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ABSTRACT 

Historical mining for lead (Pb) in the Old Lead Belt District introduced large volumes of 

tailings into nearby streams resulting in the large-scale contamination of channel bed and 

bar deposits in Big River which drains the southeastern Missouri Ozarks.  Tailings pile 

sites have been remediated so that present contamination sources to the river are 

primarily from the remobilization of Pb stored in channel and floodplain deposits.  This 

study examined the channel geomorphology and sediment geochemistry of Flat River 

Creek (FRC), a major tributary to the Big River which drains an area that includes three 

of the six major mines in the District. The goal was to determine the volume of 

contaminated sediment stored within the channel in bed, active bar, and stable bar 

deposits assuming the associated stored Pb could be a source of future contamination. 

Channel sediment contamination >1,000 ppm Pb occurs in the lower 9.5 km of FRC with 

concentrations spiking below mine locations and decreasing in reaches where tributaries 

from non-mining areas enter and dilute the mining sediment.  Zn concentrations are 

elevated immediately downstream from the Elvins mine and decrease downstream.  

Approximately 170,000 m³ of contaminated channel deposits are stored in FRC with 42 

% in the lower segment below the most downstream tailings pile. About 24 % of 

contaminated sediment is stored in channel bed deposits, 41 % in active bar deposits, and 

35 % in stable bar deposits. Overall, 133 Mg of Pb and 93 Mg of Zn from mining sources 

are stored in FRC. Therefore, reworked channel deposits will provide a long-term source 

of metal contamination Big River as well as FRC.  
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 INTRODUCTION  

 

Rivers are fundamentally important for the transport and redistribution of 

sediment on the Earth’s surface (Miller, 1997).  Schumm (1977) conceptualized a river 

system consisting of a steeper, upland zone of erosion where runoff and sediment 

originate, a central zone of balanced transport within which water and sediment inputs 

generally equal outputs, and a lower gradient, downstream zone with frequent deposition 

in floodplains or deltas (Figure 1).  Thus, sediment transport can be viewed as a series of 

steps within and between each of the three zones with relatively long periods of sediment 

storage (no movement) in bed, bar, and floodplain deposits (Engelund and Hansen, 1967; 

Magilligan, 1985). 

The processes and patterns of sediment storage within a channel network are 

spatially and temporally complex (Walling, 1983).  Coarse sediment, including gravel, 

cobble, and boulder particles >2 mm in diameter, tends to be stored in colluvial deposits 

at the base of hill-slopes along the river valley and on the channel bed.  Compared to 

coarse sediments, fine-grained sediment particles, including sand, silt, and clay <2 mm in 

diameter, are transported more often and dispersed more widely with primary storages in 

channel bar, levee, and floodplain deposits.  Channel bed storage is usually temporary 

since it can be easily mobilized during periods of higher flow, even if such flow does not 

cause sediment deposition in the floodplain (Walling et al., 1998).  Geomorphic 

adjustments of channel systems to geologic, climatic, and land use/cover changes may 

result in increased storage of fine-grained sediment over time periods ranging from 

decades to millennia (Trimble and Lund, 1982; Walling et al., 2003).   
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Figure 1. Conceptual model of zones of erosion, transport and deposition after Schumm 

1977 in Buffington and Montgomery (2013). 



 

3 

Land managers are becoming increasingly interested in the geomorphic responses 

of stream channels due to erosion and sedimentation in watersheds (Trimble and Lund, 

1982; Dennis et al., 2009; Gran et al. 2009).  They often need to know where sediment 

will be deposited, how long it will be stored there, and how it will be remobilized (Reid 

and Dunne, 1996).  A sediment budget is often used to conceptualize the linkages 

between sediment storage and transport in a watershed (Figure 2).  Efforts to quantify a 

sediment budget often include estimates of the sources and volumes of sediment stored 

and transported in a watershed, where and when sediment is transported, and how much 

eventually exits from the watershed (Reid and Dunne, 1996; Trimble, 1999; Gran et al., 

2009) (Figure 2).  Sediment budget techniques are useful for evaluating a variety of 

sediment yield and contamination problems. For example, contaminated sediments 

produced by past mining activities can be stored in floodplains for long periods, become 

remobilized later, and cause present-day pollution in rivers (Lecce and Pavlowsky, 1997; 

2014). 

Conceptual models of sediment budgets recognize the importance of sediment 

connectivity and the pathways and storages involved when sediment is distributed down 

hillslopes, into channels, and along channel networks (Wohl, 2014).  Sediment moves 

through channel networks to become deposited within lower elevation bed and bar 

deposits and higher elevation bench and floodplain deposits.  As rivers migrate laterally 

across the lowlands they create a complex topography of terraces, floodplain back-

swamps, and channels using sediment delivered from upstream areas (Stout and Belmont, 

2014; Wohl, 2014). Sediment storage within a river system can be divided among  
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Figure 2. Generalized flowchart of sediment storage in a watershed (Reid and Dunne, 

1996). 

 

different deposits, with each having unique characteristics relating to sediment transport 

and sediment budgets.   

 

Channel Sediment Deposits 

In general, channel storage can be classified as bed, active bar, and stable bar 

deposits (Walling et al, 1998, 2003).  Channel bed deposits are typically composed of 

coarse gravel and cobble with void spaces filled with fine sediment.  The channel bed can 

be further divided in three units: glides, where flow shallows and spreads out at the tail-

end of a pool prior to crossing a riffle crest; riffles, where the bed steepens locally, 

becomes more coarse in texture, and flows down toward the next pool; and pools, which 

form a deeper and wider section where bed slope and low flow velocity decreases (Panfil 

and Jacobson, 2001) (Figure 3).  Channel bed (and bar) deposits may develop a coarser 

“armored” surface layer formed by fluvial scour and winnowing of finer sediments  
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Figure 3. Coarse channel bed deposit from Flat River Creek at R-km 0.35. 

 

during the falling stages of a flood (Montgomery and Buffington, 1997).  While bed 

sediment tends to be coarse, fine-grained sedimentation can occur in channel pools and 

glides when flow velocity decreases during the falling limb of a flood and settling is 

induced. It is assumed that fine-grained sediments within bed deposits are relatively 

easily to mobilize during higher discharges and represent a sediment source readily 

available for transport (Lewin and Macklin, 1987). 

Active bar deposits are higher elevation sediment bodies compared to the bed that 

are typically exposed above the water line during low flow conditions, composed of sand 

and gravel, and have little vegetation cover (Figure 4).  Bar features tend to form coarser 

heads (upstream end) and gradually fine in texture downstream toward the tail (Lewin 

and Macklin, 1987, Panfil and Jacobson, 2001).  Channel bars occur at reach locations of  
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Figure 4. Active bar deposit from Flat River Creek at R-km 5.05. 

 

flow separation in the channel such as in point bars along the inside of channel bends or 

where transport capacity drops such as center bars in over-widened channels.  Bar 

surfaces are typically light-colored with sediment characteristics easily observed 

indicating reworking of the bar surface by flood events throughout the year.  Patches of 

woody shrubs or small trees may occur on active bar surfaces as long on the bar surface 

reflects recent bed load transport. Active bars adjust to passing floods as sediments are 

deposited and eroded by variable flows. However, the whole bar is not usually 

remobilized by a single flood and bar deposits may contain material representing 

transport trends from a year to more than a decade ago, depending on geomorphic history 

and specific bar location. 
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In this study, the term “shadow” bar is used to describe relatively small (less than 

a few square meters), fine-grained deposits on active bar surfaces formed in localized 

flow separation zones behind larger obstructions such as boulders, tree roots, and logs, 

and anthropogenic materials such as bridge piers and construction wastes. As faster 

moving flows pass these obstacles, the flow velocity drops to almost zero on the 

downstream side and deposition occurs.  It is generally assumed that active bar deposits 

represent sediment storages readily available for remobilization during floods over 

timescales of several years.  However, shadow bar deposits probably respond to 

individual floods and therefore are interpreted to reflect sediment properties of the most 

recent sediment transport events. 

Stable bars form along the margins of the channel or in protected areas 

surrounded by active bar deposits where fine-grained deposition can occur on upper bar 

surfaces, often in association with increased vegetation cover.   They form at elevations 

typically lower than adjacent floodplains, but higher than nearby active bars (Figure 5).  

Stable bars can develop from active bar deposits where flow energy has decreased over 

time, relatively uniform vegetation growth has occurred, and  fine sediment has been 

deposited over the top bar surface to a depth of approximately 5 cm.  Some stable bars 

are in the process of forming new floodplains by vertical deposition and these young 

floodplain features are sometimes called benches or shelves (Owen et al., 2011). It is 

assumed that stable bars represent sediment storage over periods of decades or longer and 

can remove available sediment from transport by the river for relatively long periods. 
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Figure 5. Stable bar deposit from Flat River Creek at R-km 7.55.  

 

Floodplain deposits typically represent the largest volume of stored sediment in 

alluvial river systems and are often the primary focus of studies on longer-term sediment 

transport and contamination trends in watersheds (Leece and Pavlowsky, 2014).  While 

in-channel bed and bar storage may compose a smaller fraction of total alluvial storage, 

they are important deposits that indicate sediment in transit and available for dispersal 

downstream as the river temporally adjusts to climate and land use factors (Knighton, 

1998).  Further, the mobility and quality of channel sediment directly affects habitat 

quality for aquatic life and effectiveness of stream restoration projects (Gale et al., 2004, 

Roberts et al, 2009). 
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Mine-waste Contamination in Rivers 

Sediment transport and storage are natural processes that can complicate studies 

of contamination in fluvial systems.  Historical base-metal mining activities have been 

responsible for contaminating river systems throughout the world (Miller, 1997). These 

mining operations typically extract metal-bearing sulfide ores from underground mines 

and produce relatively large volumes of contaminated mineral wastes across a range of 

particle sizes including waste rock, tailings, and ultrafine (rock flour) particles. Milling 

operations may use both gravity and flotation methods to separate ore from the host rock.  

Gravity mills grind ore into coarse sand and fine gravel sizes for separation using shaking 

tables and water sorting by density (Macklin et al., 2006). Ore separation by flotation 

techniques use chemical treatment of sand-size feed to “float” and concentrate sulfide-

bearing grains (Macklin et al., 2006). In addition, flotation employ a range of organic 

compounds that produce effluent that is highly toxic and, if improperly discharged, can 

have catastrophic and long-lasting effects on freshwater ecosystems (Macklin et al., 

2006).  

The milling process is not entirely efficient and the mineral wastes or tailings 

produced typically contain high concentrations of metals at levels of environmental 

concern in soil and sediment (Gale et al., 2004; Bussiere, 2007). Gravity milling releases 

coarser tailings to local streams predominantly in the fine gravel or 2-16 mm size range.  

Flotation milling produces tailings in the fine to medium sand or 0.1-0.3 mm size range. 

Further, fine-grained “slimes” are created as rock flour particles less than 0.06 mm in 

diameter during ore crushing and grinding circuits.  During historical mining, milling 

wastes were poorly contained and tailings of all sizes were typically discharged to local 
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rivers to become incorporated into channel and floodplain deposits (Bradley, 1989). 

Overall, tailings are composed of fine-grained particles created during the mining process 

that do not have economic value, but contain residual metal concentrations at levels that 

can be a major source of contamination in fluvial systems. 

Mining operations often contaminate river systems with tailings sediments and 

high concentrations of metals for long distances >100 km (Macklin et al., 2006).  Metal 

concentrations (i.e., parts per million (ppm)) in the fine sediments of the channel bed 

generally decrease exponentially with distance from the source (Miller, 1997; Walling et 

al. 2003).  Metal storage mass (i.e., kilograms or megagrams) in bed deposits is generally 

greatest in the middle and lower reaches of the rivers where channel width increases 

downstream and sediment deposition is more likely to occur in bar deposits (Wohl, 

2014).  Overall, sediment transport is unevenly distributed throughout a river system and 

the deposition rate (i.e., kilograms per kilometer or square meter) of sediment and 

associated contaminants increases in places where stream power decreases, channel 

widens, or sediment is deposited on the floodplain (Graf, 1997). 

Macklin et al. (2006) provides a summary of recent literature on sediment-

associated metal dispersion in rivers affected by mining actives, specifically the response 

and recovery of river systems following the failures of tailings dams.  They conclude the 

long-term effects of mine tailings-spills have on river systems are a function of four 

factors: quality of sediment, quantity of sediment, the amount of time contaminates were 

discharged into water bodies, and effectiveness of cleanup efforts.  A case study was 

reported about a tailings dam failure at Aznalcolar, Spain which dumped high 

concentrations of Pb, Zn, copper, arsenic into the river and contaminated several hundred 
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kilometers of river.  Another case study focused on a tailings dam failure into Rio Pilaya 

in Bolivia which had significant effects on local biology and wildlife downstream.  

Again, several hundreds of kilometers of river were contaminated and the greatest 

concentrations of contaminated sediment were closest to the mining source. 

Miller (1997) stated that fluvial processes are fundamentally important to the 

transport and redistribution of heavy metals at the Earth’s surface.  Lewin and Macklin 

(1987) discuss the mechanics behind mining waste dispersal and define the fluvial 

processes as either “passive dispersal” or “active transformation.”  Passive dispersal is 

characterized by the transportation of the mining waste sediments along with the natural 

sediment load of the system (Lewin and Macklin, 1987; Miller, 1997).  Metal rich 

sediments may accumulate temporarily within channels, or be spread out across the 

floodplains.  Active transformation is a change in the river morphology because of a 

geomorphic response to the large volumes of added mine waste sediment.  If mining 

sediment inputs are excessive, active transformation may induce a metamorphosis of the 

entire sedimentary structure and floodplain morphology of the river system (James, 

1989).  

In-channel deposits and floodplains act as both sinks and sources of mine waste in 

fluvial systems (Lecce and Pavlowsky, 1997, 2001, 2014).  During mining periods, more 

than forty percent of tailings introduced into a fluvial system may become stored in 

floodplain deposits (Lecce and Pavlowsky, 1997).  Floodplain and channel deposits are 

reworked intermittently by erosion, therefore reintroducing these contaminants into the 

fluvial system in time (Lecce and Pavlowsky, 1997, 2001; Graf 1997, Walling et al. 

2003, Lecce et al., 2011).  This reintroduction of contaminants causes problems for 
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agencies attempting to assess changes of upstream pollution sources on downstream 

water quality.  Therefore, understanding contaminated sediment storage in a river can 

have benefits for understanding the sedimentology and sediment transport regime of a 

river, but also the long-term risk in contaminated rivers.   

 

Mine-waste Contamination in Southeast Missouri 

Big River drains the majority of the Old Lead Belt, Missouri (Figure 6).  Past and 

ongoing releases of chat and fine tailings to the river have resulted in the large-scale 

contamination of channel sediment and floodplain deposits with toxic levels of Pb along 

145 km of the Big River from Leadwood to its confluence with the Meramec River 

(Roberts et al., 2009; Pavlowsky et al., 2010).  Section 303(d) of the Clean Water Act 

requires the states to identify streams and lakes that do not meet water quality standards.  

The Missouri 2008 303(d) List identifies over 89 km of the Big River, as well as 16 km 

of its tributaries, as impaired due to Pb, Zn, and calcium (Ca) derived from mining 

sediments (MDNR, 2008).   

Lead and Zn contamination in Big River was caused by historical mining in the 

Old Lead Belt and the release of large volumes of tailings sediments to the river and its 

major tributaries from six major mines which were global producers of Pb from 1864 to 

1972 (Seeger, 2008). These tailings contain elevated levels of Pb, Zn, and other heavy 

metals that have harmful effects on wildlife (Besser et al., 2008; Gale et al., 2004; EPA, 

2012) and humans (Gulson et al., 1994) when they contaminate fluvial systems.   
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Figure 6. Big River and Flat River Creek Watershed, Old Lead Belt, Missouri.  
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Contaminated sediment above 128 ppm Pb and 459 ppm Zn are a danger to fish and 

mussel populations (MacDonald et al., 2000).  High blood-lead levels in children are a 

health risk posed by tailings contamination in Big River (Gulson, et al., 1994).  In 

general, fine-sized tailings released to Big River are capable of downstream transport 

during flood events and also interacting with channel and floodplain storages over 

various timescales (Engelund and Hanson, 1967; Evans and Davies, 1993; Pavlowsky et 

al., 2010).   

The effect of tailings contamination on the main stem of Big River has been 

studied, however, our understanding of the extent of sediment interactions with channel 

deposits and the spatial extent of contamination within tributary watersheds, particularly 

where mining activities were intensive, is not well understood.  Previous studies quantify 

the concentrations and storage of contaminated sediment stored in Big River (Roberts et 

al. 2009; Pavlowsky et al. 2010).  Earlier studies by Smith and Schumacher (1991, 1993), 

and Gale et al. (2004) also addressed the state of the contamination, however little 

attention has been given to the extent of Pb and sediment storage in its most heavily 

mined tributary, Flat River Creek (FRC), and how it has affected contaminated sediment 

delivery and storage in Big River below the FRC confluence. FRC is a major tributary to 

the Big River and contains three of the six major tailing piles which were active from 

1895 to 1972.  Newfields (2007) reported the area and volume of combined chat and 

tailings in each of the major tailings piles (Table 1).  All three piles have been stabilized 

and remediated so future sediment Pb sources are related to release from storage. 

While previous studies in the Old Lead Belt focus primarily on the Big River, 

some sediment sampling did occur in FRC.  Smith and Schumacher (1991) found that Pb  
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Table 1. Description of Tailings Piles, after Newfields (2007) in Pavlowsky et al. 2010.   

 

 

and Zn concentrations in bed sediment of FRC increase downstream from the confluence 

of Harris Branch (Smith and Schumacher, 1991). 

Later work by Smith and Schumacher (1993) noted the stream bed downstream of 

the National Pile was composed entirely of sandy mill tailings and the channel was 

unstable.  They reported Pb concentrations in bed sediments in the stream segment 

between the Elvins/Rivermines Pile tributary (R-km 7.6) to Shaw Branch (R-km 6.3) 

draining the Federal Pile ranged from 2,050 ppm to 3,140 ppm.  Smith and Schumacher 

(1993) found the highest bed sediment Pb concentration of the study at a location 

upstream of the National pile at 10,100 ppm. Bed sediments downstream of the National 

Pile contained Pb concentrations ranging from 1,000 ppm to 7,200 ppm.  They also noted 

the concentrations of Pb and Zn increase as particle size decreases.  Longitudinally, 

Smith and Schumacher (1993) determined that Pb concentrations in bed sediment 

increase in the downstream direction in FRC.  

More recently, Roberts et al. (2009) found heavy metal concentrations in 

sediment samples from the Big River increase downstream of the confluence with FRC, 

further justifying the need for continued scientific investigation of the effect that 

contaminated sediment input from FRC has on Big River metal trends below the 
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confluence (Figure 7).  Additionally, Gale et al. (2004) evaluated metal contamination in 

sediments at four sites along FRC located just below Shaw Branch, upstream and 

downstream of the National Tailings Pile, and at a control site approximately one 

kilometer above Harris Branch.  Gale et al. (2004) also observed an increasing trend in 

Pb concentrations downstream and a peak in Zn concentrations below the 

Elvins/Rivermines confluence and then a downstream decreasing trend in Zn 

concentrations.  They concluded that historical mining activities continue to significantly 

impact sediment and fish health in the Big River and FRC.  Figure 8 summarizes the Pb 

concentrations by R-km in FRC from previous studies. 

The ability of Big River to recover from long-term mining contamination depends 

on the amount of stored contaminated sediment available for release to the stream from 

FRC as well as the time it takes to remove contaminants from present-day storage in Big 

River itself by transport, solution, dilution, sediment burial, or mitigation efforts. 

However, this information is not yet available for FRC.  Pavlowsky et al. (2010) only 

reported contaminated storage volumes in FRC for one reach located below the St. Joe 

Bridge crossing (R-km 3.9) using seven cross-sections as having average unit storage of 

590 m³ / 100 m, maximum unit storage of 1,142 m³ / 100 m, and 16 percent of the total 

contaminated sediment in active and stable bar storage.  Unit storage is a unit of 

measurement summarizing a volume of sediment per unit distance.  Unit storage allows 

easy comparison since sediment storage varies with different sized rivers. 
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Figure 7. Heavy metal concentrations in sediments from the Big River (Roberts et al. 

2009).  Pb concentrations noticeably increase downstream of the Flat River Creek and 

Big River confluence. 

 

 

 

Figure 8. Pb concentrations in previous studies in Flat River Creek.  
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Research Questions and Objectives 

Many studies use sediment budget approaches to determine the volume of 

contaminated sediment stored in the river system.  Volumetric calculations require width, 

depth, and length of the sediment deposit obtained from field sampling or remote sensing 

methods such as Dennis et al. (2009) in the River Swale and Gunnerside Beck in 

Yorkshire, United Kingdom.  The bulk density of the most abundant rock formation in 

the catchment, sandstone in this case, was multiplied by the sediment volume to 

determine a mass (Mg) of sediment, and the sediment mass was multiplied by metal 

concentration to determine the mass of contaminated sediment storage. It is estimated 

that approximately half of the metal-contaminated sediment was removed from the 

system by natural fluvial process and would take nearly 5,000 years to be completely 

removed naturally.  Metal concentrations actually increase in the downstream direction 

from source because of the additional input from other contaminated watersheds and 

concentrations finally begin to decline 75 km downstream from source. Dennis et al. 

(2009) also determined nearly 44 percent of Pb in the system has been removed by 

natural processes transporting contaminated sediment downstream or by storing in the 

floodplain over the century since the cessation of mining operations. 

Graf (1997) focused on understanding the spatial distribution of radioactive 

plutonium in fluvial sediment in the Los Alamos Canyon system, California.  Graf (1997) 

used field methods to map the canyon system for geomorphic information at each 

location, including width, depth, and length of each deposit.  Aerial photos were also 

used to verify many of the features. The sediment storages evaluated included channel 

bed, floodplains, point bars, and mid-channel bars and were the most common features 
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storing sediment (Graf, 1997).  Plutonium concentrations were observed to decrease in a 

downstream direction from the source when considering the entire canyon system.  

However, on a segment or reach scale, concentrations did not decline smoothly in the 

downstream direction, but were spatially variable and linked to the stream power driving 

transport, and the hydraulic resistance acting against it.   

The purpose of this study is to determine the spatial distribution and volume of 

contaminated sediment in FRC.  There are few studies in the Old Lead Belt and in the 

Ozarks in general that focus on river sediment storage.  Current remediation efforts in the 

Big River are focused on Big River below the FRC confluence.  However, the 

effectiveness of these management efforts to reduce Pb contamination problems rely on 

quantifying the role that FRC will play in releasing Pb from storage and transporting it to 

Big River. This research project will quantify the sediment volume and mass of Pb stored 

in FRC.  Even though the TMDL for Big River, FRC, and Shaw Branch has been 

completed, an unknown amount of contaminated sediment remains in channel deposits 

and bar deposits in FRC.  

Research questions to be addressed include: 

1) What are the characteristics and spatial distribution of sediments, 

alluvial deposits, and channel form of FRC?  Understanding the sediment 

characteristics and distribution will explain where and why sediment is 

deposited and the geomorphic factors controlling them.  

 

2) How much and where is contaminated sediment and Pb stored in FRC? 
Pb storages will be assessed for bed, active bar, and stable bar deposits. 

Understanding the locations and quantities of contaminated deposits are 

important for local land and remediation managers.  Such locations can be 

monitored for future contamination effects or completely removed. 

 

3) Is stored in-channel mining sediment in FRC an important source of 

contamination to the Big River now and in the future?  Previous studies 

have shown Pb concentrations in the main stem of the Big River spike 



 

20 

downstream of the FRC confluence.  This study will provide information to 

investigate concerns of FRC being a major contributor of contamination based 

on available sediment volumes and metal masses for transport to Big River. 

 

Channel sediment in FRC is expected to reflect the characteristics of tailings 

materials produced by the flotation and gravity milling processes used in the Old Lead 

Belt covering the range of particle sizes associated with fine sediment in general (Smith 

and Schumacher, 1991; Pavlowsky et al., 2010)  It is anticipated that channel sediment 

storage will be highest in places where channel slope decreases, channel width increases, 

unstable channel conditions enhance bar storage, and where channelization has not 

occurred (Graf, 1997). Channel reaches immediately downstream of mine tailing 

tributaries should contain the highest amount of contamination (Miller, 1997; Walling et 

al. 2003).  However, the overall effect of the downstream transport of tailings and higher 

contaminated sediment storage rate along the lower gradient segments of FRC may 

increase Pb concentrations and storage volumes in the lower third of the channel system, 

below the influence of Elvins and Federal mine source points.  Existing studies on the 

Big River have demonstrated that Pb levels increase significantly below the Big River 

and FRC confluence.  However, it is not clear to what degree these surface sediment 

concentrations relate to overall source supply and storage of Pb in FRC.  Even though the 

tailings piles have been sealed as part of Superfund plans and TMDL completion, there is 

still the potential for FRC to be a major source of contamination to the Big River. Besides 

the threat to Big River, sediment Pb concentrations in FRC well above probable effects 

concentration (PEC) thresholds at 128 ppm Pb and 459 ppm Zn are of concern too 

(MacDonald et al., 2000).  Understanding the extent of present-day contamination is 
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important to local community leaders, remediation efforts, and land managers concerned 

with the water quality and ecology of FRC. 
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STUDY AREA 

 

Regional Location 

FRC is located within the Big River Watershed in southeast Missouri, 

approximately 60 miles south of St. Louis.  The town of Flat River was merged with the 

surrounding towns of Elvins, Esther, and Rivermines in January 1994 to create the 

current town of Park Hills with a population of approximately 8,760 from the 2010 

census (U.S. Census Bureau, 2010).  Mineral mining attracted the earliest settlers to the 

region and was the driving force of population and economic growth during the 1800s 

and 1900s (McGraw, 1936) (Figure 9).  Numerous mining companies were established 

and operated in Flat River from the 1850s until the last mine closed in 1972.  

The Big River Watershed is located in the Salem Plateau of the Ozark Highlands 

and drain the majority of the Old Lead Belt.  The Big River drains approximately 2,500 

km² before it enters the Meramec River in Eureka, Missouri (Roberts et al. 2009).  The 

FRC watershed is located entirely within the southeastern portion of the Big River 

Watershed in St. Francois County, Missouri.  

Missouri is one of the top five state exporters of Pb and Zn in the United States 

and the World (Seeger, 2008).  The Old Lead Belt exported over 8.5 million tons of lead 

metal during the 1900s (Wharton, 1975).  By the 1920s, the majority of mines in the FRC 

watershed belonged to the St. Joseph Lead Company.  Three of the six major tailings 

piles in the Old Lead Belt are located within the FRC watershed. 

This study focuses on the lower 9.5 kilometers of FRC below the intersection of 

the Route 32 bridge crossing.  This study area encompasses the town of Park Hill, 
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formally Flat River.  The three major tailings piles of Federal, National, and 

Elvins/Rivermines are located within the study area (Figure 10).  Field maps, channel 

profile characteristics, and sediment samples are all spatially-linked by river kilometer 

locations (R-km #), where R-km 0 is the confluence of FRC on Big River and R-km 

distance increase upstream from there.  The most upstream tributary with mining 

influence is Harris Branch, which drains the south margin of the Federal Pile and enters 

FRC at R-km 9.1.  The Elvins/Rivermines tailing pile tributary enters at R-km 7.6.  The 

National Tailings Pile enters at R-km 5.05 and R-km 3.65.  The FRC watershed is 123 

km² in area and the main channel is 20.7 km long with headings in the St. Francois 

Mountains. 

 

 

Figure 9. National Pile view from Flat River circa 1912. 
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Figure 10. General map of Flat River Creek study site in Park Hills.  
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The mineral deposits mined in Southeast Missouri are Mississippi Valley Type 

(MVT) deposits.  The first of these deposits were discovered in the Mississippi Valley 

and are found all over the world.  The MVT in Southeast Missouri are metal-sulfide 

deposits hosed in Paleozoic dolostone, limestone, and to a lesser extent sandstone.  

Common trace elements found in MVT are Pb, Zn, arsenic, cadmium, cobalt, copper, and 

nickel.  The primary metal-sulfide minerals in these deposits are galena (PbS), sphalerite 

(ZnS), and pyrite-marcasite (FeS2) (Seeger, 2008).  The MVT deposits are found in 

exposed Precambrian rocks of the St. Francois Mountains.  The ore deposits are primarily 

found in the Cambrian age Bonne Terre Dolomite Formation and is typically 375 to 400 

feet thick and found between 200 and 1000 feet deep.  The Bonne Terre Formation 

extends into the underlying Lamotte Sandstone and overlying Davis Formation (Buckley, 

1908). 

There are two primary geologic units in the FRC watershed study area  

(Figure 11). The Elvins Group (Ceb) includes three units: the Derby-Doe Run Dolomite 

composed of alternating thin dolomite, siltstone, and shale; the Davis Formation 

composed of glauconitic shale with fine - grained sandstone, limestone, and dolomite; 

and Bonne Terre Dolomite composed of dolomite, dolomitic limestone, and limestone.  

The Eminence and Potosi Dolomite (Cep) where the Eminence Dolomite is dolomite with 

some druse - coated chert, and the Potosi Dolmite which is dolomite with abundance of 

druse - coated chert (Stoeser et al., 2007).   
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Figure 11. Geologic map of the Flat River Creek watershed. 
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The weathering of carbonate rocks produces variable thicknesses of residuum.  

Lower sloped areas accumulated thick-clayey residuum rich in chert gravel and cobbles 

up to 6 m to 7 m in thickness.  Steeper sloping areas have thin clay-rich soils or no soils 

at all.  The weathering of the carbonate rocks creates karst drainage on the upland and 

precipitation that does not evaporate infiltrates into the subsurface karst systems and 

emerges in springs along valley bottoms (Jacobson and Prim, 1997).  Surface runoff is 

restricted to unusually intense rainfall events and many upland streams are dry year round 

(Jacobson and Primm, 1997). 

A U.S. Geological Survey stream gauge was installed in FRC at the St. Joe Drive 

Bridge for Smith and Schumacher (1991; 1993) but was discontinued after the study 

completion.  Smith and Schumacher (1993) reported the median discharge in 1988 was 

0.21 cubic meters per second and the mean annual discharge was 0.29 cubic meters per 

second.  This study calculated the average active channel width for the first 9.5 km of 

FRC is 23 m, the average wetted channel depth is 0.5 m, and water surface channel slope 

is 0.0036.  The present study focuses on sediment storage and discharge and velocity 

measurements were not collected. 

Southeastern Missouri has continental climate affected by the prevailing east-

moving storm systems, Gulf Coast moisture sources from the south, and occasional 

continental polar from the north (Jacobsen and Primm, 1997). Southeastern Missouri is in 

a moist continental climate region. The average annual temperature is 55 °F ranging from 

an average of 32 °F in January to 77 °F in July.  The annual rainfall in the region 

averages about 40 inches with the wettest period in the spring months (Jacobson and 

Pugh, 1992).   
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The growth of the town of Flat River coincides with the discovery and subsequent 

mining of Pb, first discovered in 1721 by French explorers.  Settlement of the Ozark 

Highlands began in the early 1800s and the town of Flat River was established between 

1805 and 1810 named after the local stream also named Flat River.  In 1893, the Doe Run 

Lead Company reported finding a 23 ft thick layer of pure galena from one of their 

exploratory drills (Ste Gen. Herald, 1893).  During the 1890s, many settlers migrated to 

the Ozarks for jobs in the mineral mining industry (Seeger, 2008, Smith and Schumacher, 

1993).  In 1902, the Federal Lead Company announced the construction of 1,000 new 

residences around the town of Flat River that would bring in roughly 20,000 persons for 

work in the mining district (St. Francois Herald, 1902) and circa 26 March, 1917, the 

town of Flat River was incorporated (Lead Belt News, 1917).  

 

Mining History 

The St. Joseph Lead Company, commonly referred to as St. Joe, was the 

dominant company in the Old Lead Belt and Flat River from 1864 to 1972.  During the 

first 70 years of production, as many as 15 small companies operated in the area and were 

eventually all purchased and absorbed by St. Joe (Smith and Schumacher, 1993).  Pb was 

the primary mineral mined with minor deposits of Zn found in the Federal Mine in Flat 

River (Seeger, 2008).  The last Pb producing mine in the Old Lead Belt closed in 1972 

and the Viburnum Trend became the current primary Pb producing sub-district in 

Missouri.   

Tailings from mining operations were stored in the Federal, National, and 

Elvins/Rivermines Tailings Piles.  The Federal Mine was owned by the Federal Lead 
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Company and mining operations began in 1902.  During its first year of production, it 

produced 4,320 tons of concentrates.  The company acquired several smaller companies 

and owned 16,000 acres of land, all located in St. Francois and Washington Counties.  

The Federal Lead Company had ten mines operating during 1907 and two mills 

processing a combined daily capacity of 3,200 tons (Buckley, 1908).  From 1894 to 1906, 

nearly six million dollars of concentrate were produced and 55 acres of ground were 

mined.  All tailings produced during early mining operations by the Federal Lead 

Company, and subsequently by St. Joe after its purchase in the early 1910s, were 

deposited in the Federal Pile.  Shaw Branch drains this tailing pile and flows into FRC.  

Currently the Federal Tailings Pile covers approximately 4.7 km². 

The National Tailings Pile is owned by the Doe Run Lead Company. The Doe 

Run Lead Company was organized in 1887 and in 1890 purchased land in the Flat River 

area.  In 1907, Doe Run Lead Company purchased several small companies including 

Columbia Lead and Union Lead Company bringing its total holdings to 5,000 acres.  By 

the end of 1907, Doe Run Lead Company produced 231,000 tons of concentrate valued 

over ten million dollars, from 50 acres of mined ground (Buckley, 1908).   The Doe Run 

Lead Company was also purchased by St. Joe in the early 1910s and all tailings produced 

in the area are stored in the National Tailings Pile.  Studies by Smith and Schumacher 

(1993) report that in 1983 there was a large slime pond near the National Tailings Pile 

and slimes are known to contain extremely high amounts of Pb.  Currently the National 

Pile is approximately covers 0.6 km². 

The Elvins/Rivermines pile is centrally located in the Old Lead Belt. In 1891, the 

Doe Run Lead Company began mining operations and subsequently began acquiring 



 

30 

properties belonging to the smaller mining operations.  By 1909, the Doe Run Lead 

Company controlled 6,548 acres in the Flat River area with a total of seven mining shafts, 

and by 1911 had consolidated its mill operations at Elvins to a 1,500 to 2,000 tons per 

day mining plant.  The mill operations by Doe Run in the Elvins/Rivermines area ceased 

in 1934 and the property was acquired by the St. Joe Minerals Corporation in 1936 

(Buckly, 1908).  The Elvins pile covers 0.6 km². 

 

Present-day Land Use 

The FRC Watershed (Figure 12) is covered by 49 percent forest and woodland, 27 

percent grassland, 18 percent urban impervious surfaces, 4 percent barren, 1 percent 

cropland, and 1 percent open water (MDNR, 2007).  The Elvins, Federal, and National 

tailings piles cover 3 percent of the total area of the FRC Watershed.  There are 70 mines 

in the FRC watershed.  There are 34 underground lead mines, 14 surface lead mines, 1 

surface copper mine, and 21 surface mines classified as limestone quarries.  All mines are 

past producers as all mining operations in the area ceased in 1972. 

In 2008, a Total Maximum Daily Load (TMDL) was approved for Big River, 

FRC, and Shaw Branch (a tributary of FRC) in Jefferson, St. Francois, and Washington 

Counties, Missouri.  It identified 8 km of stream length affected by Zn “pollutant” 

specifically from the Elvins/Rivermines tailing pile and 8 km of stream length of Pb and 

Non-Volatile Suspended Solids (NVSS) “pollutants” from the Old Lead Belt abandoned 

mine lands.  It also identifies 3 km of stream length affected by Pb and NVSS 

“pollutants” along Shaw Branch, which is a tributary of FRC (MDNR, 2007).  The 

TMDL gave FRC a priority ranking of “medium” for Zn and “high” for Pb and NVSS.   
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Figure 12. Land use land cover map of the Flat River Creek Watershed.  
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Shaw Branch was given a “medium” priority ranking for Pb and NVSSs.  The TMDL 

lists the impaired uses as protection of aquatic life (warm-water fisheries) and human 

health protection (fish consumption). 

The Elvins/Rivermines, Federal, and National Tailings piles were stabilized 

against wind and water erosion and mass movement.  In 2010, FRC was delisted from the 

303(d) list upon completion of its TMDL.  Once stabilized, tailings no longer enter the 

waterways from the tailings piles and attention is focused on how much contaminated 

sediment is still in the river system (MDNR, 2007).  There is still water runoff from 

storms that enter FRC at various locations and are areas of interest for their effect on 

channel morphology and sediment distribution. 

A Superfund was established to address contamination caused by historical and 

recent metal mining across the Southeast Missouri Lead Mining District (MDNR, 2009).  

The Big River Mine Tailings Site is one of several sites designed as Superfund and 

covers approximately 285 km² within the Old Lead Belt, including the study area for the 

present study and all six major tailings piles in St. Francois County (MDNR, 2009; EPA, 

2011).  The TMDL recognizes the removal of contaminated sediment found from channel 

deposits and floodplains along Big River and FRC as a potential option for mitigation 

(MDNR, 2007).  Additionally, in Spring 2015, Superfund contractors under the 

supervision of the Army Corp of Engineers and U.S. EPA installed a sediment trap 

structure on the Big River below the FRC and Big River confluence to collect mining-

contaminated sediment for removal by dredging.  Therefore, information regarding the 

volume and location of the contaminated deposits provided by this study will be useful to 

project managers as well as an amount of sediment potentially available to the Big River. 
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METHODS 

 

The primary objective of this study is to quantify the volume of sediment and 

mass of Pb, Zn, and Ca stored in FRC and to understand how sedimentology, 

geomorphology, and mining activity affect its spatial distribution of contaminant storage.  

A combination of field, laboratory, and geospatial methods were used document the 

current geomorphology and channel profile.  Field methods included the mapping of 

channel geometry including width and depth.  Sediment samples were also collected and 

processed in the laboratory.  Laboratory methods determined the metal concentrations 

and sedimentology, and were used to calculate the volume of contaminated sediment.  

Geospatial methods involving light detection and ranging (LiDAR) were used to model 

the channel planform to create a continuous dataset along the length of the study area.  

This chapter outlines the study design and methods used to create and analyze the data. 

 

Sampling Approach 

The calculation of a sediment volume requires information about the width, depth, 

and length of the depositional features.  Width and depth are easily measured in the field; 

however most geomorphic assessment approaches are unable to account for every 

depositional feature in the river.  Remote sensing techniques using LiDAR are able to 

capture width and length of features, but are unable to account for height of features 

below the waterline (Podhoranyi and Fedorcak, 2015).  To account for all three 

components of sediment volume, a combination of field methods and geospatial remote 

sensing using LiDAR was implemented.  The combination of these two techniques yields 
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sediment volume and similar techniques were used in Thoma et al. (2005).  The 

availability and use of high-resolution LiDAR data has benefitted many studies involving 

fluvial geomorphology (Thoma et al., 2005, Vianello et al., 2009, Notebaert et al., 2009, 

Fisher et al. 2013). 

The calculation of metal mass stored in sediment requires a volume of sediment, 

metal concentration, bulk density of the sediment, and the fraction of contaminated 

sediment, which in this study is the percent less than 2 mm size fraction.  The sediment 

volume components of length, width, and depth are determined by using both field and 

remote sensing techniques.  The metal concentration was determined using average 

concentrations by segments. The bulk density was obtained from the most abundantly 

deposited alluvial soils using the soil survey of St. Francois County.  The percent less 

than 2 mm size fraction was determined from the laboratory analysis. 

 

Field Methods 

Field assessment activities for this project were divided into two components: 

geomorphic assessment of the channel bed, active bar, and stable bar deposits and 

sediment sampling of bed and bar deposits.  The geomorphic assessment provides width 

and depth of channel features and their dimensions were used to calculate sediment 

volume.  The sediment sampling revealed metal concentrations found in various channel 

and bar features. 

Geomorphic Assessment.  The following channel profile illustrates how features 

for a given cross-section are assessed: active channel width, total channel width, 

individual depositional feature width, left and right bankfull height, approximate depth of 
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fines, average channel depth, and maximum depth to refusal referenced from water level.  

Distances are measured with 100 m tapes. Depths from water level and height 

measurements are collected using stadia rods.  Depth of fines and other depth to refusal 

measurements are collected using a sediment tile probe. 

Each cross-sectional survey was collected roughly every 50 or 100 m depending 

on the geomorphology of the sample reach.  The objective is to understand sediment 

storage and sites were selected based on presence of abundant sediment deposition in 

either the channel or bar deposits.  Long reaches of exposed bedrock with little sediment 

storage were recorded in field notes but a cross-section was not taken. 

Geomorphic assessment data were used to calculate sediment storage based on the 

following channel geometry (Figure 13):   

1. Active channel storage = bed storage + active bar storage + stable bar storage.   

 

2. Bed storage = Wetted channel width in meters (m) * (Depth (m) to refusal – 

average of 5 depths measured across channel).   

 

 

3. Active and stable bar storage = Bar width (m) * (Depth (m) to refusal + bar 

height).  Depth to refusal at each location will provide the maximum depth.   

 

 

Figure 13. Channel morphological storage units conceptualized and designed for this 

study. 
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  Sediment Sampling. Sediment sampling provided field samples of sediment 

from different locations along FRC.  Samples were analyzed for geochemistry to reveal 

the presence or absence of Pb contamination.  Sediment sampling was divided into three 

types: channel bed sediments, active bar sediments, and stable bar fines.  Mining 

sediment is generally composed of fine-gravel and sand with varying amounts of silt and 

clay.  Sediment particles in these size ranges are mobile and mixed by large floods and 

then re-deposited along the channel until they are stabilized by vegetation or river 

management practices (Lecce and Pavlowsky, 1997).   

Channel bed sediment samples were collected from channel glide and in-filled 

pool units.  Active bar and shadow bar samples are collected at a depth of 10 cm to 30 cm 

below the surface and were stored in labeled 1-quart or 1-gallon freezer bags.  The 1-

gallon freezer bags are used to ensure enough fine grained sediment would be present for 

laboratory analysis.  Stable bar fines samples are collected from the head, middle, or tail 

end of the stable bar at a depth of 5 cm to 10 cm below the surface and are stored in 

labeled 1-quart freezer bags. 

Bar Core Sampling.  An assumption of this study is that Pb concentrations in the 

bar and bed samples collected from 0 – 30 cm depths are representative of average 

concentrations for the entire depth of the deposit.  Bar core sampling provides metal 

concentration information with depth to verify this assumption.  Knowledge of channel 

planform, specifically large bar deposits at least 1 m in height, are identified from the 

geomorphic assessment.  Bar core sampling below the water table is difficult and to 

ensure the greatest depth possible for sample collection, large bars greater than 1 m in 

height are targeted.   
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Bar core sites were dug to at least 0.7 m depth where possible with shovels.  Sites 

were at least 0.5 m to 1 m in width to prevent sediment from mixing as samples are 

collected.  Samples were collected at 10 cm increments and stored in 1-quart freezer 

bags.  Sites at bar tails were preferred to ensure enough fine grained sediment would be 

present for laboratory analysis.  Bar core samples will be processed the same way as 

surface samples. 

Upstream Sediment Collection. This study primarily focuses on the lower 9.5 

km of FRC and the Harris Branch tributary is the uppermost known mining influence to 

FRC.  Sediment samples from the bed and active bar deposits were collected upstream of 

known mining influence to determine Pb concentrations in sediment not affected by 

mining activites.  Sample locations will be located near easy access points to county and 

public roads.  A minimum of five samples spanning 0.5 km length at three different 

locations along FRC were collected similarly to surface samples. 

Fieldwork for the geomorphic assessment was completed December 15 – 17, 

2014.  The lower 7.5 km of FRC were walked to fulfill the assessment.  Sediment 

sampling was completed January 8 – 10, 2015.  The lower 9.5 km of FRC were walked to 

collect sediment samples.  The bar core sampling was completed August 4 – 5, 2015 and 

upstream sediment sampling was completed on September 17, 2015.  There were 103 

sediment samples collected from the first 9.5 kilometers of FRC and an additional 16 

sediment samples collected upstream above mining influence to determine the 

background metal concentrations. 
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Laboratory Procedures 

Laboratory methods involve preparation, physical analysis, and geochemical 

analysis of bed and bar sediments.  Field samples were cataloged and verified with 

corresponding field notes.  Field samples in plastic freezer bags were dried in an oven at 

60° C, disaggregated with a mortar and pestle, weighed and put through a 32 mm and 2 

mm size sieve set to isolate mining-related size-fractions for analysis.  Sediments greater 

than 32 mm were weighed and discarded.  The remaining sediment, greater than 2 mm, 

were weighed and saved in the sample freezer bag.  Sediment less than 2 mm were 

weighed and placed in special metal free plastic X-ray fluorescence (XRF) bags, labelled 

with the sample number and “< 2mm fraction.”   

An X-Met3000TXS+ Handheld XRF Analyzer (OEWRI, 2011) was used to 

analyze sediments in the XRF bags for Pb, Zn, and Calcium (Ca) concentrations.  For 

every 15th to 20th sample analyzed by the XRF, a laboratory duplicate and a known 

jasperoid standard were analyzed to determine the precision and accuracy of the XRF.  

Element standards were designed to produce strong x-ray signatures of elements of 

interest (MacDonald et al., 2000) and the jasperoid standard is the Pb standard.  Accuracy 

was evaluated by using the standard deviation and relative percent difference of the 

jasperoid standard for each sample set.  Precision was evaluated using the relative percent 

difference of the duplicate samples. Relative percent differences under fifteen percent 

were considered acceptable (OEWRI, 2011). Overall, the XRF device used in this study 

was statistically accurate and precise. 

Additional quality assurance and quality control (QAQC) steps were taken for 

XRF measurements (Shefsky, 1997; EPA, 2007).  XRF samples are routinely sent to 
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laboratories to be analyzed on atomic absorption spectrophotometers or inductively 

coupled plasma atomic emission spectrophotometers for additional QAQC.  Random 

sediment samples of the <2 mm fraction were also selected and sent to an independent 

laboratory, ALS Chemistry, Nevada, to be evaluated via aqua regia to obtain a correction 

value that would be multiplied to the Pb, Zn, and Ca metal concentrations.  This study 

focuses on the <2 mm fraction because sand, silt, and clay particles are the most mobile 

and metals tend to bind to fine sediments.  Additionally, floatation separation techniques 

produce tailings <2 mm in size.  Correction values obtained from previous studies 

focusing on the Big River around the Big River/FRC confluence were used.  Pb 

concentrations were multiplied by 1.09, Zn by 1.27, and Ca concentrations by 0.73.   

 

Geospatial Data Analysis 

Geospatial databases and Geographical Information System (GIS) were used to 

organize and analyze field and laboratory data.  A set of winter 2013 “leaf off” and 

summer 2014 “leaf on” aerial photographs with 1-meter resolution were obtained from 

Google Earth Pro and Missouri Spatial Data Information Service (MSDIS) respectively, 

and used as base maps.   

Channel planform mapping involves the creation of polygon shapefiles 

classifying various stable and active bar features and in-channel sediment storage 

locations along FRC.  These features are mapped based on rectified aerial photos and 

LiDAR data.  LiDAR data was available for the entirety of FRC and channel planform is 

visible with the “hillshading” tool in GIS.  Using the LiDAR data, a catalogue of in-

channel depositional features is created and verified though field notes, geomorphic data, 
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GPS, and field pictures.  Polyline shapefiles were created for the bank top and bank 

bottom on both left and right banks in GIS.  Active and stable bar polylines were drawn 

and all polyline features were converted into polygon files creating individual polygons 

for each depositional feature.  The polygon area for each features were calculated with 

GIS. 

A 50 m buffer was created around the FRC centerline, since the maximum 

observed total channel width was 47.7 m.  The 50 m buffer shapefile was divided into 

100 m cells with the cell center point every half kilometer and was intersected with the 

channel planform polygon and feature area was calculated in each cell.  This results in a 

detailed catalogue of channel planform data for every 100 m along FRC (Figure 14). 

Segment Partitioning.  Different components of the sediment storage and metal 

mass calculations are at different resolutions.  Channel profile data and sediment 

sampling were collected irregularly at the reach scale.  The channel planform technique 

based on the LiDAR data allows for data analysis at 100 m resolution.  Accurately 

calculating sediment volume and metal mass requires data at a uniform resolution, the 

segment scale, in this study.  All components of sediment storage and metal mass were 

calibrated to the segment scale.   

FRC was partitioned into eleven segments to account for variations in distribution 

from mining and non-mining sources. Segment boundaries were created at major mine 

tributary or non-mining tributary confluences.  Segment number, length, binding R-km, 

boundary justification, changes in drainage area (Ad), and land use are summarized in 

Table 2 and 3.  The upstream and downstream boundary justification generally refers to 

the type of area they drain. 
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Sediment Storage Calculations. Total sediment storage is calculated by 

summing the volume of sediment found in the channel bed, active bar, and stable bar 

 

Figure 14. Example of channel planform derived from LiDAR hillshade.  
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Table 2. Summary of segment partitioning. 

 

 

 

Table 3. Summary of segment drainage area (Ad) and land use. 
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deposits in each segment in FRC.  Calculating sediment volume requires the average 

length, average width, and average depth of sediment deposits.  The length component is 

the segment length.  The depth component is the average depth of sediment deposit 

features within the segment.  Finally, widths of sediment deposit features extracted from 

the LiDAR derived cells are divided by 100 and averaged together by segment to obtain 

the width component.   

Additional data processing was required for channel bed and the stable bar fines 

thickness.  Channel bed thickness calculations in reaches with exposed bedrock were 

replaced with a thickness value of 0 m, indicating no channel bed storage.  This 

adjustment was made before averaging the channel bed thickness.  The stable bar fine 

thickness layer is assumed to contain higher concentrations of metals and must be 

addressed separately from the underlying “coarse” deposit.  The fines thickness was 

subtracted from the total thickness and is referred to as stable bar fines fraction.  The 

remaining thickness was used to calculate the rest of the stable bar sediment volume. 

Metal Mass Calculations. Metal mass per segment for channel bed, active bar, 

stable bar “coarse”, and stable bar fines is calculated by multiplying the sediment volume 

data, bulk density value, metal concentration data, and percent <2 mm sediment size 

together (Figure 15), similar to Thoma et al. (2005) and Dennis et al. (2009).  Total metal 

mass is the sum of each metal mass per segment for each deposit type.  Metal 

concentrations for channel bed, active, and stable bar deposits were averaged from 

samples collected from segments.  Segment averages were used in order to minimize the 

effect of high concentration outliers that do not accurately represent the deposit.  This 

same process was used for the percent <2 mm component.   
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A bulk density value of fine grained sediments depends on the composition of the 

sediment found there.  The dominate soil type on alluvial soils of FRC are the Crider silt  

 

Figure 15. Flow chart of metal mass per segment calculation. Final metal mass per 

segment can be divided by segment length to obtain metal mass / 1 km.  This mass per 1 

km can be divided by 10 to obtain metal mass unit storage / 100 m. 
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loam and Caneyville silt loam soil series.  Bulk density range from 1,200 – 1,550 kg / m³ 

and 1,350 – 1,600 kg / m³ respectively (Brown, 1981).  An average bulk density value of 

1,400 kg / m³ is used for the metal mass calculations.  This value may be considered low 

for channel bed material. 
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RESULTS AND DISCUSSION 

 

This chapter describes variations of channel morphology, sediment storage, metal 

concentrations, and sediment geochemistry along the lower 9.5 kilometers of FRC.  First, 

spatial trends in channel morphology are described including planform, slope, width, and 

depth.  Second, storage analysis relates the type and volume of sediment deposits in FRC 

to controlling geomorphic and source/supply factors.  Third, levels of metal 

concentrations in channel sediments are evaluated relative to toxic criteria and spatial 

trends.  Final, metal storage analysis is used to calculate the volume and distribution of 

Pb, Zn, and Ca in contaminated sediment and identify factors that control metal storage 

patterns.   

 

Channel Morphology Using LiDAR 

Downstream variations in active channels, bed, and bar widths are used to 

quantify planform characteristics of FRC at 100 m increments based on the analysis of 

high resolution LiDAR data (Appendix A).  Recall, active channel width is the sum of the 

channel bed, active bar, and stable bar width.  Downstream trends in active channel width 

in FRC are influenced by increasing drainage area and by water and sediment inputs 

below major tributaries.  Overall, active channel width trend can be grouped into four 

zones: increasing downstream from R-km 9 to 5.5, narrowing between R-km 5.0 and 3.2 

along the National Pile, increasing again from R-km 3.2 to 1, and moderating below R-

km 1.0 in the confluence zone (Figure 16-A).  
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Figure 16. Width for: A- active channel, B- channel bed, and C- bars. 
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Active channel width locally increases downstream of major tributary confluences 

at Harris Branch, Elvins tributary, Shaw Branch, National Pile upstream and downstream 

tributaries, Koen Creek, and Walker Branch.  Active channel width is very narrow 

between the National Pile upstream and downstream confluence at R-km 5.0 and 3.2, in 

the second zone. The narrow channel widths in this zone suggest human modifications to 

the channel, possibly in concert with remediation of the National Pile.  In the third zone, 

active channel width increases dramatically from 15 m to 30 m (Figure 16-A).  The 

widest section is approximately 500 m downstream of the Walker Branch confluence at 

R-km 1.5.  It is 40 m wide with 25 m of it from channel bed width and the rest from 

active bars. 

Channel bed width trends generally follow those of the same patterns of locally 

increased width as active channel widths increase.  Bed widths range from 10 m to 20 m 

in zone one, increase from 9 m to 15 m in zone two, and range from 13 m to 25 m in 

zones three and four (Figure 16-B).  This 25 m wide bed is located nearly 200 m 

downstream of the lower National Pile tributary.   

The active and stable bar widths account for the large variation in active channel 

width (Figure 16-C) in the first zone.  Bar widths in general are smaller than channel bed 

widths, except immediately downstream of major tributary confluences.  Stable bar 

widths are greatest downstream of Shaw Branch, Koen Creek, and Walker Branch 

tributary confluences (Figure 16-C).  Stable bar width is widest at approximately 24 m 

just downstream of Shaw Branch and the channel bed is only 13 m wide.  Active and 

stable bar widths range between 2 and 7 m in this zone creating the overall narrow active 

channel.  Overall, wider channel and bar widths are associated with tributary inputs.  
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Active and stable bar widths are generally greatest within 200 m upstream and 

downstream of major tributaries.  Panfil and Jacobson (2001) reported wider active 

channels in Ozark streams tend to produce greater sediment accumulation in bar deposits. 

LiDAR and Field Widths.  The LiDAR derived data were compared to field 

measurements for ground-truthing purposes to evaluate active channel and bed widths 

acquired by remote-sensing methods (Figure 17 and 18). Overall, there is a positive trend 

between LiDAR derived width and field measurements with an R² of 0.48 for active 

channel width and 0.27 for channel bed width only.  Some sources of variability between 

the two techniques come from variations in field conditions.  Variations in water level at 

the time of data collection can cause problems accurately identifying the correct active 

channel width since LiDAR does not penetrate water (Podhoranyi and Fedorcak, 2015).  

High water levels could hide depositional features or even the base flow edges of the 

channel.  Reaches with low sloping banks and wide active channels can be difficult to 

accurately identify boundaries.  Furthermore, bar deposits near the channel banks, as 

interpreted by LiDAR evaluation could actually be benches above stable bar elevations 

and can be misclassified.  Comparing the trendline to a 1:1 line shows that LiDAR 

techniques tend to under-predict wider active channel width.  This may result from bank 

shaded by vegetation or lower bank angles.  However, LiDAR over-predicts bed width 

for narrow channels possibly due to wider water width compared to the actual 

geomorphic bed with below. 

To examine how LiDAR and field widths vary downstream, LiDAR based widths 

were divided by field widths for active channel and channel bed and plotted over R-km 

(Figure 19).  Ratios for active width average about 1, indicating an overall similarity  
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Figure 17. Comparison of LiDAR and field data for active channel width. 

 

 

Figure 18. Comparison of LiDAR and field data channel bed width. 

1:1 

1:1 
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Figure 19. LiDAR/Field ratios for active channel and channel bed width. 

 

between the two methods.  However, bed width ratios average around 1.1 to 1.3, 

indicating that water surface widths are wider than active bed width. 

Channel slope. High resolution LiDAR data were used to calculate the 

longitudinal profile and calculate the water surface slope for FRC (Figure 20).  Elevations 

were extracted from the LiDAR every 25 m along the FRC centerline shapefile.  LiDAR 

has limitations to hydraulic studies because of the inability of the near-IR beam to 

penetrate water surface (Notebaert et al. 2009; Podhoranyi and Fedorcak, 2015), therefore 

it was assumed the reading would be equivalent to water surface.  The resulting 

longitudinal profile is smoothed out by removing elevations lower than the previous R-

km measurement.  FRC channel morphology in influenced by bedrock control. Long 

reaches of exposed bedrock have little sediment storage and are characterized as zones of 

transport (Owen et al. 2011).  The bedrock prevents channel downcutting during periods  
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 of higher flow, resulting in a lateral dispersal of energy potentially causing channel 

widening.  During the geomorphic assessment of FRC, reaches with bedrock control were 

noted.  When calculating the average depth component for sediment volume, a 0 was 

manually entered for longer bedrock reaches to emphasis the effect of bedrock control on 

sediment storage. 

 

Channel Sediment Storage by Segment 

This section analyzes the trends and downstream distribution of sediment in FRC.  

The average width and depth of channel bed, active bar, and stable bar deposits were 

multiplied by the segment length to obtain their sediment volume per segment.  Each 

feature was summed for the segment and segments were summed to obtain a total volume 

of sediment stored in FRC for the study area.  Sediment storage was calculated for each 

segment (Appendix B). 

Storage Width and Depth. Average channel bed widths in FRC range from 12 to 

18 m by segment (Figure 21-A).  Channel bed width generally increases downstream in 

segments 1 to 5, then becomes relatively narrow in segment 6 and 7, and then widens in 

segments 8 and 9, and then moderates in segments 10 and 11 creating four different 

zones, similar to the LiDAR width trends (Figure 21-A).  The narrowest average channel 

bed widths are in segment 3, between the Elvins tributary and Shaw Branch, and segment 

6, along the National Pile.  The widest average width of 18 m is in segment 9 where 

Walker Branch flows into FRC.   

Channel bed thickness averages generally ranges between 0.06 and 0.38 m among 

segments, and segment 4 has the smallest average thickness of 0.06 m because of long  
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Figure 21. Dimensions for average channel bed: A- width, B- depth, and C- channel bed 

storage. 
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sections of exposed bedrock on the channel bed, creating a zone of transportation and 

little sediment deposition (Figure 21-B).  Bed thicknesses measurements within a 

segment coefficient of variation values ranges from 42 to 173 percent (Appendix A).  

Recall, the average channel bed thickness is calculated by subtracting the average height 

of sediment found in the channel from the maximum probe depth.  High variability can 

come from non-uniform sediment distribution in the bed sediment at a cross section, or 

relatively deep maximum probe depths potentially taken from in-filled pools where 

penetration is variable.  Additionally, the low absolute value in thicknesses amplifies the 

percent variation.  However, channel bed thicknesses range between 0.24 and 0.38 m 

across segments and therefore vary plus or minus 25 percent in general (Figure 21-B). 

Average active bar widths by segment vary between 2.3 m and 10.8 m  

(Figure 22-A).  They also follow the similar zone trends with channel bed widths, with an 

average width of 6 m in the first upstream zone, an overage of 2.5 m in the second zone, 

8 m in the third zone, and 9 m in the fourth zone.  The widest average active bar width is 

10.8 m in segment 11, near the Big River confluence.  Within a segment, active bar width 

coefficients of variation range between 38 and 104 percent.   

Average active bar thickness ranges from 0.85 to 1.77 m (Figure 22-B).  The 

thinnest active bars are located in segments 4, 5, 8, and 10, while the thickest are in 

segment 9.  Segment 4 has only one active bar thickness calculation and is not a good 

indicator of average segment thickness due to small sample size.  Coefficients of 

variation for active bar thicknesses range from 11 to 40 percent.  The smallest variation is 

found in segment 9 and the largest variation is found in segment 11, at the Big River 

confluence where potential backwash when the Big River floods may cause thicker  



 

56 

 

Figure 22. Dimensions for average active bar: A-width, B-depth, and C- active bar 

storage. 
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deposits.  Sediment storage behavior is complex in confluence zones and potentially 

backwash from the Big River during high flow could explain the high variation in active 

bar thickness (Knighton, 1998; Wohl, 2014). 

Average stable bar widths by segment vary between 4 m and 12 m (Figure 23-A).  

Segment 10 has one stable bar contribution with an average width of 0.19 m.  This width 

is not representative of the entire segment and is probably the tail end of a stable bar that 

is centered in the most downstream cell found in the previous segment.  Field 

observations also found very few stable bars in segment 10.  Stable bars also exhibit the 

similar zone trend as channel bed and active bar widths.  The average width in zone one 

is 7 m, zone two is 4 m, zone three is 6 m.  The coefficient of variation for stable bar 

width range from 67 to 137 percent.   

Average total stable bar thickness ranges between 0.68 m and 2.2 m (Figure 23-

B). There are relatively thicker stable bars in segments 3 to 5 with an average thickness 

of 1.2 m.  Segments 7 and 8 have only one calculation of thickness each, based on field 

data.  Total stable bar thickness coefficients of variation range between 5 to 45 percent.  

Segment 3 has the largest coefficient of variation, and the average thickness was used for 

segments 1 and 2 for the thickness component for sediment volume. 

The thickness of the fine-grained sediment layer forms the surface of stable bars.  

The fines thickness coefficient of variation ranges from 0 to 64 percent.  Fines 

thicknesses have a very small range between 0.1 and 0.8 m among segments (Figure 23-B 

and C).  Segment 3 has the highest coefficient of variation in fines with this entire range 

of fines thicknesses (Figure 23-B). 
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Figure 23. Dimensions for average stable bar: A- width, B- depth, C-stable bar storage. 
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Storage Volume. There is 170,000 m³ of sediment stored in channel deposits 

along FRC.  Approximately 23 percent are channel bed deposits, 41 percent are active bar 

deposits, and 35 percent are stable bar deposits (Table 4).  Segment total summarizes a 

volume of sediment stored per segment and the unit storage describes the storage rate per 

100 m of river length.  The red numbers in sediment storage (%) indicate segments with 

greater than the average storage for the deposit type (Table 4).     

The greatest volume of sediment storage is found in segments 1, 3, and 9.  

Segment 1 contains sediment input from upstream non-mining sources. Recall the depth 

component of the storage calculation for segments 1 and 2 is the same as segment 3.  

Segment 3 contains 15 percent of total storage in active and stable bars.  Active bar 

deposits have the greatest amount of sediment storage and is greatest in segment 9 

(Figure 22-C).  Sediment loads from Koen Creek and Walker Branch meet the lower 

channel slope of the FRC main stem and the decrease in velocity causes sediment 

deposition on the active bars.  Segment 9 has 14 percent of total storage in active and 

stable bars. 

Channel bed storage represents the smallest percent of total sediment storage in 

FRC.  Fine-sediment stored in the channel bed is the most readily available to be 

transported.  The greatest channel bed storage is in segment 6 (Figure 21-C) alongside of 

the National Pile.  This segment has a large percent of exposed bedrock, which would 

indicate low channel bed storage.  However, field data (Appendix B) shows the upper 

half of this segment is primarily exposed bedrock, while the bottom half contains some of 

the thickest channel bed deposits in FRC.  This observation suggests that bedrock control 

is more influential on sediment storage on the reach scale rather than the segment scale. 
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Table 4. Percent of total storage by deposit, and sediment storage by total and unit. Red 

numbers indicate segments with greater than average storage. 

 

 

    

The distribution of total sediment storage is greatest in the upper mining segments 

1 to 3 and downstream non-mining segments 8 to 11 and is the lowest in segments 4 to 7 

(Figure 24-B).  Comparing the average unit storage between these three sections confirms 

this distribution (Figure 24-A).  There is a greater amount of average unit sediment 

storage in the upstream mining segments 1 to 3 at approximately 2000 m³ / 100 m.  

Average unit storage in segments 4 to 7 is approximately 1400 m³ / 100 m.  Average unit 

storage for the downstream non-mining segments is approximately 1900 m³ / 100 m.  

Fine Sediment Trends.  This study evaluates metal storage for only the <2 mm 

sediment fraction.  Therefore, the volume of <2 mm sediment in each deposit and 

segment must be determined.  The error bars project the ninety-five percent confidence 

interval, where sufficient sample size allow (i.e. n ≥ 2).  Segments where sample size was  
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Figure 24. Sediment storage by: A-unit storage and B- total storage by segment.  

 

 

insufficient (i.e. n = 1) error bars were not included, since a single value was used to 

select the average segment value.  For segments containing no sediment sampling, the 

average value for the segments upstream and downstream were used for storage 

calculation, but are not plotted in figures.     
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Channel bed sediment is relatively coarse in the upstream mining reaches in 

segments 1, 2, and 3 (Figure 25). This sediment load comes primarily from the non-

mining influence above the study area.  Segment 4 appears to be affected by fine 

sediment input from Shaw Branch.  The next relatively fine sediment input is in segment 

8 (Figure 26) where Koen Creek supplies sediment from its relatively large drainage area.  

Channel bed sediment approximately thirty percent fines from Koen Creek to the Big 

River confluence. 

Bars remain relatively fine in the mining segments.  Active bars shows coarser 

sediment sizes in segment 3 below the Elvins tributary (Figure 26).  Similarly, bars 

receive large amounts of fine sediment in segment 4 from Shaw Branch and gradually 

coarsen through segments 5, 6, and 7, until an influx of fine sediment from Koen Creek 

in segment at for the active and stable bars.  Sediment mixes and gradually coarsens from 

80 percent fines in segment 8 to 40 percent fines downstream towards the Big River 

confluence in segments 10 and 11 for all deposits. 

Fine Sediment Storage. The calculated sediment volume for each sediment 

deposit per segment was multiplied by its corresponding segment percent <2 mm fraction 

(Figure 27).  There is a total of 93,800 m³ of fine sediment stored in FRC, which is 

approximately half of total sediment stored (Appendix C).  There is 44 percent fine 

sediment stored in active bar deposits, 42 percent stored in stable bar deposits and 14 

percent in channel bed deposits (Table 5).  The storage patterns within a segment and 

longitudinally between segments are very similar to total sediment storage (Figure 24-B 

and 27-B).  Fine sediment less than 2 mm in diameter is very easily entrained under high 

flow conditions and the decreasing trend could reflect the continued downstream 
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transport of fines as various tributaries contribute sediment and water to the FRC main 

stem (Graf, 1997; Knighton, 1998; Wohl 2014). 

 

 

Figure 25. Percent less than 2 mm in channel bed, active bar, stable bar, and shadow bars 

in segments 1-6.  Error bars represent 95th confidence interval. Lack of error bars denote 

n = 1. 
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Figure 26. Percent less than 2 mm in channel bed, active bar, stable bar, and shadow bars 

in segments 7-11. Error bars represent 95th confidence interval. Lack of error bars denote 

n = 1. 
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Figure 27. Sediment storage by A-unit storage and B- total storage by segment in the fine 

<2 mm fraction. 
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Table 5. Fine sediment percent of total storage by deposit and sediment storage unit.  

Red numbers indicate segments with greater than average storage. 

 

 

 

 

Metal Storage by Segment 

This section evaluates metal concentrations, their downstream variations, 

background levels, and variations of metal concentrations with depth in bar deposits.  

Sediment geochemistry data is known to have a lognormal distribution (Ahrens, 1954; 

Reimann and Filzmoser, 2000; Singer, 2013).  The geometric mean of metal 

concentrations was used to determine average Pb and Zn storage in each deposit type by 

segment.     

Metal Concentrations. Any location that is mineralogically abundant will have 

metal concentration levels that are considered normal or background for that location.  

Therefore, any observations that are above background are of scientific interest. 
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Background Metal Concentrations in Sediment. Previous studies (Smith and 

Schumacher, 1991; Gale et al. 2004; Pavlowsky et al. 2010) have reported average 

background Pb and Zn concentrations collected above mining influenced segments 

(Table 6).  Smith and Schumacher (1991) and Gale et al. (2004) analyzed the <180 um 

sediment size fraction, used acid digestion methods to extract the metal, and performed 

the analysis using an Inductivly Coupled Plasma-Mass Spectrometer.  Pavlowsky et al. 

(2010) collected channel bed sediment and analyzed the <2 mm fraction using the same 

XRF device as this study. 

More background studies are needed but background is clearly below the PEC.  

Fourteen sediment samples from active bars and glides upstream of known mining 

influence were collected for this study to determine background Pb, Zn, and Ca 

concentrations (Table 7).  One sample from the Banister Branch segment had 265 ppm 

Pb, 191 ppm Zn, and 21,542 ppm Ca. The remaining 4 samples in Banister Branch 

averaged to 41 ppm Pb, 30 ppm Zn, and 8,808 ppm Ca.  The Banister Branch coefficient 

of variation is therefore very high for Pb and Zn.  Overall, approximately < 50 ppm Pb, < 

40 ppm Zn, and <17,000 ppm Ca can be considered average background concentrations 

above mining influence in FRC. 

 

Table 6. Summary of average background Pb and Zn concentrations in previous studies.  
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Table 7. Summary of upstream sediment sampling above mining influence. 

 

 

Sediment Metal Concentrations.  A total of 103 sediment samples were collected 

from the lower 9.5 km of the study area (Appendix D).  Of the 103, all samples are 

contaminated above the PEC of 128 ppm for Pb (MacDonald et al., 2000) except for 6.  

These six individual non-contaminated samples are found between R-km 9.5 and 8.0, 

above Elvins.  These sample concentrations are affected by dilution form upstream 

background sediments.  There are 29 samples that are below the PEC threshold of 459 

ppm for Zn, and can be found in all segments of the study area.  These PEC thresholds 

are for aquatic organisms.   

All sediment deposits averaged together by type are contaminated.  Active bar 

deposits across all segments have the greatest arithmetic average Pb concentration of 

2,247 ppm.  Stable bars, shadow bars, and channel bed deposits have average Pb 

concentrations of 1,540, 1,460, and 1,331 ppm, respectively.  Channel bed deposits 

across all segments have the greatest arithmetic average Zn of 3,037 ppm, with stable 

bars next at 1,369 ppm, and then active and stable bars with 755 and 675 ppm, 

respectively.   
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 The geometric mean of metal concentrations by deposit type in segments were 

calculated and plotted similarly to the percent <2 mm sediment size (Figure 28 and 29).  

The error bars project the ninety-five percent confidence interval, where sufficient sample 

size allow (i.e. n ≥ 2).  Segments where data was insufficient (i.e. n equals 1) error bars 

were not included.  Metal concentrations for segments with no samples were estimated 

using the average values upstream and downstream were used for the metal storage 

calculation, but are not plotted.     

 

 

Figure 28. Variations in Pb concentration by deposit type in segments 1-6.  Error bars 

represent 95th confidence interval. Lack of error bars denote n = 1. 
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Figure 29. Variations in Pb concentration by deposit type in segments 7-11. Error bars 

represent 95th confidence interval. Lack of error bars denote n = 1. 

  

Lead and zinc concentrations show little variation between different deposits by 

segments in FRC since the average concentration of one deposit is usually within the 

ninety-five percent confidence interval of other deposits.  Channel bed deposits have the 

highest average Pb concentration in segments 2, 3, 4, and 11 (Figure 28 and 29).  Channel 

bed sediments are relatively easily to mobilize during higher discharges and represent a 

sediment source readily available for transport (Lewin and Macklin, 1987). 
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Zinc concentration trends mimic Pb trends in all segments except for segments 4 

and 10 (Figure 30 and 31).  Zinc is marginally higher than Pb in channel bed deposits in 

segment 4.  Additionally, shadow bars in segment 10 have a greater concentration of Zn 

than active bars and channel bed compared to Pb.  Shadow bars in segment 10 have the 

lowest Pb values (Figure 29).   Both Pb and Zn concentrations are greatest in channel bed 

deposits in segment 2 with 618 for Pb and 3,658 for Zn, with the exception that Zn is an 

order of magnitude higher than Pb.  Segment 2 ends at the confluence of the Elvins 

tributary, however fluvial processes in confluence zones could have deposited some 

sediment upstream.  Sediment is deposited upstream of confluences in stagnation zone 

where flow velocity from the tributary encounters the wider channel and shallower slope 

of the main stem (Wohl, 2014). 

The host rock found in FRC is the Bonne Terre Dolomite with a chemical formula 

of CaMg(CO3)2 (Smith and Schumacher, 1991; 1993).  The Ca abundance in dolomite 

(i.e. pure tailings) is 21.7 percent by molecular weight.  Sediment containing Ca 

concentrations near 217,000 ppm are therefore assumed to be composed of 100 percent 

tailings material.  Ca concentrations vary between 14,704 ppm and 111,742 ppm in 

deposits found in segments 1, 2, and 3 with active bar segments having higher 

concentrations (Figure 32 and 33).  The average concentration of each deposit are within 

the confidence interval of the others.  Concentrations in all sediment deposits are around 

100,000 ppm Ca in segments 6 to 11.  The one exception is segment 9 where 

concentrations across all deposits slightly decrease, due to dilution from uncontaminated 

sediment from Walker Branch.  Concentrations rise again to 100,000 ppm in segments 10 

and 11 (Figure 33). 
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Figure 30. Variations in Zn concentration by deposit in segments 1-6. Error bars 

represent 95th confidence interval. Lack of error bars denote n = 1. 



 

73 

 

 

Figure 31. Variations in Zn concentration by deposit in segment 7-11. Error bars 

represent 95th confidence interval. Lack of error bars denote n = 1. 
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Figure 32. Variations in Ca concentrations by deposit type in segments 1-6. Error bars 

represent 95th confidence interval. Lack of error bars denote n = 1. 
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Figure 33. Variations in Ca concentrations by deposit type in segments 7-11. The white 

dot denote n = 1. 

 

Metal Concentration Trends by Segment. Sediment sample concentrations for 

each metal were averaged together by segment and geomean plotted against river 

kilometer to reveal the downstream trends in metal concentration (Figure 34).  These 

averaged values were not used for the metal storage calculations and are only used to 

describe overall longitudinal metal concentration trends.  All metal concentrations rise  
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Figure 34. Metal concentration trends for: A- Pb, B- Zn, and C- Ca, by River Kilometer. 
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sharply past Harris Branch and the Elvins tributary indicating the most upstream source 

of contaminated tailings and other mine discharge to FRC.   

Lead concentrations (Figure 34-A) continue to increase downstream through the 

mining affected area to peak at 2,600 ppm Pb and then sharply fall past Koen Creek and 

Walker Branch due to dilution by cleaner sediment.  Pb concentrations are highest 

between R-km 5 and 3 which are just downstream of the National Pile and in segments 8 

and 9.  Smith and Schumacher (1993) noted the stream bed downstream of the National 

Pile was composed entirely of sandy mill tailings which can be indicators of Pb 

contamination. 

  Zinc concentrations (Figure 34-B) rises sharply with input from the Elvins 

tributary to 1,600 ppm Zn and then a secondary spike past Shaw Branch at 1,400 ppm Zn.  

The secondary Zn peak below Shaw Branch could be a combination of additional Zn 

from the Federal Pile and the movement of sediment from the Elvins Pile tributary 

confluence at R-km 7.6.  Zn concentrations gradually decrease downstream from the 

source to 450 ppm Zn at the Big River confluence.   

Calcium concentration (Figure 34-C) steadily increases downstream with a sharp 

decrease after the Walker Branch confluence, again due to dilution.  Similarly consistent 

with Smith and Schumacher (1993) channel bed sediments were composed of tailings, 

just downstream of the National Pile.  High Ca concentrations between R-km 4 and 2 

could indicate the presences of these observed tailings sediments. 

Bar Core Sediment Sampling. An assumption of this study is that metal 

concentrations in the bar and bed samples collected from 0 to 30 cm depths are 

representative of average concentrations for the entire depth of the deposit.  Bar core 
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sampling provides metal concentration information with depth to verify this assumption.  

If metal concentrations vary with depth, then storage calculations would be biased by the 

near surface samples used in this study.  However, if concentrations do not vary with 

depth, then the samples collected are assumed to be representative of the entire deposit.  

Bar core samples were collected from active and stable bars within the study area that 

were at least one meter in height.  Bar pits ranged from 0.4 to 0.7 m in depth and samples 

were collected in 10 cm intervals before hitting the water table.  Bar cores were collected 

at six locations at R-km 7.2, 6.0, 5.8, 4.25, 1.68 and 1.3.   

Evaluating the coefficient of variation or the comparing the ratio of the top and 

bottom samples of the core are two different methods for evaluating contamination trends 

with depth.  The coefficient of variation method assumes variation less than 30 percent of 

metal concentrations for a core would be representative and within the limits of 

variability around a mean concentration.  The ratio method involves calculating the 

arithmetic average of metal concentrations in the top two samples divided by the average 

of the bottom two samples of the core.  Values greater than one indicate the top is more 

contaminated than the bottom, while values less than one are the opposite. Values close 

to one would represent that contamination does not vary systematically with depth. 

All core samples collected were above the PEC threshold of 128 ppm for Pb and 

above the PEC of 459 ppm for Zn (Table 8).  The lowest observed Pb concentration was 

496 ppm and highest at 4,443 ppm.  All bar cores generally show less than 30 percent 

variation except for the core at R-km 6.0 which was from a shallow active bar.  The bar 

core at R-km 6 has a Zn ratio well above 1, indicating higher Zn concentrations at the 

surface, but it also has large coefficient of variation.  This sample is from a stable bar just  
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Table 8. Summary of bar core samples.  

 

 

downstream of Shaw Branch, and the upper 20 cm average 1,300 ppm Zn while the 

bottom 20 cm averages 420 ppm Zn.  All ratios for all metals are very close to 1, 

indicating little change with depth.  These trends indicate that near-surface sediment 

samples are representative of contamination trends at depth.   

Metal Storage Trends. This section will analyze the downstream trends in metal 

storage and its downstream trends along FRC (Appendix E).  There is approximately 130 

Mg of Pb, 93 Mg Zn, and 9,700 Mg Ca stored in-channel deposits in FRC (Table 9).  The 

majority of the Pb and Zn mass is stored in active and stable bar deposits.  The majority 

of the Ca mass is found in the active bars.  Channel bed sediments contain the least 

amount of metals due to being composed of relatively thin and coarse deposits.  

Background concentrations as determined by the upstream sediment sampling were not 

subtracted from the observed concentrations before storage calculations, therefore the 

following numbers may be overestimating the mining contribution to metal storage by <5 

percent.   

Pb Trends. There are 133 Mg of Pb stored in channel deposits in FRC. 
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Table 9. Summary of percent of total by metal and deposit type. 

 

 

Stable bar deposits represent the greatest amount of Pb storage of 43 percent of total, then 

active bars with 41 percent of total, and then channel beds with 16 percent of total (Table 

10).  The majority of the active and stable bar Pb is found in segments 8 and 9, 

approximately 32 percent of the total, and are located below the confluence of Koen 

Creek and Walker Branch.  Additionally, the Pb found in these segments have been 

transported several kilometers downstream from mining sources. 

Channel bed deposits contain the lowest percentage of Pb storage of 16 percent.  

Pb storage in channel bed deposits gradually increases downstream after segment 4, 

peaks in segment 8, and then decreases in segments 9, 10, and 11.  Segment 8 contains 

the greatest amount of Pb unit storage at 3,245 kg / 100 m (Figure 35-A).  This trend can 

be explained by dilution from the uncontaminated sediment supplied by Walker Branch, 

and is represented in the relative decrease of Pb unit storage from segment 8 to segment 9 

(Figure 35-A).  Channel bed storage in segments 6, 7, and 8 compose approximately 12  
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Table 10. Distribution of Pb across segments in FRC. Red numbers indicate segments 

with greater than average storage. 

 

 

 

percent of total Pb storage and these segments encompass FRC from the upstream 

National Pile confluence down to the Walker Branch confluence.  This general location 

has a relatively large amount of Pb storage is consistent with findings from Smith and 

Schumacher (1993) where they noted a large amounts of contaminated sediment storage 

below the National Pile (Figure 35-B). 

Zn Trends. There are 93 Mg of Zn stored in channel deposits in FRC.  The 

greatest amount of Zn storage is found in the stable bars at 45 percent of total, then active 

bars at 32 percent, and the rest in channel bed at 23 percent.  Zinc storage trends are 

highly localized below the Elvins/Rivermines Pile.  The downstream  
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Figure 35. Pb mass: A-Unit storage and B-Total storage per segment. 

 

distribution is very different from Pb and is greatest amount is stored in the mining 

reaches. 

The greatest amount and percent of total Zn storage, 25 Mg and 27 percent 

respectively, are found in segment 3 which begins with the Elvins/Rivermines Pile 

confluence and ends above the Shaw Branch confluence (Figure 35).  The 
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Elvins/Rivermines Pile received tailings from mines where Zn mineralization was locally 

abundant (Smith and Schumacher, 1993, Snyder and Gerdemann, 1968).  The Zn mass in 

channel bed deposits decreases rapidly from the source downstream and is consistent 

with similar downstream trends from Miller (1997) and Walling et al. (2003) which 

reported that metal concentrations generally decrease exponentially with distance from 

the source.   

Zinc mass storage in segments 4 to 9 is unevenly distributed between sediment 

deposits (Table 11).  Segment 4 has 8 percent of total Zn in stable bars and less than 1.5 

percent in active bar and channel bed deposits. All deposits in segment 5 contain above 

average percentages of total Zn storage, with 7.4 percent of the total in active bar 

deposits, 4.6 percent of total in stable bars, and 3 percent of total in channel bed deposits.  

Segment 5 contains the second highest amount of Zn storage at 14 Mg (Figure 36).   

 

Table 11. Distribution of Zn in FRC. Red numbers indicate segments with greater than 

average storage. 
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Figure 36. Zn mass: A-unit storage and B-total storage per segment. 

 

This uneven sediment distribution between deposits and between segments is consistent 

with observations by Graf (1997) where he states sediment transport is unevenly 

distributed and the sediment deposition rates and associated contaminants increases in 

places where stream power decreases, or the channel widens. 

Ca Trends. There are 9,700 Mg of Ca stored in channel deposits in FRC.  The 

greatest amount of Ca mass is stored in active bar deposits at 46 percent, then stable bars 
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at 39 percent, and 14 percent found in channel bed deposits (Table 12).   Calcium follows 

similar trends to the Pb mass in its segment distribution with the greatest concentrations 

in segment 8 and 9.  There is a generally increasing trend of Ca storage moving 

downstream, however with a noticeable lack of Ca mass found in segments 4, 5, and 6 

(Figure 37-A).  This could be caused by sediment removal during remediation and 

stabilization of the National Pile, however this trend as apparent for Pb or Zn. 

Ca mass is concentrated in four segments. Mining affected segments 1 and 3 store 

approximately 26 percent of total Ca in active bar and stable bar deposits.  Downstream 

segments 8 and 9 store approximately 32 percent of the total in active and stable bars.  

These segments also have the largest total mass per segment as well as unit storage.  This 

storage trend suggests that segments 4 to 7 are zones of transport. 

 

Table 12. Percent of total distribution of Ca across FRC.  Red numbers indicate segments 

with greater than average storage. 
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Figure 37. Ca mass: A-unit storage and B-total storage per segment.  

 

Sediment stored long-term in this segment could have been excavated and 

removed during the stabilization of the National Pile, however a similar trend does not 

appear in the stable bar fractions for Pb and Zn. There is an overall slightly decreasing 

trend in Ca mass storage moving downstream in stable bar deposits.  This potentially 

implies large quantities of tailings remain in storage and are available to be reintroduced. 
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Implications of Storage Trends 

The greatest amount of sediment storage is expected to be in wider channel 

sections where bed slope and low flow velocity decreases and sediment deposition is 

enhanced (Panfil and Jacobson, 2001).  However, there is no relationship of unit sediment 

and metal storage by segment scale with slope (Figure 38-B and C).  Possible variations 

of channel slope at the segment scale are not sensitive enough to allow adequate analysis.   

Ikeda (1975) determined an approximate slope of 0.10 is the threshold where slope has a 

noticeable effect on sediment storage.  Slope for segments tend to vary below 0.003 to 

0.004 with two segments in 0.007 and 0.009 range (Figure 38-B and C)  Unit sediment 

storage varies between 900 and 3,100 m³ / 100 m  and Pb unit storage varies between 840 

and 3,250 kg / 100 m, but have a small range of slopes between 0.0027 and 0.0044. 

Sediment supply factors can influence sediment depositional patterns in rivers (Lewin 

and Macklin, 1987; Montgomery and Buffington, 1997).  Sediment storage is 

concentrated in segments 1 and 3 in the mining affected reaches and downstream in 

segments 8 and 9.  Segment 1 receives sediment from Harris Branch, but also from 

upstream above the study area.  An influx of sediment into the main stem from upstream 

sources could cause the high unit storage rates in segments 1 and 3.  Similarly, sediment 

influx from Koen Creek and Walker Branch could be causing the high unit storage rates 

in segments 8 and 9.  

Geomorphic factors such as valley width, channel bends, and bedrock control 

have effects on sediment storage (Panfil and Jacobson, 2001; Owen et al., 2011).  Owen 

et al. (2011) observed main stem channels in other Ozark streams confined by valley 

walls having relatively straight channels with little channel bed sediment deposition. 
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Figure 38. Effect of channel slope (A) on segment unit storage (B) and segment Pb unit 

storage (C).  
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Sediment storage is also abundant on the inside bend of channels on the point bar (Panfil 

and Jacobson, 2001).  Many segments in FRC exhibit similar storage patterns based on 

these geomorphic factors.  In segment 3, R-km 7.05 is at a natural bend and sediment 

storage is amplified by old bridge ties in the channel bed, creating a wide forced channel 

with abundant channel bed deposition and active bar deposition in the inside bend.  In 

segment 6, R-km 5.05 to 4.3 is a bedrock dominated reach with little storage, however 

channel bed unit storage below R-km 4.3 is very high with little exposed bedrock and 

natural channel bends, enhancing storage. 

Anthropogenic activities may also have an effect on storage trends in FRC.  The 

Old Lead Belt has been active for over a century and the mining activities and storage of 

waste have had far reaching environmental impacts (Bussiere, 2007, Gale et al. 2004).  In 

the past decade, humans have altered the landscape through the mining and remediation 

process in FRC and are evident in photographs collected from field activities  

(Appendix F).  During the remediation process and pile stabilizations, vast quantities of 

tailings and contaminated sediment were excavated and moved around.  The effects of 

this sediment removal might be a reason segment 6 has the lowest sediment, Pb, Zn, and 

Ca mass unit storage (Figures 24-A, 35-A, 36-A, and 37-A).  Channel modifications such 

as channel over-widening create areas of wide active channels with greater amounts of 

storage.  Channel straightening also affects sediment storage, creating zones of transport 

with little opportunities for sediment storage, and forcing greater deposition further 

downstream.  This is evident in segment 6 where it is straight for nearly 1.5 km with one 

slight bend.   
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The results of this study are consistent with previous findings.   There is an 

estimated 3,700,000 m³ of contaminated sediment and 3,000 Mg of Pb stored in channel 

bed and bar deposits in the main stem of the Big River (Pavlowsky et al. 2010).  In 

comparison, FRC contains an estimated 170,000 m³ of sediment which represents 

approximately four percent of contaminated sediment stored in the Big River.  The 

estimated unit storage for in-channel sediment in the Big River is 2,570 m³ / 100 m in St. 

Francois County where the Big River is located within the Old Lead Belt (Pavlowsky et 

al. 2010).  However, FRC has an average sediment unit storage of 1,800 m³ / 100 m.  In 

terms of Pb mass, there is approximately 50 to 60 Mg / km in the Big River segment 

upstream and downstream to FRC.  FRC has an overall Pb unit storage is 9 Mg / km 

indicating only 15 to 20 percent of Pb unit storage in the Big River. 

The results of this study found concentrations in sediment samples and channel 

morphology measurements were similar to Pavlowsky et al. (2010). Channel bed, bar, 

and channel sediment data collected around the St. Joe Road bridge at R-km 3.55 had an 

average concentration of 2,289 ppm Pb, 1,161 ppm Zn, and 151,707 ppm Ca.  This study 

reported average concentrations of 2,000 ppm Pb, 1,200 ppm Zn, and 95,900 ppm Ca for 

the same segment.  Lastly, Pavlowsky et al. (2010) reported an average active channel 

width of 17.9 m, where this study calculates an average width of 15.1 m at the same 

location at the St. Joe Road bridge. 

The results of this study are also consistent with findings from Smith and 

Schumacher (1991, 1993).  This study similarly found the Pb and Zn concentrations in 

bed sediment increase downstream from the confluence of Harris Branch.  Smith and 

Schumacher (1993) determined that Pb concentrations in bed sediment increase in the 
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downstream direction in FRC, which this study also found.  Smith and Schumacher 

(1991) reported Pb concentrations in bed sediments in segment 3, between the 

Elvins/Rivermines Pile tributary (R-km 7.6) to Shaw Branch (R-km 6.3), ranged from 

2,050 ppm to 3,140 ppm.  In comparison, this study found the average channel bed Pb 

concentration in the same segment to be significantly lower at 889 ppm, but one sediment 

sample had a concentration 3,104 ppm Pb.  This difference may suggest that clean-up 

efforts and dilution from upstream sources may have reduced metal concentrations in 

these segments over the past 25 years.  Conversely, Pb concentrations below the National 

Pile have remained the same.  This study found bed sediments downstream of the 

National Pile containing Pb concentrations ranging from 1,550 ppm to 5,106 ppm 

compared to Smith and Schumacher (1993) 1,000 ppm to 7,200 ppm range.  If it has 

taken 25 years for channel sediment Pb concentrations in segment 3 to drop from an 

average of 2,500 ppm Pb to 900 ppm Pb with little decrease downstream, it is highly 

probable that Pb contamination problems in FRC will last more than a century into the 

future.  However, remediation and other management efforts may shorten the 

geochemical recovery time for FRC. 
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CONCLUSION 

 

  Mining-contaminated sediment stored in stream channels can provide a long-term 

source of metal pollution as deposits become remobilized by fluvial processes.  Even 

though the TMDL for Big River, FRC, and Shaw Branch has been completed, a 

significant amount of contaminated sediment remains stored in channel bed and bar 

deposits in FRC.  However, FRC storage represents only four percent of contaminated 

sediment storage in-channel deposits of the Big River with unit storage of about seventy 

percent of the Big River.  There are 9 major findings of this study: 

1. Mining-related metal concentrations in channel sediments tend to exceed 

PEC and vary downstream due to the effect of tailing pile sources and 

dilution effect by relatively undisturbed tributaries.  Approximately ninety 

four percent of all channel sediment samples in the study area are above the PEC 

for Pb and seventy percent are above PEC for Zn.  The highest average 

concentration used for metal mass calculations is 3,323 ppm for Pb in segment 7 

and 3,658 ppm for Zn in segment 2.  Pb concentrations peak in segment 8, 

approximately a kilometer downstream of the lower National Pile confluence, and 

are affected by dilution of cleaner sediment from Koen Creek and Walker Branch.  

Zn concentrations peak closest to source at the Elvins tributary confluence in 

segment 2 with a secondary downstream of Shaw Branch in segment 4. 

 

2. There is an increasing trend of metal concentrations in sediment as FRC 

flows past the major mining tributary confluences at R-km 9.1, 7.6, 6.3, 5.05, 

and 3.65.  Pb concentrations begin to rise past major mine tributaries and 

concentrations decrease past larger unmined tributaries including Koen Creek at 

R-km 3.05 and Walker Branch at R-km 2.1.  These concentrations become diluted 

downstream from the input of fresh uncontaminated sediment upstream of the 

mining reaches and from Koen Creek and Walker Branch downstream.  However, 

Pb and Zn concentrations remain high around 1,127 and 455, respectively at the 

Big River confluence. 

 

3. The channel morphology of FRC exhibits bedrock control affecting the width 

and depth of depositional features.  Segments 3, 4, 6, and 8 have high 

percentages of exposed bedrock preventing downcutting and creating wider active 

channels.  However, segment 6 for example, has a large percent of exposed 

bedrock, which would indicate low channel bed storage.  Field assessments 

indicate the upper half of this segment is primarily exposed bedrock, while the 
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bottom half have relatively thick channel bed deposits.  This implies that effects 

of bedrock control in FRC may have a greater effect on the reach-scale rather than 

the segment-scale in terms of sediment deposition.  Channel widths vary in four 

different zones with wider widths in segments 1 to 5, significantly narrower 

widths in segments 6 and 7, and then wider widths in segments 8 and 9, and 

moderate widths in segments 10 and 11.  

 

4. In general, unit storage of contaminated sediment decreases slightly 

downstream in channel bed and bar deposits.  There are 170,000 m³ of 

sediment stored in channel bed and bar deposits in FRC.  There is 20 percent of 

total stored in segments 1 and 2, nearly 37 percent of total stored in segments 3 to 

6, and 43 percent of total stored in segments 7 to 11.  Approximately 23 percent 

are channel bed deposits, 41 percent are active bar deposits, and 35 percent are 

stable bar deposits. There is a greater amount of average unit sediment storage in 

the upstream mining segments 1 to 3 at approximately 2,000 m³ / 100 m with a 

total storage of 65,200 m³.  Average unit storage in segments 4 to 7 is 

approximately 1,400 m³ / 100 m with a total storage of 40,200 m³.  Average unit 

storage for the downstream segments 8 to 11 are approximately 1,900 m³ / 100 m 

with a total storage of 64,500 m³.   

 

5. There is 133 Mg of Pb stored in FRC.  Stable bar deposits contain the greatest 

amount of Pb storage at 43 percent of total, with active bars at 41 percent of total, 

and channel beds at 16 percent of total storage.  The majority of active and stable 

bar Pb metal is stored in segments 8 and 9, approximately 32 percent of the total 

in segments below the confluence of Koen Creek and Walker Branch.      

 

6. There is 93 Mg of Zn stored in-channel deposits in FRC.   The greatest amount 

of Zn storage is found in stable bars at 45 percent of total, active bars at 32 

percent, and channel bed at 23 percent of total.  Zn storage trends reflect source 

influence of the Elvins/Rivermines Pile.  The downstream distribution is different 

than Pb, with the greatest amount stored below the Elvins/Rivermines Pile and 

Shaw Branch while the majority of Pb stored in the downstream of the National 

Pile. 

 

7. There is 9,700 Mg of Ca stored in-channel deposits in FRC.   The host rock is 

the Bonne Terre Dolomite with a high Ca abundance (i.e. pure tailings) of 21.7 

percent by molecular weight.  Therefore, sediment containing Ca concentrations 

near 217,000 ppm are assumed to be composed of 100 percent tailings materials.  

Calcium mass is stored in active bar deposits at 46 percent of total, stable bars at 

39 percent of total, channel bed at 14 percent of total.   Calcium follows similar 

trends to the Pb mass in its segment distribution with the greatest concentrations 

are in segment 8 and 9.  Generally, Ca storage increases downstream, however 

there is a noticeable lack of Ca mass found in segments 4, 5, and 6, potentially 

indicating removal of contaminated sediment or dilution by non-mining sediment. 
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8. This study found similar results to previous studies that have included 

sediment studies in FRC. Compared to segments in the Big River, Pavlowsky et 

al. (2010) estimates approximately 50 to 60 Mg / km Pb in the Big River in 

reaches close to FRC.  In comparison, FRC has an average Pb unit storage is 9 

Mg / km.  Sediment storage and metal concentration values collected by 

Pavlowsky et al. (2010) at the St. Joe Road bridge are similar to those collected in 

this study at the same location.  The results of this study are also consistent with 

findings from Smith and Schumacher (1991, 1993), since the present study 

similarly found that Pb and Zn concentrations in bed sediment increase 

downstream from Harris Branch in FRC.   

 

9. FRC is not a significant source of metal contamination to the Big River.  The 

total sediment volume stored in FRC equates to roughly four percent of sediment 

in the Big River watershed.  The average Pb unit storage in FRC is 9 Mg / km 

which is significantly lower than 50 to 60 Mg / km in the Big River found 

upstream and downstream of the confluence.  Of total sediment stored, 76 percent 

is in active and stable bar deposits.  These deposits represent sediment in 

temporary storage that are remobilized by high flow events.  An unknown volume 

of sediment and metals are stored in the floodplain.  All together FRC does 

represent a long-term source of contamination to Big River, but the full impact of 

sediment Pb and Zn loads to the Big River is not fully understood. 

 

This study represents an initial step in understanding the storage and transport of 

Pb and Zn in FRC sediments.  Future studies should specifically investigate the 

floodplain deposits in FRC.  Sediment stored in floodplains is temporarily removed from 

the system and may eventually recontaminate the system.  Bank erosion, geochemical 

weathering, and human disturbance can all release Pb and Zn to FRC from floodplain 

soils.  Assessing the volume of floodplain sediment and Pb contaminated sediment will 

further enhance the understanding of the contamination problem in FRC and the Old 

Lead Belt.  This study focused on the volume and mass of sediment and metal 

contamination in the tailings sediment size fraction <2 mm in diameter.  Sediment 

contamination may affect other sediment sizes and attention should be given to 

understanding metal storage in the 2 to 16 mm sized sediment fraction and its distribution 

since ore mills produce tailings in this size range.  While this study has focused on 
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sediment storage, sediment transport rates leaving FRC and entering the Big River have 

not been quantified.  This information would be valuable to help evaluate the 

effectiveness of the Big River Lead Remediation Structure recently installed on the Big 

River downstream of the FRC confluence.   

Relatively large volumes of metal contaminated sediment remain stored in 

channel deposits in FRC and are still located close to their sources of the Federal, 

Elvins/Rivermines, and National Tailings piles even with mine closure in 1972, however 

the largest unit storage rates of Pb are below R-km 3 indicating that channel morphology 

and deposition processes may control the distribution of tailings stored in FRC.  Channel 

bed storage represents a potentially mobile fraction of contamination stored in FRC.  The 

greatest amount of contamination is found in the active bars suggests a slow process of 

downstream transport over periods of decades to centuries. The long-term problem of 

contamination is even more evident given that most Pb and Zn is currently stored in 

channel bar deposits and probably floodplain soil deposits, which slowly release stored 

contaminated sediment to FRC by fluvial action.   
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APPENDICES 

 

Appendix A-1. LiDAR Channel Planform and Segment Data.  
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Appendix A-1 continued. LiDAR Channel Planform and Segment Data. 
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Appendix A-1 continued. LiDAR Channel Planform and Segment Data. 
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Appendix A-2. Channel widths from LiDAR derived cells. 
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Appendix A-3. Channel bed sediment thickness data. 

 

 

Appendix A-4. Active bar sediment thickness data. 
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Appendix A-5. Stable Bar sediment thickness data. 
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Appendix A-6. Deposit dimensions for channel bed sediment volume calculation. 

 

Appendix A-7. Deposit dimensions for active bar sediment volume calculation. 
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Appendix A-8. Deposit dimensions for stable bar sediment volume calculation. 

 

 

Appendix A-9. Deposit dimensions for stable bar sediment volume calculation. 
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Appendix A-10.  Segment maps. Segment 1. 
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Appendix A-10 continued. Segment 2. 
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Appendix A-10 continued. Segment 3. 
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Appendix A-10 continued. Segment 4. 
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Appendix A-10 continued. Segment 5. 
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Appendix A-10 continued. Segment 6. 
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Appendix A-10 continued. Segment 7. 
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Appendix A-10 continued. Segment 8. 
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Appendix A-10 continued. Segment 9. 
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Appendix A-10 continued. Segment 10. 
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Appendix A-10 continued. Segment 11. 
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Appendix B-1. Field Data. Width Data. 
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Appendix B-1 continued. Width data. 
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Appendix B-1 continued. Width data. 
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Appendix B-1 continued. Width data. 
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Appendix B-2. Depth and thickness data. 
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Appendix B-2 continued. Depth and thickness data. 
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Appendix B-2 continued. Depth and thickness data 
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Appendix B-2 continued. Depth and thickness data 
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Appendix C-1. Sediment volumes by segment 

 

 

Appendix C-2. Fine sediment volumes by segment 
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Appendix D-1. Sediment Data. FRC main stem sediment sampling. 
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Appendix D-1 continued. FRC main stem sediment sampling. 
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Appendix D-1 continued. FRC main stem sediment sampling.  
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Appendix D-1 continued. FRC main stem sediment sampling.  
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Appendix D-2. FRC bar core sediment sampling. 
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Appendix D-2 continued. FRC bar core sediment sampling. 
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Appendix D-3. Bar core cross-section for R-km 7.2 
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Appendix D-4. Bar core cross-section for R-km 6.0 
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Appendix D-5. Bar core cross-section for R-km 5.8 
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Appendix D-6. Bar core cross-section for R-km 4.25 
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Appendix D-7. Bar core cross-section for R-km 1.68 
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Appendix D-8. Bar core cross-section for R-km 1.3 
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Appendix D-9. Upstream Sediment Samples 

 

 

Appendix D-10. Summary of XRF accuracy and precision for all sediment sampling 
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Appendix D-11. Geometric metal concentrations and arithmetic percent < 2 mm 

sediment by segment 
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Appendix D-11 continued. Geometric metal concentrations and arithmetic percent < 

2 mm sediment by segment 
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Appendix D-12. Arithmetic metal concentrations by segment 
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Appendix D-12. Arithmetic metal concentrations by segment 
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Appendix E-1. Pb metal storage data 

 

 

Appendix E-2. Zn metal storage data 
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Appendix E-3. Ca metal storage data 
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Appendix F. Photo Log 

 

Sediment sampling at Elvins/Rivermines tributary at R-km 7.6 

 

Sediment sampling at R-km 7.5. 



 

150 

 

Channel profile set up at R-km 7.3 

 

Channel profile data collection with active bar on right. 
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Straight channel with bed substrate at R-km 6.35, above Shaw Branch. 

 

Bar deposits and bed substrate at R-km 6.15, near Main Street, Park Hills. 
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Active bar deposits and steep channel banks at R-km 5.8. 

 

Straight channel with near the National Pile at R-km 5.05. 
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Ralph Hill and Dr. Robert T. Pavlowsky in front of National Pile at R-km 4.8. 

 

Sharp right-hand bend with large active bar deposits at R-km 4.1. 
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Straight bedrock reach under St. Joe Parkway at R-km 3.57. 

 

Stable bar head on left side above entrance of Koen Creek at R-km 3.1. 



 

155 

 

Active bar feature at R-km 2.8, after US-67 bridge. 

 

Exposed cutbank with historic channel bed deposits and residuum at R-km 1.7. 
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Active bar deposit above Cedar Falls Road at R-km 1.25. 

 

Exposed bedrock benches on right bank at R-km 0.85. 
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Fine-grained channel bed sediment at R-km 0.35. 

 

Active bar tail sediment grading at R-km 0.34. 



 

158 

 

Channel profile data collection team at FRC and Big River Confluence at R-km 0. Left to 

right: Laura Speir, Allison Keppel, Felix Corrodi, and Ralph Hill. 

 

Bar core sampling at R-km 6.0. 
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Bar core collection team at National Pile at R-km 4.65. Left to right: Megan Hente, Dr. 

Dan Hanes, Dr. Aaron Pearson, Matthew Thies, and Nickolas Bradley. 

 

Stable bar core sampling at R-km 4.25. 
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Upstream active bar sediment sampling at R-km 9.1 at Harris Branch. 

 

Upstream sediment sampling with Lisa Andes at R-km 10.35. 


