:14Þ



This approach allows for spatially dependent sources of error to be mapped for each
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pixel across the study area and included in evaluations of uncertainty, which can
arise due to georeferencing and interpolation errors. Furthermore, Wernette et al.
(2020) suggested this approach could be adapted to integrate additional error terms
such as vegetation (see Sect. 10.5.2).

10.5.1 Vegetation Filtering, Correction, or Removal

Vegetation is one of the most significant sources of uncertainty in monitoringcoastal
dune morpho-dynamics with sUAS and usually results in the overestimation of the
sand surface, requiring additional post-processing methods to achieve a representa-
tive ‘bare earth’ DTM. Taddia et al. (2017, 2019) used a point cloud filtering
approach to remove areas covered by Ammophila arenaria and Echinophora
spinosa by taking the lowest elevation value within a 5 m2 window and, relative to
the lowest point, retaining all other points that did not exceed a maximum threshold
of 0.15 m and 15�. Where terrain points were removed in areas of high slopes, field-
measured GPS points were integrated to supplement the point density prior to DTM
interpolation. Comparisons between DTM and GPS profiles showed good agree-
ment with an average elevation difference of 1.2 cm. Similarly, Guisado-Pintado
et al. (2019) compared the minimum point cloud elevation within 2 m2 quadrats to
points sampled in the field with a GPS, and across distinct beach-dune zones with
varying vegetation and topographic characteristics. The average difference between
the GPS reference and minimum SfM point cloud elevation was ~0.44 m, with
higher divergence recorded in areas with increased vegetation density and topo-
graphic slope. Rotnicka et al. (2020) generated a 20 cm2 DTM during initial SfM
processing in order to remove micro-scale surface features, before using a 60 cm2

moving window to smooth the surface with a low pass filter. This study determined
that annual sediment budgets could be accurately measured in areas of marram grass
(A. arenaria) with less than 20% density, whereas the increasing uncertainty asso-
ciated with higher vegetation densities was proportional to yearly changes occurring
over the 4-year study period.

Alternatively, an elevation correction or offset has been used to lower the DSM
surface in areas of vegetation. Bastos et al. (2018) used a maximum likelihood
(ML) classification to map low profile vegetation species (i.e., Lotus criticus and
Vulpia alopecurus) and taller herbaceous and woody species (i.e., A. arenaria and
Artemisia campestris), corresponding to average field measured heights of 0.24 and
0.44 m, respectively. The DSM was then corrected using two approaches, including
(1) removal of areas classified as vegetation from the DSM, integrating GPS points
taken from the field and interpolating the remaining values, and (2) subtracting the
average height of the low and high vegetation from the DSM across the
corresponding classifications. Bastos et al. (2018) found that using an uncorrected
DSM overestimated the foredune volume by up to 10% and applying the second
method improved the accuracy of surface elevations relative to GPS points, although



the first method provided a better representation of the dune slope. Meng et al.
(2017) used a similar approach by mapping vegetation patterns with a support vector
machine (SVM) algorithm and subtracting field measurements of two dominant
species including low profile Panicum vaginatum with an average height of
0.37 m and taller Spartina alterniflora with an average height of 1.63 m from a
classified DSM. They found that the initial uncorrected DTM overestimated the
surface by ~80% of the vegetation height for both low and tall vegetation classes,
and applying the correction improved the accuracy relative to GPS control points
made within each class. By applying the surface offset, the mean absolute error
(MAE) and root RMSE were reduced for all vegetation classifications by between
32% and 50%.
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Vegetation has also been ‘masked’ or removed from topographic change mea-
surements due to the increased uncertainty of the underlying terrain. Removing
vegetated areas from DSMs can be an effective method, particularly when GPS
ground control points and in situ vegetation height measurements are lacking. For
example, Smith et al. (2020a) limited post-storm change measurements to a narrow
section between the upper beach and foredune scarp because of the uncertainty
associated with the swash zone and the vegetated foredune. Landward of the scarp,
the presence of high-density Ammophila breviligulata led to the overestimation of
the foredune elevations across the upper stoss and lee slopes, and they were removed
from further analysis. Cumulatively, these studies have identified vegetation as a
major challenge to producing accurate DTMs and sediment budgets from sUAS
data. The approach used to filter, correct for, or mask vegetation requires a trade-off
between additional field measurements and data processing for the former two
approaches or limits the spatiotemporal extent that topographic changes can be
observed for the latter. Regardless of which approach is used, reporting or system-
atically reducing uncertainty is critical to improving the confidence in
monitoringtopographic changes in coastal dune systems.

10.5.2 Monitoring Coastal Dune Morpho-Dynamics
with sUAS

Using Pinery Provincial Park (PPP) as an example, we demonstrate how errors
associated with DTM interpolation and vegetation can be integrated into a spatially
dependent uncertainty analysis when monitoringcoastal dune systems through time.
Two sUAS surveys were conducted by the authors in July 2019 and again in October
2020. PPP is highly influenced by fluctuations in lake levels which increased by over
1 m between 2017 and 2020 (Fig. 10.5a). Along the study area, the sandy beach has
been replaced by one or two gravel ridges during this period of lake level rise
(Fig. 10.5b). A steep and continuous 1–2 m scarp with a slope up to 90� is
maintained by a rhizome and root matrix (Fig. 10.6c). Fine grain sand has accumu-
lated on the upper beach, supplied by the eroding foredune through grain



avalanching and slumping, and is trapped by large woody debris (LWD)
(Fig. 10.5c). This section of the foredune is densely vegetated by Ammophila
breviligulata, but woody vegetation (e.g., Populus balsamifera) was also observed
on the foredune and beach (Fig. 10.5d) indicating that later successional species are
being increasingly exposed to abiotic processes as the existing dune deposits are
eroded.
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Fig. 10.5 Lake Huron water level fluctuations occurring over the past 100 years (a; Fisheries and
Oceans Canada). The beach-dune system at Pinery Provincial Park, Canada, is highly sensitive to
changes in lake levels which are currently ~1 m above the longer-period average, leading to the
formation of gravel ridges on the beach (b) with sand limited to the upper beach where sediment
eroded from the dune scarp is trapped by wrack and large woody debris (c). Later successional
species (e.g., Populus balsamifera) are now located directly on the foredune and beach increasing
their exposure to abiotic processes (d)

Two overlapping survey flight lines or grids during time 1 (t1) and three grids
during time 2 (t2) were flown at an altitude of 55 m, with 80% frontal and 70% side
overlap between flight lines, and an average point (p) density of ~1800 p m2 for both
surveys. Images were processed using the SfM software Pix4D following the basic
quality control measures described in (Smith et al. 2020a). A total of 4 GCPs in t1
and 15 GCPs in t2 were used for the point cloud georeferencing with RMSRGR of
0.006 and 0.012 m, respectively (Table 10.2). It should be noted that due to GPS
error during the initial survey, GCPs were limited to permanent marker posts on the
foredune and were surveyed during the second survey period. As a result, we
constrain volumetric measurements to the beach, foredune, and swale given the
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Fig. 10.6 GPS control points were measured across transect 1 (T1) and transect 2 (T2) and were
compared to the structure from motion (SfM)point cloud using two methods to determine the best
strategy to maintain the characteristic dune slope and provide the most accurate elevation values in
areas of low vegetation. The average of all points (DSM) and lowest point (LP) were found within
varying search radii of 0.05, 0.1, 0.5, and 1 m. Vegetation density is also shown on the secondary
y-axis to indicate areas where surface elevations may be influenced by increased plant cover

Table 10.2 Error, uncertainty, and probability of change occurring between time series one (t1)
and two (t2). Total error (σ) for each time series includes terms for point cloudPoint cloud
georeferencing (RMSEGR), vegetationVegetation (RMSEVeg), and interpolation (SDEInt). Total
volumetric change (Δv) and Δv at the 95% and 99% confidence levels (CL) were measured. Total
uncertainty (UΔv) and the percent uncertainty (%Uspiepr h 1pt) decreases with an increase in CL
threshold, improving the confidence of change reported.

Error RMSEGR(m) RMSEVeg(m) SDEInt(m) σ(m)
t1 0.006 0.11 0.01–1.37 0.01–1.45

t2 0.015 0.11 0.02–2.32 0.03–2.32

Probability Change Δv(m3) UΔv(m
3) %U

Total change Accretion 16706.87 �3618.64
22

Erosion �3981.35 �1521.71
38

95% CL Accretion 16425.05 �3093.14
19

Erosion �3675.09 �1084.60
30

99% CL Accretion 15645.40 �2447.28
16

Erosion �3150.72 �635.78
20



absence of additional landward GCPs. A limited number of GCPs for t1, all located
at a similar elevation, may have contributed to a lower georeferencing error relative
to t2 when GCPs were more distributed across the surface and sampled a larger range
of elevations. Future studies should investigate GCP sampling on the accuracy of
SFM processing and contribution to non-uniform error terms; however, this is
beyond the scope of this current work.
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To measure the error associated with vegetation, two GPS transects recorded
during t2 were used to sample ground points across the foredune with varying
densities of low vegetation. GPS points were then compared to the SfM-derived
point cloud within varying search radii of 0.05, 0.1, 0.5, and 1 m. A radius of 0.05 m
was chosen as the minimum search distance, maintaining a sample size of at least
2 points due to non-uniform point distribution. In general, point density decreased in
areas of high topographic slope (e.g., foredune scarp) and at the edges of dense
vegetation. Two different methods were then applied for comparison, including the
following: (1) All points within each search radius were averaged (i.e., DSM), and
(2) only the lowest point within each search radius was retained (i.e., LP). Profiles for
each method, search radii, and transect can be seen in Fig. 10.6. The DSM method
maintains the characteristic slope of the foredune profile except for the near-vertical
scarp in T1 for the 0.5 and 1 m search radii (Fig. 10.6a) but overestimates the surface
in areas of dense vegetation. Beyond the 0.05 m search radius, the LP approach
significantly alters the shape of the dune profile by underpredicting elevation values
on high sloping surfaces associated with the dune scarps and peaked crests in T1 and
T2 (Fig. 10.6b, d). Despite this deformation at larger scales, the 0.05 LP method was
found to have the lowest root mean square error within vegetation (RMSEVeg) of
0.11 m, followed by 0.13 for the DSM method taken at the same scale among the
34 GPS control points measured within low vegetation. Topographic slope and
vegetation density were uncorrelated with RMSEVeg; therefore, we apply a universal
RMSEVeg to areas of low vegetation identified from the maximum likelihood
(ML) classification described in Sect. 10.3.2.

Following the application of the LP filter, a 10 cm2 raster was interpolated using
ordinary kriging. The standard deviational error per pixel (SDEInt; Eq. 10.15) was
taken as the error associated with DTM interpolation, by:

SDEInt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 zi � zð Þ2
n� 1

s
ð10:15Þ

iswhere zi represents elevation values within the search neighborhood range (i) and z
the average elevation. SDEInt was used in this analysis because it provides a
conservative level of error that is slightly higher than other metrics including
variance or standard error. Lastly, combining RMSEGR, RMSEVeg, and SDEInt

from the root sum of squares, a spatially dependent error raster is produced for
each time series (i.e., σt1 and σt2; Fig. 10.7). Given the lack of field measurements for
medium and high vegetation, areas classified from these groups were ‘masked’ or
removed from our topographic surfaces (i.e., zt1 and zt2 ) due to the high level of



uncertainty associated with these values. The probability of change can then be
found by using Eq. 10.13, with a graphical summary of the methodology used for
our analysis provided in Fig. 10.7.
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Fig. 10.7 Flow chart indicating the methods used to produce a digital terrain model (zt2 ) and
spatially dependent error raster (σt2 ) for the second time series. Following initial SfM processing, a
dense point cloud (i.e., ~1800 p m2) was georeferenced by ground control points (GCPs) with a root
mean square error (RMSEGR) of 0.015 m. An orthomosaic was then produced and used to identify
areas of low, medium, and high vegetation using a maximum likelihood classification. In areas of
low vegetation, field sampled GPS points were compared to the point cloud within varying search
radii of 0.05, 0.10, 0.50, and 1 m using all points (i.e., DSM) and the lowest point (i.e., LP) within
each radius. The lowest root-mean-square error (RMSEVeg) of 0.11 m was found using the 0.05 m
LP method and was applied to pixels classified as low vegetation. Next, the point cloud was filtered
and interpolated using ordinary kriging with a standard deviational error (SDEInt) ranging between
0.03 and 2.32 mapped for each pixel. Lastly, areas classified as medium and high vegetation were
‘masked’ or removed from zt2 and all error terms were combined by taking the root sum of squares
to produce σt2

There is a high probability of change (P) occurring across the majority of the
study area (Fig. 10.8a), representing topographic changes over a 15-month period at
PPP. A slight decrease in P occurs primarily where minimal topographic changes
were recorded in areas with increased SDEInt due to localized reduction in point
density (e.g., across high sloping terrain and near the edges of dense vegetation)
and/or increased RMSEVeg within areas classified as low vegetation. Topographic
change at the 99% CL (Fig. 10.8b), shows a distinct area of 1–2 m of erosion
alongshore where the dune scarp has retreated landward by up to 5 m. Much of the
NE half of the survey falls below the CL threshold due to the increased spatial
coverage of low vegetation and low magnitude topographic change. Across the SW
half, high rates of deposition occur across the beach and swale and within the
blowout basins that have formed through breaks in the foredune. Given the time
between surveys, it is unclear precisely what processes were responsible for these
changes; however, a highly erosive and discontinuous foredune that is further eroded
by blowouts may have aided in the landward transport of sediment during this period



of rapid lake level rise. The propagated error (PE; Fig. 10.8c) indicates the combined
error terms for each metric and time series, with increased PE most visible in areas
classified as low vegetation. The proportion of PE relative to topographic change is
also used to measure the percent uncertainty (%U ) for the sediment budgets and is
provided in Table 10.2.
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Fig. 10.8 The probability (P) of topographic changes recorded at Pinery Provincial Park, Canada,
between July 2019 and October 2020 (a). Topographic changes were masked in areas outside of the
99% confidence level (CL) and in locations with medium and high vegetation that were removed
due to the increased uncertainty of the underlying terrain (b). Propagated error (PE) indicates areas
with increased cumulative error between surveys and error terms with the highest values located in
areas with low vegetation and increased point spacing, corresponding to an increase in RMSEVeg

and SDEInt, respectively (c)

By combining error terms for georeferencing, vegetation, and DTM interpolation,
we have identified spatially dependent patterns of uncertainty associated with
topographic and volumetric changes occurring at PPP. Applying a CL threshold
can limit the %U of sediment budgets by removing lower magnitude change
measurements that are within the range of uncertainty (Table 10.2). While the use
of a CL threshold depends on the user’s objective, it is important to report the
uncertainty of change (e.g., UΔv or %U ) to improve the confidence in topographic
and volumetric change measurements through time. The results presented in this
section provide a basic guideline for combining non-uniform error terms, measuring
uncertainty, and determining the probability of change. Additional opportunities
remain to measure errors associated with GCP distribution, topographic slope, and



vegetation. For instance, a non-linear low-pass filter may improve upon the produc-
tion of ‘bare earth’ DTMs by increasing the search radius with decreasing topo-
graphic slope; however, additional research is required to determine the optimal
vegetation filtering strategies to monitor coastal dune morpho-dynamics with sUAS.
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10.6 Discussion and Conclusion

Advances in aerial and orbital sensors have significantly improved our capability to
monitor coastal systems from a local to global scale, including aerial photography
since the 1920s, satelliteimagery since the 1970s, and LiDAR surveys since the
2000s (Anders and Byrnes 1991; Stockdon et al. 2002; Gens 2010). Since the 2010s,
sUAS and structure from motion (SfM)photogrammetry have provided an efficient
and low-cost alternative to monitoringcoastal systems, and the number of studies
utilizing this technology is likely to grow rapidly in the coming years. The influx of
high-resolution eco-geomorphological data will provide new insight on how coastal
dune systems evolve in response to environmental drivers operating over multiple
spatial and temporal scales (e.g., Sherman and Bauer 1993; Houser and Ellis 2013).
Classifying backshore vegetation (De Giglio et al. 2019; Suo et al. 2019; Laporte-
Fauret et al. 2020a) and landforms (Sturdivant et al. 2017) can be improved by using
high-quality sUASimagery and may lead to the development of more consistent
process-based definitions when monitoring changes through time (Smith et al.
2020b). Over longer time periods (i.e., decadal to centennial scale), an improved
observational record will likewise improve our understanding of how coastal dune
systems respond to climate change.

According to the IPCC Special Report Ocean and Cryosphere (2019), it is likely
that the global mean sea level will rise between 0.29–0.59 and 0.61–1.10 m by 2100
under a low (RCP 2.6) and high (RCP 8.5) green house gas emission scenario,
respectively. While the effect on coastal systems will vary due to site specific
environmental controls, geological framework, and anthropogenic impacts (e.g.,
Cooper and Pilkey 2004), widespread shoreline transgression has been observed
over the last few decades on a global scale (Luijendijk et al. 2018) and historic rates
could accelerate with SLR. Foredunes may be able to migrate landward and upward
to keep pace with rising sea level as described by the Robin-Davidson-Arnott
(RD-A) model (Davidson-Arnott 2005; Davidson-Arnott and Bauer 2021), but this
may also require minimal human intervention and sufficient landward accommoda-
tion space to allow for transgression of the system (Ollerhead and Davidson-Arnott
2022). Similarly, a reduction in suitable environments for vegetation may occur due
to ‘coastal squeeze’ or limit coastal ecosystems’ ability to migrate landward in
response to SLR due to the presence of shore parallel structures (e.g., Pontee
2013). As a result, a loss of later successional species and areal coverage of
backshore vegetation could occur with medium to high SLR projections (Feagin
et al. 2005).
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Regional environmental and anthropogenic drivers will further influence local-
ized coastal dune eco-geomorphology including, but not limited to, isostacy
(Ollerhead and Davidson-Arnott 2022), changes in storminess (Masselink et al.
2016), reduction in winter sea ice (Forbes et al. 2004), increased number of growing
days (i.e., temperatures >5 �C) and vegetation coverage (Jackson and Cooper 2011),
beach recreation (Houser et al. 2013), urbanization (Smith et al. 2017b), and desired
coastal management outcomes that promote dune stabilization (Seabloom and
Wiedemann 1994) or destabilization (Delgado-Fernandez et al. 2019). Given the
range of site-dependent controls that are likely to influence the evolution of coastal
dune systems over the coming decades, it is critical to examine how these systems
are evolving and to reveal important sources of similarity and disparity between
systems that will lead to improved management practices and climate adaptation
strategies. sUAS can be used to address these challenges because of the increased
accessibility, relative ease of operation, and efficiency of sUAS to collect topo-
graphic and ecological data over several kilometers of shoreline and will allow for
research to be conducted broadly by scientists, coastal managers, and citizen science
initiatives from around the world.

This chapter has reviewed some of the current applications and challenges of
applying sUAS to monitor coastal dune eco-geomorphology, including (1) vegeta-
tion zonation and distribution in coastal dunes; (2) Aeolian processes, dune building,
and the role of vegetation; (3) Coastaldune disturbances, recovery, and vegetation
feedbacks; and (4) topographic change, error, and uncertainty. It should be noted that
the review of sUAS studies is not exhaustive, and several additional publications will
likely be available prior to this chapter. We have also discussed some of the
opportunities in which high spatiotemporal resolutionsUAS data can be used to
monitor topographic and vegetation change, fill-in knowledge gaps, test conceptual
models, and provide an improved record of the response of coastal dune systems to
climate change. With sUAS increasingly being used to monitor coastal environ-
ments, the ability to capture feedbacks between sedimentation and vegetation pro-
cesses offers a broad range of opportunities for ecologists, geomorphologists, and
coastal managers to research coastal dune systems. To fully realize the potential for
sUAS applications, further sharing through open source data repositories and
collaboration between disciplines is needed to address knowledge gaps, develop
innovative research methodologies, and advance our understanding of coastal dune
eco-geomorphology.
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Chapter 11
Using Small Unoccupied Aircraft Systems
(sUAS) for Characterizing Rivers
and Streams in Forested Environments

David A. Reid, Marwan A. Hassan, Carina Helm, and Steve Bird

Abstract Small unoccupied aerial systems (sUAS) are rapidly becoming a required
component of a field geomorphologist’s toolbox. In a fluvial context, work to date
with sUAS has largely focused on rivers of intermediate size and with clear sight
lines, with few studies completed in small channels with closed, heavily forested
canopies. While the capabilities, advantages and drawbacks of sUAS-based data
collection approaches in larger channels are relatively well known, less information
is available to characterize their performance in smaller, more vegetated fluvial
systems. Recent advances in the capability of consumer-grade sUAS have allowed
researchers to push the boundaries of geomorphic data collection in these more
challenging environments. Using a combination of recent literature and the author’s
first-hand experience, this chapter describes approaches, opportunities and chal-
lenges related to the application of sUAS-based methods in rivers and streams within
forested landscapes or other environments with confined flying conditions and
limited sight lines.

Keywords sUAS · Fluvial geomorphology · Forested watershed · Small rivers ·
River ecology · Grain size · Riparian vegetation

11.1 Introduction

Small unoccupied aerial systems (sUAS) have become an essential tool for
researching and characterizing fluvial environments (Tamminga et al. 2015;
Woodget et al. 2017; Hamshaw et al. 2019; Piégay et al. 2020). While
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photogrammetric principles have been applied to imagery for geomorphic purposes
for over half a century (e.g. El Ashrey and Wanless 1967), the collection of imagery
from sUAS platforms is comparatively recent, with early applications beginning in
the mid-2000s (Tamminga et al. 2015). From their early use in river systems for
topographic mapping (Lejot et al. 2007), sUAS have become standard equipment for
data collection pertinent to bathymetry (Tamminga et al. 2015) and hydrometrics
(Tauro et al. 2016), geomorphic change detection (Cook 2017), vegetation coverage
(Watanabe and Kawahara 2016), evaluation of aquatic habitat (Roncoroni and Lane
2019) and mapping of in-stream wood in fluvial environments (Sanhueza et al.
2019).
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Numerous studies have highlighted the various capabilities and limitations of
sUAS use in large and intermediate river systems (Tamminga et al. 2015), and in
small systems with relatively unobstructed sightlines (Woodget and Austrums
2017). In most cases, the survey precision achievable with sUAS is comparable to
that from other methods. When flights are supplemented with accurate ground
control points (GCPs), uncertainty can be less than 10 cm (Watanabe and Kawahara
2016), even in clear-water submerged areas (Woodget and Austrums 2017). Survey
coverage is more difficult to assess, but is typically limited by the presence of
vegetation obscuring the channel (Meinen and Robinson 2020) and deep or opaque
streamflow rendering submerged areas of the channel bed difficult to resolve (Die-
trich 2017; Carrivick and Smith 2019).

While sUAS have become standard data collection instruments in river systems
with few flight or sight line obstructions, small rivers and streams bordered by or
overlain by forest canopies have, to date, remained challenging to survey with
sUAS-based methods. Channels of this type possess characteristics rendering them
distinct from larger and more open systems which are relevant for undertaking sUAS
surveys. Several example images of channels overlain by dense forest canopies are
shown in Fig. 11.1. For this chapter, we define channels as likely to be influenced by
canopy coverage and riparianvegetation if they are narrower than the average height
of the surrounding forest. This definition follows others focusing on the influence of
in-stream wood on channel morphology (Hassan et al. 2005; Reid and Hassan 2020).
While the specific nature of canopy coverage will vary with different tree species,
channels with forested riparian areas where tree height is similar to or exceeds
channel width will be largely obstructed from overhead view and are typically
difficult to characterize with aerial imagery from above the canopy. Beneath the
canopy, additional vegetation may be present, especially along channel banks. Bank
vegetation may protrude into the channel but in some cases overhangs the channel
margin, providing an opportunity to capture imagery of bed areas beneath. In this
regard, several aspects of the methodology presented in this chapter are relevant to
larger channels with forested banks.

Small channels in forested regions are of high ecological value and often possess
complex morphologies (Montgomery et al. 2003), and channel form can be affected
by the presence of in-stream wood originating from the riparian zone and hillslopes
(Hassan et al. 2019). While these channels compose a great deal of river network
length (Wohl 2017), they are challenging to study due to complex terrain and



riparian and canopy vegetation, rendering traditional remote-sensing approaches
difficult to apply. While other methods have been investigated to capture imagery
below forest canopies in small channels (e.g. Bird et al. 2010), characterizing
streamchannels sub-canopy has traditionally been considered impractical using
sUAS approaches. While sUAS-based mapping of forested channels has lagged
behind the remote sensing technologies applied in larger rivers, recent improvements
in equipment and methodology provide an opportunity for widespread application in
smaller streams in forested environments.
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Fig. 11.1 Example images highlighting aspects of forested streams with closed canopies. (a)
example channel (Wilson Creek, B.C., width ¼ 10 m), with closed canopy but relatively little
understory. Surveys in this channel will produce good results; (b) while this channel is small
(width ¼ 3 m, East Creek, B.C.) and has relatively complete canopy coverage, a good survey result
should be attainable as sightlines are clear; (c) example overhead view of a channel (Carnation
Creek, B.C., width ¼ 15–20 m) where a sub-canopy survey would provide substantial improve-
ments in coverage; (d) channel section (Carnation Creek, B.C.) where sub-canopy flights are not
feasible given dense low-elevation vegetation inhibiting flights. (All images are taken by the
authors)

Relying upon a combination of recent literature and the author’s experience in
applying sUAS in geomorphic data collection, this chapter aims to describe



approaches for collecting image-based geomorphic and ecological information from
consumer-grade sUAS in rivers and streams bordered by, and often overlain with,
forest canopies. This chapter will first review the techniques for data collection in
these settings, followed by an overview of data processing approaches to obtain the
best quality product from the survey. An evaluation of sUAS methods against
traditional survey approaches will be conducted, and then an example of how
these surveys have been applied will be presented.
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11.2 Data Collection Strategies

In many aspects, the approach for undertaking a detailed sUAS survey in channels
with closed canopies is similar to approaches taken in larger systems. The key
distinction, however, arises in the flight strategy, where low-flying heights are
required to clear overhead obstacles and oblique imagery is necessary to capture
channel areas partly obscured by bank vegetation. Given broad similarities, the
general approach to channel surveys with sUAS will be described here only briefly,
with detail dedicated to the methods required for sub-canopy flights. A detailed
description of general sUAS survey approaches in river environments can be found
in Tamminga et al. (2015). We will focus our methodology on the use of consumer-
grade sUAS, which are relatively inexpensive and widely used.

11.2.1 Ground Control Point (GCP) Placement

As with many sUAS-based surveys where precision in the order of centimetres is
required, the placement of surveyed ground control points (GCPs) is necessary.
These points allow for accurate georectification of imagery, which is otherwise
limited by the on-board GPS provided with the sUAS. The recommended density
of points varies by study, from a minimum of 5 points within a section (Harwin et al.
2015) to upwards of 20 points (Sanz-Ablanedo et al. 2018). Beyond 20 points per
section, improvements in accuracy are possible, but at a diminishing rate, and the
accuracy of the GCP becomes relatively more important (Agüera-Vega et al. 2016).
Expressed in terms of GCPs per 100 images, a recommended density of 2 GCPs per
image is suggested by Sanz-Ablanedo et al. (2018). In addition to the placement of
GCPs, checkpoints are commonly included in surveys in order to evaluate the
accuracy of the rectified imagery. In our study, checkpoints are identical to GCPs
but are not used for rectification of imagery; rather, they are used as an independent
measure of rectification error. While few studies report a recommended checkpoint
density (but see Sanz-Ablanedo et al. 2018), we recommend, at a minimum,



including an equal number of checkpoints to GCPs. As with GCPs, checkpoints
should be distributed evenly over the study area, and if possible, some should be
placed in submerged bed areas in order to evaluate post-correction submerged bed
survey accuracy.
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The placement of GCPs in small, forested streams will involve consideration of
sightlines for both the flight and the GCP marker survey. GCPs should be placed
over the full survey area, but with consideration of vegetation that might render
points invisible from the air. In some cases, low-density vegetation may allow GCPs
or checkpoints to be partly visible in imagery, but the resulting image quality may be
insufficient to retain for inclusion in subsequent analysis, rendering the GCP
unusable.

Several methods exist for surveying the location of GCPs and checkpoints. If
some existing survey benchmarks are available, then use of a total station may be a
practical option to obtain sub-centimetre accuracy. Even if benchmarks are not
available, a survey transect with a total station will still allow all image bundles to
be correctly referenced to one another, if not in absolute space. The primary
downside of a total-station survey approach is the need for multiple people to
undertake the work, equipment cost and the comparatively longer survey time
required (Harwin et al. 2015). Additionally, vegetation can lead to short sightlines,
further slowing the survey process if large areas are to be covered. Another option is
to use a differential GPS (DGPS) system, a solution where no existing survey
benchmarks are needed to obtain absolute positioning with sub-10 cm accuracy.
Advantages of this approach are that fewer personnel are required to collect the data
and that points can be marked more rapidly and over a larger area, with fewer line-of-
sight problems than with the total station approach. The main drawbacks of the
DGPS approach are the potential for lower or variable accuracy in comparison to the
total station when GPS signal acquisition is difficult, high equipment cost and
accuracy that can vary depending on the particular survey location and conditions.

11.2.2 Camera Calibration and Settings

If a consumer-grade sUAS is to be employed and carefully surveyed GCPs are
available, then self-calibration within photogrammetric software is usually possible.
However, if higher-quality cameras are to be used or if GCPs are absent, then
pre-calibration of sUAS cameras may provide an improvement in results. A descrip-
tion of calibration approaches is given by Harwin et al. (2015). Given the low flight
elevation, commonly mixed lighting conditions and images of water surfaces, a
polarizing filter can help reduce the presence of glare on the water surface in images.
Best results are often obtained in cloudy and calm weather when lighting contrast is
reduced.
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11.2.3 Flight Paths and Image Acquisition

The primary distinction between sUAS survey strategies in larger or open channels
and strategies for sub-canopy flights lies in the approach to image acquisition. In
open environments or at higher elevations, flights with imagery collected at the nadir
(i.e. from directly overhead) often produce good results, but may miss overhanging
or very steep regions (Carrivick and Smith 2019). Given the need to fly at low
elevations below canopies and also the difficulty of capturing channel margins
obscured by vegetation, the inclusion of oblique and convergent imagery can
substantially improve results. In this context, ‘oblique imagery’ refers to images
captured with a camera angle other than 90�, while ‘convergent’ refers to frames
capturing the same channel region but from different approach directions. This
approach, which has been adopted in several studies (Wackrow and Chandler
2011; James and Robson 2014; Harwin et al. 2015), helps capture better imagery
in places where a region of interest is obscured from above, but with a clear view
from the side. Recent work (Helm et al. 2020) indicates that a camera angle of
20–30� from vertical provided good results, and combining oblique and nadir
imagery poses no obstacle during structure-from-motion analysis. An example of a
data collection scheme with nadir, oblique and convergent imagery using flight paths
parallel to the channel centreline is shown in Fig. 11.2.

Other key considerations for a sub-canopy survey are flying height, flight speed
and image collection frequency. Flying height will be limited by the particular
characteristics of the canopy overlying the channel; however, flying as high as
possible within the constraints placed by the canopy will allow for coverage with a
minimum of images. As flight elevation decreases, image collection frequency will
need to increase or sUAS ground speed to decrease in order to maintain sufficient
coverage and focus. At elevations below 5 m above ground level (AGL), low flight
speeds (< 1 ms�1) and high image collection frequency (2–3-second interval) will be
necessary. Depending on the nature of the riparianvegetation, lower flying heights
and increasingly oblique imagery may be required in order to capture particularly
challenging areas.

An example comparison of a channel area surveyed with (a) only nadir and
(b) nadir and oblique imagery is shown in Fig. 11.3. More than 30% of bank areas
are omitted when only nadir imagery is used, and substantial improvements in bank
coverage are apparent when oblique imagery is included as well.

11.2.4 Bathymetry and Grain Size Calibration and Additional
Survey Data

Depending on the application of the survey results, reference surface sediment
texture data and water depth may be desirable to collect. This information will be
needed to generate grain size maps and to obtain topography of submerged areas.
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(a) (b)

Flight path GCP

Vertical image Oblique images

90o

Fig. 11.2 (a) Example channel cross-sections contrasting oblique and nadir imagery across flight
paths. To characterize the channel banks and near-bank bed areas, the camera can be tilted 20–30�

from vertical. (b) plan view of the flight path of the sUAS with the parallel flight lines shown as
dashed lines. Additional passes may be needed if channel width increases, but flying height is
restricted by overhead obstacles, such as trees, indicated here as green circles. Flying heights are
typically the same for all passes. (Figure is modified from Helm et al. 2020)

Fig. 11.3 Difference in the proportion of bed that can be covered between only a vertical image
photoset (a) and after the incorporation of oblique and convergent imagery (b) along a section of
Carnation Creek, B.C. The DEM with both vertical and oblique imagery (panel b) has improved
coverage of channel bank and near-bank areas



Supplementary point measurements of submerged areas are helpful for assessing the
outcome of bathymetry correction methods, which are discussed in Sect. 11.3.2.
Similarly, field measurements of grain size data are helpful when assessing the
performance of grain size detection methods from sUASimagery. Typically, bed
areas would be delineated within which a sediment sample would be collected via
pebble count and then compared to grain size statistics derived from imagery. It is
also possible to use on-screen methods to obtain grain size statistics (Tamminga et al.
2015).
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When riparianvegetation is particularly dense or low-lying, obtaining surface
elevation from sUASimagery can be difficult. For hydrodynamic modeling applica-
tions or other circumstances when detailed data on riparian topography is needed,
supplemental surveys with a total station, automatic level or GPS may be necessary.
Similarly, if streamflow is opaque and therefore submerged topography remains
obscured, additional survey measurements are often needed to capture submerged
bed topography.

11.2.5 Other Considerations

When undertaking a sUAS survey in a small stream with a closed canopy and dense
riparianvegetation, several additional factors related to data acquisition are worthy of
consideration. First, depending on the specific characteristics of the sUAS, prop-
wash can disturb the water surface, rendering submerged bed areas difficult to
resolve.

In situations where very low-flying heights are required, oblique imagery may
help reduce this issue by capturing bed areas not directly below the aircraft.

Given the constrained space within which the sUAS is being operated, it is
usually not feasible to operate the instrument using pre-programmed flight paths.
In most cases, it is necessary to manually fly the sUAS, and the pilot will typically
need to be within a relatively short distance of the instrument in order to maintain
visual contact. While many newer sUAS have good obstacle avoidance systems and
are stable in flight, older models and larger sUAS could be difficult to pilot given
space constraints. Similarly, fixed-wing units are unlikely to perform well in these
settings.

In forested regions with deciduous vegetation, undertaking surveys in the winter
or early spring may improve outcomes as more bed areas may be visible when leaves
are absent. However, falling leaves can obscure much of the sediment on the bed
surface during autumn, leading to difficulties in estimating sediment texture, and
very low temperatures can reduce sUAS battery life and limit performance. Simi-
larly, in regions with seasonally fluctuating water levels, timing surveys to corre-
spond with the driest season will minimize challenges related to bathymetric
correction.
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11.3 Data Processing

There are several photogrammetric software packages available for processing
imagery collected with a sUAS (e.g. Pix4D, Agisoft Metashape, OpenDroneMap
and MicMac). These software packages can be used to produce dense point clouds,
orthophotos and digital elevation models which can be used for further geomorpho-
logical investigation. The process for generating these outputs is similar along
densely vegetated channels to other environments. Therefore, this section focuses
on how dense point clouds can be processed to characterize the topography,
bathymetry and grain size of small forested channels. A summary of data collection,
processing and analysis considerations is also shown in Fig. 11.4.

Define data collection objectives

Fig. 11.4 Workflow diagram for collecting, processing and analysing sUASimagery in forested
channels with closed canopies and dense riparianvegetation. The left side of the chart indicates steps
applicable for all surveys, while task considerations specific to forested streams are shown on the
right
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11.3.1 General Approach

Vegetation captured in imagery during sUAS surveys in closed-canopy channels can
pose difficulties during image processing, and risk becomes incorporated into point
clouds as noise. Before a high-quality DEM can be generated, unwanted image
elements must be removed from the point cloud. This removal can often be achieved
within the photogrammetry software or through a number of functions available in
other cloud processing software packages. Here we will describe a noise-reduction
approach using CloudCompare, a popular and open-source program which contains
a suite of tools for processing and analysing point clouds. The key function of
interest is the Cloth Simulation Filter (Zhang et al. 2016), an algorithm which
separates ground and non-ground points by inverting the point cloud and then
‘draping’ a simulated surface over the inverted terrain. Points exceeding a user-
defined threshold, such as a maximum distance from the mean surface, may then be
classified as non-ground points. The user can select the terrain class that most closely
describes their study area (e.g. flat or sloped) and then modify advanced parameters
to best reflect their study site. Helm et al. (2020) found that a cloth resolution of
0.1 m and maximum distance from the cloud of between 0.5 and 1.0 m was adequate
for filtering non-ground points, but experimentation is recommended to determine
parameters most suited to a given dataset.

11.3.2 Extraction of Bathymetry

Due to the refractive effect of overlying water (Dietrich 2017), a difficulty encoun-
tered with DEM generation from sUASimagery lies in extracting accurate estimates
of bed elevations in submerged areas. Several approaches have been proposed for
extracting corrected bathymetry and submerged bed elevations, and these can
broadly be divided into two categories: spectral depth techniques where a relation-
ship between the colour intensity of a pixel and its water depth is determined
(e.g. Legleiter 2012) and through-water techniques, where a system of equations is
used to correct for the effect of refraction (e.g. Javernick et al. 2014; Dietrich 2017).
Spectral techniques can be more suited to streams with partially opaque streamflow,
which contributes to a greater intensity and variety in the colour of submerged pixels
with changes in depth (Tomsett and Leyland 2019). In contrast, through-water
techniques are better suited to clear streamflow that permits direct observation of
the submerged channel bed.

The through-water technique as described by Dietrich (2017) has shown prom-
ising results for small streams with low-flying heights (Helm et al. 2020). This
approach corrects for the effect of refraction, which causes an overestimated appar-
ent elevation of submerged bed areas. To apply this technique, the water surface
needs to be delineated. This can be achieved by surveying water edge points in the
field, or by using software such as CloudCompare to manually pick points along the
margin of the wetted channel identified from the dense point cloud, which are then



interpolated. By determining the distance from the generated water surface mesh to
the estimated bed elevations in the point cloud below, the corrected water depth for a
location can be calculated as a function of the multiple viewing angles used to
observe each point, as shown by Dietrich (2017). An example of a generated water
surface and bathymetry correction evaluated against field measurements is shown in
Fig. 11.5. Depending on water depth, the correction effect can be substantial.
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Fig. 11.5 An example of applied bathymetric corrections on bed topography along a section of
Carnation Creek, B.C. (a) measurement points used to perform bathymetric calibration;
(b) relationship between uncalibrated sUAS-based submerged bed area elevation and manually
surveyed elevation; (c) relationship between corrected sUAS-based elevation in submerged bed
areas and manually surveyed elevations

11.3.3 Extraction of Grain Size Information

Information on sediment texture of exposed channel bed areas is often desirable to
extract from the sUASimagery as texture characteristics can help inform patterns in
channel form and process (e.g. Montgomery and Buffington 1997). In small, for-
ested streams, texture often varies over short distances as a function of wood



obstructions and meso-scale topographic variation (Montgomery et al. 2003). The
techniques required for extracting grain size from sUASimagery predominantly
involve either deriving a relationship between (1) image texture or roughness of
the point cloud and (2) grain size parameters of sample sites (e.g. Carbonneau et al.
2012; Tamminga et al. 2015; Woodget and Austrums 2017; Helm et al. 2020). Both
techniques require that calibration sites be set up in the field for constructing the
relationship. The individual sites should be homogeneous in texture and established
to capture the variability in grain size encountered across the channel. Grain size
distributions at these calibration sites can be determined using an array of tech-
niques, such as the Wolman grid method (Wolman 1954) or photo-sieving methods
(Carbonneau et al. 2004). The sites must be geolocated so that their position in the
point-cloud or orthophoto can be determined. Once a regression relationship is
determined between a grain size metric for the field sites (e.g. their D50 or D84, see
Fig. 11.6), and roughness or image texture, a moving window analysis can be
conducted to predict grain size across the channel (e.g. Woodget and Austrums
2017; Helm et al. 2020). These techniques present a semi-automated method of
determining grain size over a large area. However, the use of machine-learning
algorithms for grain size determination is becoming more common and is likely to
further improve the efficiency of extracting grain size estimates from sUASimagery
(Müller and Hassan 2019).
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Fig. 11.6 Example relationships between (a) the median (D50) and (b) 84th percentile (D84)
surface sediment calibre and the average roughness value of training sites as determined from
sUAS-derived bed surfaces collected in Carnation Creek, B.C.

11.4 Comparison to Alternative Survey Methods

Prior to widespread use of sUAS technology, a number of surveying alternatives
were available to capture channel attributes in small, forested streams. These include
a variety of GPS-based, linear-survey and imagery-based methods. In this section,



aAssuming a 1000 m2 example survey area
bInstrument uncertainty – true uncertainty will also depend on GCP accuracy
cAssuming measurement captured at distance of 100 m

we will discuss advantages and disadvantages of sUAS in comparison to commonly
applied alternative data collection approaches.
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A comparative summary of common survey methods is shown in Table 11.1 and
a visual example in Fig. 11.7, ranging from low cost (survey level, handheld GPS) to

Table 11.1 Comparison of survey methods in small, forested streams

Method
Points/
daya

Points/
m2

Relative
cost

Uncertainty (m), xy
(z)b Coverage

Survey level 102–103 <0.5 Low 0.003 (0.003)c Moderate

Laser Rangefinder 102–103 0.5–1 Low 0.2 (0.4)c Moderate

Total station 102–103+ 0.5–1 High 0.003 (0.003)c High

DGPS 102–103+ 0.5–1 High 0.01 (0.02) High

Base GPS 101–102+ 0.5–1 Low 5 (10) Moderate

Pole-mounted camera
-GCP

103–104 10–100 Intermediate 0.1 (0.1) Low

sUAS -no GCP 104–105+ >1000 Intermediate 5 (5) Moderate

sUAS - GCP 104–105+ >1000 High 0.1 (0.1) Moderate

Fig. 11.7 Comparison of survey outcomes for (a) automatic level cross-section survey, (b) total
station survey and (c) sUAS survey. Top panels illustrate survey point data, while bottom panels
show interpolated surfaces. Note that for (c), data points have been sub-sampled by a factor of 1000
for illustration purposes, and areas with no points indicate regions where data collection was not
possible due to dense vegetation or other sightline obstructions



high cost (differential GPS). Relative to traditional survey methods, sUAS are
capable of capturing a much greater number of measurement points over space
and time. However, for precise surveys, GCPs are required, which add time and
cost to the survey. For this reason, the sUAS-GCP combination becomes expensive
relative to some options. This cost can be mitigated, however, if permanent GCPs
can be installed in locations where repeat surveys are desired. For sub-canopy data
collection, sUAS surveys without GCPs are mainly useful for qualitative evaluations
of channel areas; detailed comparisons or measurements are difficult without accu-
rate georeferencing given the small field of view afforded by low-elevation flights.
Recent work demonstrating the potential for sUAS-derived change detection without
control points (Cook and Dietze 2019) may prove useful in sub-canopy environ-
ments if a sufficiently large field of view can be obtained.
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In addition to cost, survey point density and measurement uncertainty, achievable
survey coverage is an important consideration. While all methods outlined in
Table 11.1 are limited by sight line obstructions, total station and DGPS methods
are capable of capturing data in regions somewhat obscured by vegetation, as stadia
rod positioning and elevation can be changed with a total station survey, and DGPS
rover positioning is tolerant of mild line-of-sight obstructions. In contrast,
sUASimagery is not capable of capturing surface elevation values when dense
vegetation is present within a few meters of the ground, or when streamflow is
opaque and the channel bed is obscured. This is mainly a limitation when capturing
stream bank topography, which is necessary for undertaking hydrodynamic model-
ing or for assessing changes in channel topography in detail. Stream banks may be
densely vegetated, and photogrammetric software is unable to resolve small exposed
ground areas. For these features, more flexible ground-based methods remain supe-
rior for capturing topography.

11.5 Present Limitations of Sub-canopy sUAS Flights

Sub-canopysUAS surveys provide a flexible, low cost, and relatively rapid method
of capturing detailed information on forested channels which are often challenging
to survey with alternative methods. However, in order for them to serve as a
complete replacement for existing methods, several limitations need to be overcome.
First, low-elevation vegetation, such as shrubs or small trees, still obscures ground
areas during sub-canopy flights, particularly along channel margins. Oblique imag-
ery is helpful here, but only if vegetation is sufficiently elevated above the ground
surface. Presently, additional survey instrumentation is needed to capture these
obscured regions in detail. Similarly, other features of small, forested streams,
such as large logjams or overhanging logs, may obscure channel areas. However,
it is often difficult to survey bed areas under logjams using any method, and
traditional survey approaches may not offer a substantial advantage.

An ongoing challenge with low-elevation flights over water is that prop-wash
from the sUAS can disturb the water surface, rendering submerged areas difficult to



resolve during image analysis. This is especially noticeable with larger consumer-
grade sUASs (such as the DJI Phantom series), and the use of lighter sUAS should
help reduce downdraft.
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As with all imagery-based data collection approaches, submerged bed areas
remain difficult to characterize if water is deep or opaque. While capturing sub-
merged bed 359 topography with consumer-grade sUAS is likely to pose a challenge
in the near term, new Lidar-based sUAS data collection methods may present a
solution even in 361 systems with partially opaque streamflow (Mandlburger et al.
2020).

11.6 Example of Application

11.6.1 Channel Survey of Carnation Creek, B.C.

This section describes an example application of sub-canopysUAS flights, where a
detailed stream channel survey was undertaken along a 3 km section of densely
forested channel. The purpose of this study was to develop and test a method to map
and characterize channel unit morphology over large areas using sUASimagery. For
this chapter, however, the focus of the example is on the data collection and resulting
survey products.

This work was undertaken along a portion of Carnation Creek, a forested stream
located on coastal Vancouver Island, B.C. (Fig. 11.8). The channel mainstem is
approximately 8 km long and has a drainage area of 11.2 km2 (Tschaplinski and Pike
2017; Reid et al. 2019). The focus of research is along the lowermost 3 km of the
channel, which possesses a gradient of 0.5–1% and is dominated by a pool-riffle
channel morphology. The average bankfull channel width (wb) is close to 15 m. The
channel is located within the Coastal Western Hemlock Biogeoclimatic Zone,
common along coastal British Columbia (Hartman et al. 1982). The environment
is typical of the Pacific Northwest: precipitation rates are high and dominated by rain
(between 2900 and 5000 mm/year), the majority of which falls during the autumn
and winter months (Tschaplinski and Pike 2017). Visual estimates suggest that over
50% of the channel is hidden below a forest canopy composed of both coniferous
and deciduous tree species, and a dense understory of ferns and shrubs is also
present. The height of the riparian canopy is variable, ranging between 15 and 40 m.

11.6.1.1 Survey Approach

During the survey, 3.0 km of channel was flown with a sUAS beneath the forest
canopy in July 2018, with coverage beginning near the river mouth (Fig. 11.8). An
additional section was surveyed approximately 5.6 km upstream, corresponding to
an existing survey site.
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Fig. 11.8 (a) Location of the Carnation Creek study watershed. Red line indicates extent of sUAS
survey, while grey circles indicate locations of intensive study segments, ascending from SA2
downstream to SA9 upstream; (b) temperature and precipitation summary for the Carnation Creek
watershed; (c) example image highlighting a relatively open channel section with minimal canopy
cover; (d) example image of a channel section with a relatively dense and low elevation canopy

The sUAS survey involved low-level flights (5–15 m above ground level)
conducted in tandem with placement of ground control points (GCPs) surveyed in
with a total station. The flights were undertaken with a DJI Phantom 4 Advanced
sUAS, a consumer-grade sUAS with a camera with a focal length of 8.8 mm (24 mm
in 35 mm format equivalent) and a field of view of 84�. The sUAS also possessed
multi- directional obstacle avoidance and vision systems. During flight, it was
necessary to disable obstacle avoidance in order to pass within smaller-than-allow-
able distances of trees and other vegetation. Each sUAS battery provided 25 min of
flight time, and to maximize efficiency during fieldwork, a portable generator was
used to charge batteries on-site.

Images were acquired at 2-second intervals while moving at approximately 1 m/s
horizontal velocity. The 3.0 km of channel was divided into roughly 80 segments,
covered by 300–1000 photos each. Each segment was first flown using flight lines
parallel to the channel direction, with imagery collected at 90� relative to the bed



plane. Segments were then flown again with oblique and convergent imagery (as in
Fig. 11.2) to improve coverage near bank areas.
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At least ten GCPs were placed in each of the 80 channel segments with additional
checkpoints positioned to assess the accuracy of corrected survey outputs. All GCPs
and checkpoints were surveyed with a Leica TPS 1100 total station, and surveyed
points were tied into benchmarks previously established along the channel. GCP
precision was typically 2 cm in the XY-plane and 1 cm in the Z-plane. Following
suggested approaches in recent literature (Harwin et al. 2015; Agüera-Vega et al.
2016; Sanz-Ablanedo et al. 2018), the majority of the GCPs were distributed on dry
exposed bars along the periphery of the channel, with a smaller number situated
towards the centre. Checkpoints were distributed as evenly as possible across all
channel areas, including submerged areas. When two workers were on site, both
would survey in GCPs, and then one would undertake the flight. If three people were
available, two would survey GCPs, and one would fly the sUAS at the same time.

In order to characterize bed sediment texture, sampling areas were demarcated
with fluorescent orange markers to enable identification in post-processed imagery.
Once these regions had been demarcated, the sUAS was flown at the usual elevation
and also hovered 2 m above the site to provide imagery suitable for photo-sieving
analysis, i.e. extraction of grain size information from images (Tamminga et al.
2015).

11.6.1.2 Data Processing

Channel elevation, bathymetry and grain size data were extracted from the
sUASimagery. Using Agisoft (now called Metashape) PhotoScan Professional to
generate georeferenced dense point clouds, digital elevation models of the channel
were produced. As described in Sect. 11.3, the Cloth Simulation Filter (Zhang et al.
2016) function of Cloud Compare was employed to remove the influence of vege-
tation during the DEM construction process. A cloth resolution of 0.1 m and
maximum ground sample distance of between 0.5 and 1.0 m were found to ade-
quately filter the bed points.

To adjust elevation in submerged channel areas, the refraction-correction
approach described by Dietrich (2017) was used. Streamflow was less than 0.1
m3s�1 and clear during the survey, enabling an unobstructed view of the channel
bed. Removal of overhanging vegetation using the Cloth Simulation Filter in Cloud
Compare and subsampling the DEMs to a spacing of 0.02 m using the minimum
elevations in the point cloud helped ensure that the refraction correction was based
on channel bed points and not on overhanging vegetation points that may have been
incorporated in the point cloud.

To generate predictive maps of bed surface sediment texture, a relationship
between the roughness of the point cloud for 22 training sites and their median
grain size (D50) was established using the approach described by Woodget and
Austrums (2017) as determined through photo-sieving analysis. Using an in-house
photo-sieving program based in MATLAB, the grain size distribution of each



training site was determined and then related to the corresponding point cloud
roughness. A moving window analysis was then used to estimate grain size across
the exposed bed to generate continuous maps of D50.
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11.6.1.3 Results and Discussion

To assess survey accuracy, channel-averaged vertical survey error was estimated by
calculating the root-mean-square-error (RMSE) and the mean error (ME) of differ-
ences between the elevations of the total station-surveyed checkpoints and those
estimated from the DEMs. Vertical errors for dry bar areas were found to be 0.093 m
and 0.025 m for the RMSE and ME, respectively (n ¼ 1203), while slightly greater
error values were obtained for the submerged bed points (RMSE ¼ 0.11 m,
ME ¼ 0.025 m, n ¼ 521). While these errors are larger than those obtained from a
total station, they are within the typical range of grain sizes found on the channel bed
and are likely sufficient to enable year-to-year comparisons. Factors such as shadows
from the riparianvegetation and reflections from the canopy may have influenced the
success of the refraction correction (Dietrich 2017), leading to slightly higher errors
in submerged areas.

The sUAS survey performance was also evaluated through a comparison of
known channel boundaries previously surveyed in Carnation Creek. A detailed
description of these channel sections can be found in Reid et al. (2019), with
example comparison maps shown for four sites in Fig. 11.9 and summarized for
all sites in Table 11.2. These channel sections range in complexity from simple,
relatively open single-thread reaches (Fig. 11.9a, b) to sections with dense vegeta-
tion, log jams and narrow side channels (Fig. 11.9c, d). When including side
channels (such as in Fig. 11.9c), which were generally difficult to access with the
sUAS, survey coverage slightly exceeded 80%. When narrow side channels are
excluded, coverage increases to 87%. When examining individual study sections
that contained side channels, coverage ranged from a low of 54% to a high of 89%
and exceeded 94% when side channels were absent (Table 11.2). Generally, narrow
(width < 3 m) side channels could not be effectively surveyed unless they were free
of low elevation (height < 3 m) vegetation, but oblique imagery was advantageous in
situations where a clear flight path was present alongside an obscured channel area.
Similarly, bank top elevations were difficult to capture in most locations due to
understory vegetation obscuring the ground surface. The inclusion of bathymetric
calibration greatly increased the area over which bed topography could be estimated,
as 20–40% of bed area in most sites was submerged.

To illustrate the detailed and spatially continuous data collection capacity of the
sUAS along Carnation Creek, D50, hydraulic radius (Rh, calculated as cross-
sectional channel area divided by wetted perimeter length) and channel slope are
shown along the full survey extent in Fig. 11.10. Small-scale spatial variability is
apparent for all variables, with fluctuations in D50, Rh, and gradient reflecting
different unit morphologies found along the channel. D50 (Fig. 11.10a) gradually
increases in an upstream direction, followed by a rapid increase beyond 3 km.



Hydraulic radius (Fig. 11.10b) decreases gradually in an upstream direction, with the
lowest values found in the vicinity of the coarsest sediment. Further insight can be
gained in channel pattern by examining slope (Fig. 11.10c), which fluctuates
between 0.5% and 1.5% until beyond 3 km when it increases to more than 3%,
again reflecting a change in morphology. A key benefit of the detailed mapping
potential of sUASimagery is shown in Fig. 11.11. In forested channels, sediment
texture often varies over short distances as a result of wood obstructions
(Montgomery et al. 2003) rendering traditional sediment sampling and widespread
channel characterization efforts difficult. While coverage gaps are still present with
sUAS data collection, the ability to capture detailed spatial variation provides a
significant advantage over alternative survey approaches. Overall, the results of the
Carnation Creek sUAS survey demonstrate many of the strengths and weaknesses of
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Fig. 11.9 Example comparison maps between sUAS-derived surfaces and total-station-based
perimeters of active channel areas for two Carnation Creek study sections illustrating good sUAS
coverage (a and b) and two with relatively poor coverage (c and d) resulting from dense
low-elevation vegetation and other flight obstructions close to the channel
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Table 11.2 sUAS survey coverage comparison in Carnation Creek

Study
section Length (m) Width (m) TS points/m2a

sUAS coverage
% (all)b

sUAS coverage %
(main channel)c

SA-2 82 13.8 0.51 90 90

SA-3 68 19.6 0.72 83 83

SA-4 62 21.2 0.69 54 74

SA-5 75 13.7 0.61 81 84

SA-6 70 14.9 0.70 91 91

SA-7 51 19.6 0.63 67 79

SA-8 58 16.9 0.40 94 94

SA-9 148 11 1.04 89 99

Average 0.69 81 87
aBased on 2015 total station feature-based survey
bIncludes comparison to total-station surveyed side channels
cExcludes comparison to total-station surveyed side channels
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Fig. 11.10 Cross-section averaged series of (a) median grain size (D50), (b) hydraulic radius (Rh)
and (c) water surface slope derived from sUASimagery. Grey points illustrate each cross-section
average, while the black line represents a smoothed fit to the data. Blue bands correspond to
comparative study-sections, outlined in Fig. 11.9

the approach applied in a small, forested stream. This work highlights the potential
for detailed data collection over a large area and several ongoing challenges which, if
resolved, would provide a 10–20% improvement in survey coverage. The key
strength of the sUAS approach is that data on many variables can be collected
concurrently, including topography, bathymetry and grain size. Collectively, the



ability to acquire detailed concurrent data on many variables presents a powerful
advantage in sUAS systems.
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Fig. 11.11 Example channel section displaying median grain size (D50) predicted from channel
bed roughness

Currently, the need to mark GCPs adds either substantial time or personnel
requirements to surveys when large areas are to be flown at low elevation. When
three people were available to assist with data collection, the rate of survey progress
was quite rapid, and if permanent GCPs were installed, repeat surveys would require
only one person and would be much faster than traditional survey alternatives. It is
also worth noting that time saved in the field with the Carnation Creek sUAS survey
was countered by an increase in data processing time and computing requirements
relative to traditional survey data. However, distributed computing and improved
SfM software are helping to reduce this requirement.

While this chapter section focused mainly on data collection and processing,
further analysis with the data collected here can be found in Helm et al. (2020). Many
researchers have similarly capitalized on the sUAS data collection advantages in
larger or less view-obstructed systems to provide a comprehensive understanding of
river processes or change over time (Tamminga et al. 2015; Piégay et al. 2020), and
the future of sUAS as standard data collection instruments along forested channels
appears promising.
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11.7 Future Opportunities

Several promising advances in sUAS appear likely to improve survey outcomes in
small streams. A current limitation of sUAS work beneath forest canopies or in
confined environments is that automated flights are not practical, as small branches
and vegetation pose a hazard to flight but are difficult for many sUAS to detect and
avoid.

If pre-programmed flight paths can be followed, then the pilot may be able to
assist with other tasks related to data collection and improve survey efficiency.
Second, built-in RTK systems are now available on consumer-grade sUAS, with
listed vertical and horizontal survey precision specifications of less than 10 cm.
While this type of accuracy may be difficult to achieve in forested channels located
in valley bottoms with limited sky view, the potential of eliminating the need for
ground control points renders this new sUAS technology appealing. New methods
are also becoming available to detect characteristics of in-stream wood (Sanhueza
et al. 2019), water velocity and bed roughness (Bandini et al. 2020) and water
quality, including temperature (Koparan et al. 2020). This can provide additional
information and a more holistic view of habitat conditions which are particularly
relevant if hydrodynamic modeling is to be undertaken.

11.8 Concluding Remarks

Forested streams with closed canopies have presented a challenge for researchers
and managers aiming to characterize key aspects of river topography and aquatic
habitat. This chapter has aimed to describe the role that sUAS survey approaches can
play in advancing research and improving data collection in small streams located in
forested areas, with application to other areas where confined flying environments
are a challenge for conducting sUAS surveys.

By applying several techniques described in this chapter, such as oblique image
capture and careful structure-from-motion post-processing, the use of sUAS in
small, closed-canopy streams to capture river topography, bathymetry and grain
size information is possible and can provide results comparable to or better than
many traditional survey methods. While several limitations remain in the application
of sUASs for stream survey applications, advances in sUAS capability will help
reduce the ongoing dependency on other survey instrumentation needed to conduct
full channel surveys.
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