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ABSTRACT 

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds that can be toxic to 

wildlife and humans when released to the environment. Coal-tar sealants, which are 

applied to parking lots or driveways, contribute up to 1,000 times more PAHs than 

alternative sealants.  Over time, these sealants abrade and are transported into drainage 

networks. Coal-tar sealants are currently used in Springfield, Missouri, however the 

extent of PAH contamination throughout urban drainage systems is unclear. This study 

focused on PAH contamination within an urban detention basin on the Missouri State 

University campus which receives runoff from several coal-tar sealed parking lots. 

Sediment samples collected within the basin and catchment were analyzed for PAHs, 

metals, grain size, and organic matter. Findings show that 65% of the samples exceed the 

defined toxicity limit of 22,800 µg/kg PAHs. Channel sediment collected within close 

proximity to inlets or outlets contained significantly higher concentrations compared to 

basin soil areas adjacent to concrete trickle channels. While contaminated depths were 

typically < 5 cm, high sedimentation areas showed a decreasing trend in PAH 

concentrations to depths of 25-35 cm. Although toxic levels of PAHs were found in the 

detention basin, < 1% of PAHs entering the catchment are being stored within the basin.  

 

KEYWORDS:  polycyclic aromatic hydrocarbons, coal-tar sealant, detention basin, 

geochemistry, Missouri 
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1 

INTRODUCTION 

 

            Polycyclic aromatic hydrocarbons (PAHs) are organic, benzene ring structures 

that contain double bonds linking hydrogen and carbon molecules (National Research 

Council (US) Committee on Pyrene and Selected Analogues, 1983; Abdel-Shafy and 

Mansour, 2016). PAHs are known carcinogens that are toxic to terrestrial and aquatic 

species and do not easily degrade under natural conditions (Boffetta et al., 1997; Eisler, 

1987; Quantin et al., 2004). While these contaminants are known to be harmful, they are 

still commonly introduced into the environment from both natural and anthropogenic 

sources, such as incomplete combustion of fossil fuels and the burning of materials, such 

as wood or metals (Eisler, 1987; Bixian et al., 2001; Pies et al., 2007; Feng et al., 2007; 

Abdel-Shafy and Mansour, 2016).  A significant contributor of PAHs to urban 

watersheds since the 1960’s in the central and eastern USA are coal-tar sealants (USGS, 

2011; Crane, 2013; USGS, 2015). Coal-tar sealants are placed on roads, parking lots, and 

driveways as a protective coating and to provide an aesthetically appealing appearance 

(Eisler, 1987; Crane, 2013). These sealants, however, are not permanent and are often 

eroded and carried away by storm runoff water, needing to be reapplied every three to 

five years (Guar et al., 2005; Crane, 2013). Sealant particles may also be swept away by 

wind, carried car or bike tires, or evaporated into the air (Crane, 2013; Eisler, 1987).  

Detention basins are prone to receiving and retaining PAH contaminated sediment 

(Eisler, 1987; Guo, 1997; Motelay-Massei, 2004; Maxted and Shaver, 1998; Birch et al., 

2006). Detention basins, dry or wet, are designed to store run off water to limit the 

amount of water transferred to the local water systems. Dry detention basins, the focus of 
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this project, are designed to temporarily retain the excess runoff water (Guo, 1997). 

During this retention period, the water is slowly released into the local drainage system 

and the sediment transported by the runoff can settle within the detention basin. The 

settling velocities of sediment particles increase the deposition rates of PAHs in the basin, 

which decreases the contamination risk to downstream water sources (Birch et al., 2006). 

However, the end result is that detention basins become a potential hotspot for long-term 

PAH contamination (Crane, 2013). 

 

PAH Sources and Concerns 

Polycyclic aromatic hydrocarbons became a concern due to their pollution of 

urban stream sediments (Luo et al., 2004).  Because they do not easily degrade in the 

natural environment resulting in the deposition and accumulation within sediment 

deposits (Quantin et al., 2004; Gan et al., 2009). PAHs are transported throughout the 

environment by several different methods such as air, water, or automobiles (Crane, 

2013; Witt et al., 2014). Their transportation is also dictated by their molecular structure 

and their remobilization potential (Wolska et al., 2002; Feng et al., 2007). PAH structures 

vary from two or more fused benzene rings (Haritash and Kaushik, 2009; Choi et al., 

2010). As the number of rings increase, the molecular weight rises. The heavier 

molecules tend to be more resistant to degradation, while molecules with fewer rings are 

more prone to natural break down, becoming water soluble and being transported 

throughout the environment (Crane, 2013; Mahler et al.,2014). 

PAH Sources. Anthropogenic events are the largest contributor of PAHs to the 

environment (Pies et al., 2007). Anthropogenic sources may be petrogenic or pyrogenic 
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(Ahrens and Depree, 2010; Irwin et al., 1997). The pyrogenic PAHs are generated by 

combustion of materials such as industrial and atmospheric emissions as well as vehicular 

contamination. Petrogenic PAHs are generated through petroleum contamination (Ahrens 

and Depree, 2010). Naturally occurring events may introduce PAHs into the 

environment. These events may be instances such as volcanic eruptions or forest fires 

(Eisler, 1987; Howsam and Jones, 1988). These sources naturally release PAHs into the 

atmosphere and surrounding environment, but account for only a small amount of the 

total PAH accumulation within the ecosystem (Pies et al., 2007; Gu et al., 2003).  

Anthropogenic sources may also include pollution from industrial equipment 

(Bixian et al., 2001; Gu et al., 2003). Industrial equipment may undergo weathering or 

natural processes which results in the sloughing off of PAHs and other contaminants such 

as heavy metals (Bixian et al., 2001; Eisler, 1987). Other sources that may introduce 

PAHs into the environment may be the incomplete combustion of fossil fuel burning, oil 

contamination, tar, sealant abrasion, and gas production (Bixian et al., 2001; Gu et al., 

2003; Feng et al., 2007; Srogi, 2007; Crane, 2013,). PAHs can also be released from 

residential developments. Sources such as roofing, road paving, and pavement sealing are 

common sources that introduce PAHs into the ecosystem (Crane, 2013).  

PAH Toxicity Concerns. PAHs are considered toxic in the environment. PAH 

water contamination has been shown to be dangerous to several aquatic species such as 

wild-brown bullhead catfish and rainbow trout (Baumann and Harshbarger, 1995; Yang 

et al., 2010). PAHs that are suspended or dissolved in the water column can accumulate 

in the tissues of aquatic life (Mahler et al., 2015). Aquatic life typically does not have the 

capability to naturally metabolize these toxins, which results in the storage of the PAHs 
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within the organism’s tissues. This may lead to cancer, tumors, or severe illness of 

aquatic life, which has been affected (Eisler, 1987; Baumann and Harshbarger, 1995; 

Crane, 2013). Polycyclic aromatic hydrocarbons are also toxic to humans, namely to 

those who are exposed to industrial working areas or careers with road paving or sealing 

(Boffetta et al., 1997; Srogi, 2007). People who are exposed to significant amounts of 

PAHs may develop lung, skin, or bladder cancer (Boffetta et al., 1997; Choi et al., 2010; 

Srogi, 2007). Industrial jobs pose a higher risk because toxins are commonly emitted into 

the air (Eisler, 1987). Inhalation is one of the primary ways that PAH particles enter the 

body; this often leads to an increase in lung or throat cancer (Boffetta et al., 1997; Irwin 

et al., 1997). 

 

Controlling Factors of PAH Mobility 

PAH mobility potential in urban streams is controlled by molecular weight, 

duration of suspension within the water, and potential for storage in floodplain and basin 

deposits (Wolska et al., 2002; Feng et al., 2007).  

Molecular Structure. PAHs vary in molecular structure, ranging from 2 or more 

benzene rings (Haritash and Kaushik, 2009). The toxicity levels and molecular weight of 

PAHs are structurally dependent (Choi et al., 2010; Srogi, 2007; Irwin et al., 1997). The 

EPA16 PAHs found to be carcinogenic were those with ring counts of 4-6, whereas PAHs 

considered to be non-carcinogenic were those with 2-3 benzene rings (Srogi, 2007; 

Agency for Toxic Substances and Disease Registry, 2013). As the molecular weight rises 

with the increased number of rings, the individual structures become more resilient to 

natural degradation, dissolution in water, and volatility (Khadhar, et al., 2010; Ahrens 
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and Depree, 2010; Mahler, et al., 2014). The decrease in degradation results in the 

storage of these organic particles within the environment, whereas if the ring number is 

much lower it has an increased chance of degradation and becoming water-soluble and 

transported throughout the environment (Crane, 2013; Mahler, et al., 2014). By becoming 

part of an aqueous solution, the contaminant may be more easily transported by water 

flow or evaporation. 

Suspension in Water. PAHs mainly enter the water system through atmospheric 

fallout or urban runoff and are transported in associations with suspended sediments 

(Wolska et al., 2002; Srogi, 2007). PAHs have a greater remobilization capability if they 

are suspended in the water column (Wolska et al., 2002; Feng et al., 2007; Santschi et al., 

2001).  However, in ponds or slow moving water, PAHs commonly settle to the 

underlying sediment (Feng et al., 2007). Once the suspended particles settle to the 

bottom, PAH-containing particles begin to mix with and accumulate within local 

sediment deposits (Feng et al., 2007). To remobilize the PAH molecules, significant 

amounts of energy must enter the water or sediment system (Feng et al., 2007). This 

energy may be a severe storm, increase in waves, anthropogenic activity such as boating 

or swimming, or dredging the bottom sediment (Feng et al., 2007). 

Floodplain Contamination. Floodplains retain and store sediment in watersheds 

(Owen et al., 2013). Human activities such as agricultural and construction may alter the 

amount and type of sediment distributed to floodplains by increasing or decreasing the 

sediment supply and transport rate (Jacobson and Coleman, 1986; Lecce and Pavlowsky, 

2001). If the pollutants are deposited on a floodplain, they may be released slowly back 

into the system by erosion or gradual deposition (Yang et al., 2008).  
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            Urban Detention Basins. Detention basins are designed to store excess storm 

runoff and reduce flood risk in urban watersheds (Maxted and Shaver, 1998; Guo, 1997; 

Birch et al., 2006). These basins are constructed as a temporary location for water storage 

to control the peak rate of runoff to downstream water sources (Guo, 1997). Detention 

basins may also be used as a way to remove contaminants traveling in runoff water 

before they reach larger water systems through sediment settling and hydrologic or 

vegetative absorption (Birch et al., 2006). Detention basins, specifically dry ponds, are 

designed to temporarily store storm runoff for approximately 24-72 hours. During this 

duration of time, sediment particles transported in the runoff may settle from the water 

column and begin to accumulate in the basin sediment (Maxted and Shaver, 1998, Guo, 

1997). The water that is taken into the detention basin will escape slowly, resulting in the 

increased levels of sedimentation in the detention basin (Birch et al., 2006). With 

continued sediment deposits, contaminants may begin to accumulate within the basin 

sediment (Guo, 1997; Birch et al., 2006). 

Storm water detention basins collect and accumulate sediment-borne pollutants 

such as PAHs or metals (Pies et al., 2007; Fischer et al., 2003). Therefore, pollutants 

found in detention basin groundwater typically reflect surrounding anthropogenic activity 

(Fischer et al., 2003). Pollutants stored in basins can leach or percolate to the water table 

and contaminate local groundwater supplies (Fischer et al., 2003; Bixian et al., 2001; 

Paul and Meyer, 2001; Crane, 2013).  

Larger quantities of PAHs are generally found in regions of higher industrial 

activity and roadways compared to locations that are primarily used for agricultural 

purposes (Hoffman et al., 1984; Motelay-Massei et al., 2004). As the amount of 
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impermeable surfaces, such as roads and parking lots, increase, the amount of runoff in 

urban watersheds will continue to rise (Paul and Meyer, 2001). The increase of 

impermeable surfaces results in more flooding events, large and small, as well as higher 

flow velocities. This results in greater amounts of water and pollutants transported into 

local waterways (McCarthy and Zachara, 1989).  

 

PAH Distribution in Sediment 

            PAHs have a non-polar, cyclical, benzene structure (Abdel-Shafy and Mansour, 

2016; Li and Chen, 2007). PAHs are unlikely to bind to loose sediment particulates or 

become water soluble, but they commonly accumulate throughout the basin and stream 

sediment (Abdel-Shafy and Mansour, 2016). PAHs may be found within the clay (<3.9 

µm), silt (62.5-3.9 µm), or sand (2,000-62.5 µm) fractions of soil or sediment 

(Pavlowsky, 2013). However, some PAHs can adsorb to organic materials or highly 

organic soils (Srogi, 2007; Abdel-Shafy and Mansour, 2016). PAHs that are carried into 

the detention basins or streams will settle to the bottom and begin to accumulate. If there 

are several detention/retention basins or basins which have multiple catchment regions, 

they are more likely to disperse the amount of sediment, contaminants, and water 

accumulated within the basins (Birch et al., 2006). With the dispersal of the water and 

sediment, the basins are less likely to fail (Guo, 1997; Birch et al., 2006). 

 

Coal-Tar Sealants 

 A large contributor of PAHs into the ecosystem is coal-tar sealants (Crane, 

2013). Coal-tar sealants were first recognized as a significant contributor of PAHs in 
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urban runoff in 2005 (Van Metre and Mahler, 2013). Coal-tar sealants are a protective 

coating placed on parking lots, sidewalks, or driveways (Crane, 2013; Mahler, et al., 

2014). These sealants are used to protect the recently paved surfaces along with providing 

an aesthetically appealing appearance (Eisler, 1987; Crane, 2013; Mahler et al., 2014). 

Coal-tar sealants are regularly placed and reapplied on pavement surfaces every three to 

five years (Crane, 2013). These sealants are not permanent and are prone to being washed 

away by storm runoff water, swept away by wind, or carried by the tires of vehicles 

(Figure 1) (Gaur et al., 2005; Crane, 2013; Pavlowsky, 2013). After they are removed 

from the primary surface, they are transported to streams or rivers, or local sediment 

sources (Crane, 2013). Coal-tar sealants have been found to significantly increase the 

concentration of PAHs entering stormwater compared to regions that were not sealed 

with coal-tar (EPA, 2016; Mahler et al., 2014). Studies have shown that PAH levels in 

coal-tar sealants are approximately 50,000,000 µg/kg, compared to asphalt sealants which 

have an average PAH level of 50,000 µg/kg (USGS, 2011; McKinney, 2012). 

PAHs are transported into water systems and surrounding environments through 

several different methods such as runoff, wind, and anthropogenic activity. Runoff may 

be from parking lots, roads, or agricultural fields (Hwang and Foster, 2006; Krein and 

Schorer, 2000; Crane, 2013). The amount and size of the particles transferred depends on 

the volume and the strength of the water flow (Krein and Schorer, 2000). Another way 

that PAHs are transported is by wind (Crane, 2013; Witt et al., 2014). Continuous 

exposure to vehicular friction may result in the abrasion of the coal-tar sealed locations 

(Figure 1). 
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A 

 

 

B 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Parking lot (2011) with coal-tar sealant (A) and (2015) abraded coal-tar 

sealant (B). Sealant particles formed by weathering and vehicle abrasion are 

released to local waterways during storm events. 



 

 

10 

This results in the weakening of the sealant and generation of loose particles 

(USGS, 2011; Pavlowsky, 2013; Crane, 2013). As the parking lot surface coatings 

weaken, the particles can be transported by car tires or soles of shoes (Crane, 2013; 

Ahren and Depree, 2010; Guar et al., 2005). This results in the dispersion of loose PAH-

contaminated particles into the watershed including homes and public facilities (USGS, 

2011). 

 

Purpose and Objectives 

            The purpose of this project is to assess the concentrations of sediment PAHs and 

metals and their spatial distribution in an urban stormwater pond system in Springfield, 

Missouri, the third largest city in the state. The city government of Springfield has been 

debating whether or not to ban coal-tar sealants based on the US EPA studies indicating 

that PAH contamination may be of concern (Pavlowsky, 2013).  The project objectives 

are: (i) quantify the concentrations and patterns of sediment-PAHs in detention basins 

and evaluate what design, hydrologic, and sediment transport factors influence the spatial 

variability; (ii) determine the largest contributor of the contaminants; and (iii) evaluate 

the depth of PAH contamination in sediment/soil cores from the basin. 

To understand PAH contamination within the basin, there are different aspects to 

consider. One being the transport distance from the inlet source point. PAH concentration 

may undergo dilution of abraded particulates with the introduction of additional water 

and sediment (Wang et al., 2002; Mahler et al., 2005). PAHs, specifically those with 

higher molecular weight, have a tendency to be non-volatile and will associate with 

underlying river or basin sediment and begin to accumulate rather than be transported 
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(Wang et al., 2002; Ahrens and Depree, 2010; Mahler, et al., 2014).  PAHs are not only 

transported through runoff water but also by car tires and windblown sediment (Crane, 

2013; Witt et al., 2014). Therefore, understanding the patterns of PAH deposition may 

provide insight into their transport or sources. It is also important to consider urban 

hydrology and catchment source areas. The detention basin is surrounded by two highly 

traveled roads and a coal-tar sealed parking lot. This parking lot has one outlet into the 

basin along with the storm runoff, whereas there are two inlets from the roads. 

Comparing the PAH concentrations throughout these separate locations may distinguish 

contamination trends from urban runoff in general and coal-tar sealed lots specifically.   

 

Hypotheses 

There are six hypotheses guiding this study:  (1) It is expected that the highest 

sedimentation rates and concentrations of PAHs and heavy metals will be located in areas 

of low flow velocity resulting in areas of high sediment accumulation (McCarthy and 

Zachara, 1989). These regions would include inlet and outlets of the basin;                                                                                

(2) The PAH concentration is expected to decrease as the distance increases from the 

inlet source, due to the settling of the PAH particles into underlying sediment and 

dilution by cleaner sediment from other sources; (3) The overall PAH concentration is 

also expected to decrease as elevation above the basin surface increases. PAHs sink and 

accumulate in the underlying sediment, thus as the elevation increases there is less 

exposure to water-transported PAHs and flood inundation (Birch et al., 2006). Therefore, 

PAH concentrations should decrease with distance from the main trickle channel;                                                                                          

(4) PAH concentrations will decrease in locations where there is minimal contribution 
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from coal-tar parking lots (Van Metre and Mahler, 2013); (5) Individual PAH structures 

that are expected to be most abundant will be those with higher benzene ring count, 

compared to those with fewer rings. PAHs with fewer rings are considered to have a 

lower molecular weight, and are more likely to become water soluble (Crane, 2013; 

Mahler et al., 2014). In addition, coal-tar sealants and asphalt tend to have high 

concentrations of higher ring PAHs (Pavlowsky, 2012; Mahler et al., 2014); (6) The 

downward leaching of PAH contamination into the soil will be low, because the basin is 

young and sediment-bound PAHs may be relatively stable in the soil or sediment profile. 

 

Benefits 

           This research will contribute to the general understanding of how PAHs 

accumulate in sediment from runoff in urban watersheds. Further, this study may also 

contribute to the understanding of how coal-tar sealants contribute to increased PAH 

concentration levels. By providing awareness to the public of this increasing problem, 

remediation of currently existing contaminated areas may be taken more seriously. This 

may also increase the effort to prevent or limit PAHs from entering the environment. 
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STUDY AREA 

  

            The location at which this project takes place is in Springfield, Missouri on the 

Missouri State University (MSU) campus (Figure 2). The MSU campus has constructed 

several storm water detention basins, which receive storm runoff and road inlet drainage 

(Missouri State University Facilities Management). One basin specifically was chosen for 

study in the south east corner of the campus (Figure 5). This basin was selected as the 

primary study area due to its close proximity with a coal-tar sealed parking lot and the 

significant amount of water transported into and out of the basin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Location of Springfield, Missouri 
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Fig. 3. Greene Country and Springfield portion of James River Watershed 

Springfield, Missouri is located within the Springfield Plateau of the Ozark Highlands 

Province (Missouri Department of Natural Resources, 2015). The Ozark Highlands 

Province is approximately 70,000 square miles, reaching into regions of Kansas, 

Arkansas, Missouri, and Oklahoma (Westerman, et al., 2016). The stormwater basin 

drains to Fassnight Creek, to Wilson Creek, and then finally to James River in Greene 

County, Missouri (Figure 3) (Kiner and Vitello, 2016). 

 

 

 

 

Geology 

            Located in the Southwestern portion of the Ozark Highlands Province, the 

Springfield Plateau is the uppermost hydrogeologic layer within this water system. The 

Springfield Plateau is primarily Mississippian limestone and chert. This specific aquifer 
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has a median depth of approximately 68 meters below land surface and a maximum 

thickness of 69 meters (Westerman, et al., 2016). The primary rock types found are the 

Burlington and Keokuk limestone and chert (Westerman et al., 2016). Also commonly 

found in the Southern Missouri region of the aquifer are karst features. Due to the 

abundant amounts of limestone in the region, karst development is a common occurrence 

(Easterbrook, 1999).  

Karst features such as sinkholes and caves, are created by the dissolution of the 

limestone by rock-water interaction (Cardell, et al., 2008). Limestones are a calcium-

carbonate rock, which is easily weathered away primarily by chemical erosion 

(Easterbrook, 1999; Han and Liu, 2004). This may result in caves, sinkholes, ground 

subsidence, groundwater contamination, cracks, fissures, and unstable surfaces (Cardell 

et al., 2008). These features are common within the Springfield, Missouri location. 

Features such as these may also add to the additional contamination and transportation of 

contaminants through the excess transportation of runoff groundwater into local aquifer 

systems (McCarthy and Zachara, 1989; Easterbrook, 1999). 

 

Detention Basin Drainage Area 

Detention basin areas and elevations were calculated in ArcGIS using the 10.4 

version. The area covered by the central water retention portion of the basin is 

approximately 4,200 m
2 
and the entire detention basin area is approximately 14,000 m

2
. 

The detention basin has a
 
range in elevation of approximately four meters (395.2-399.1 

meters). Areas of lowest elevation were found in the central basin as well as the trickle 

channels (Figure 4).  
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The drainage area flowing into the basin is approximately 0.22 km
2
 and 

incorporates segments of Grand Street, National Avenue, the eastern portion of the MSU 

campus, and the adjacent coal-tar sealed parking lot (Figure 5; Table 2). The coal-tar 

sealed parking lot within close proximity is the joined lot 22 and 24 and is approximately 

0.03 km
2
 in surface area (Table 2).  

This basin has three inlet locations and primarily receives runoff from segments 

of Grand Street, National Avenue, the eastern portion of the MSU campus, and the 

nearby coal-tar sealed parking lot (Figure 5). Two inlets are from roadway drainage 

systems and one from the coal-tar sealed lot. The first roadway drainage system is located 

on Grand Street and the second found on the corner of Grand Street and National 

Avenue. The third inlet is a trickle channel with direct collection of runoff from the 

Fig. 4. The elevation changes throughout detention basin (0.4 meter contour 

interval) 
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nearby coal-tar sealed parking lot. The runoff contributed by lot 22 and 24 primarily 

enters through the trickle channel inlet on the West side of the basin. The single drainage 

outlet is located in the southeast corner of the study basin. This outlet is the primary exit 

for any excess runoff water. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The local soil series contributing to the basin are the Wanda silt-loam and the 

Creldon silt-loam (Figure 6) (USDA, 2016). The basin watershed catchment borders the 

Fig. 5. Basin runoff catchment region and flow patterns of basin 
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Sacville soil series, which resides to the SE of the basin. The Wanda silt-loam is 

comprised of fine, silty, active materials as well as cherty-limestone (National 

Coorperative Soil Survey, 2004). The Creldon is similarly composed of fine and active 

materials, but has a clayey cherty composition as well (National Cooperative Soil Survey, 

2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The soil series of the study basin and surrounding regions 
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Basin History 

Prior to the construction of the detention basin, houses and parking lots occupied 

the study basin property (Earth Explorer). Aerial photos from February 1990 revealed 

that the basin was comprised primarily of parking lots and houses (Figure 7). By 1996, 

there were still parking lots and homes, but there was more groundcover (Earth 

Explorer). The detention basin was constructed in 1999 (MSU Facilities Management). 

The adjacent parking lot, Lot 24, was expanded in 1980 with a second expansion 

occurring in 1982. The corresponding lot 22 was not built until 1985 and was expanded 

in 1986 (MSU Facilities Management).  

No significant changes have been made to the basin since it was constructed 

(Figure 8), aside from minor disturbances such as dredging (Missouri Grounds 

Management). Image results are based on the most recent LiDAR image of Springfield 

(2012). The most recent disturbances to the basin occurred in March, 2016. Inlet and 

outlet regions that had filled with sediment were dredged in order to allow greater flow 

out of the basin. Approximately 3.8 m
3
 of sediment were removed from the drainage 

ways within the basin (MSU Grounds Management). This was performed after the initial 

September 2015 sampling occurred, but prior to the 2016 core sampling. 
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Fig. 8. Aerial photos of basin after construction from 2008 (left) and 2012 (right). 

Fig. 7. Aerial photographs displaying basin features from the years 1990 (left) and 

1996 (right) 
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METHODS 

 

Field Methods 

Bottom sediment samples were collected from sediment deposits along the 

drainage network throughout the basin, including the trickle channels, adjacent basin 

surfaces, and the active sediment deposits near inlets and outlets. Sample jars and 

containers were provided by the Peoria Disposal Company (PDC) Laboratories, located 

in Springfield, Missouri. Specific locations were selected, based on the inflow of the 

water and topography of the basin (Pies et al., 2007; Fischer et al., 2003). Samples were 

taken in November of 2015 and September of 2016. The 2016 samples were collected 

approximately one year later to maintain seasonal consistency. Sampling occurred at two 

separate times to first evaluate the 2015 PAH concentrations and determine appropriate 

coring locations. 

November 2015, Sediment Collection. Approximately 5 cm of surface sediment 

was collected at 30 sampling locations to represent the spatial distribution and deposition 

of PAHs within each location of the basin (Figure 9) (Wang et al., 2002). Each sample 

was collected with the use of a trowel. They were each placed in a separate glass jar and 

labeled accordingly. A GPS coordinate point was taken at each sampling location. Once 

all sediment samples were collected, they were returned to the PDC Laboratory for the 

evaluation of PAH concentrations.   

September 2016, Sediment Collection. Twenty-four additional samples were 

collected, including both core, surface, and loose sediment (road-side samples) 

accumulated along the curbs of Grand Street and National Avenue (Figure 10). The core 
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samples included three sediment cores taken from the same study basin, approximately 

30-35 centimeters in length. These samples were collected using a split-core sampler. 

Once the sediment core had been extracted from the ground, it was separated into 

sections based on varying characteristics of the soil layers. An additional sediment core 

was taken next to the original core collected. This secondary core was also separated into 

sections and placed in freezer bags. These samples were listed as the “duplicate core” 

samples and they were taken back to the MSU laboratory. The duplicate core samples 

were not tested for PAH concentrations, but were analyzed for all other sediment 

properties. The 2016 core locations were altered from the initial selected regions due to 

the removal of sediment from basin channels, resulting in the disturbance of the basin. 

The surface and roadside samples were collected along Grand Street and National 

Avenue, locations leading into storm drainage lines or strong runoff regions on the MSU 

campus, and one sample was collected at the edge of the coal-tar parking lot next to the 

detention basin.  

Sediment Sampling. Throughout the two sampling periods, three separate types 

of sediment sampling occurred. These included: Bottom and channel sediment, core 

sampling, and catchments and road sampling (Table 1). The 2015 sediment sampling 

included the bottom and channel sediment collection (Figure 9). This included the basin 

soil and trickle channel sediment surface sampling. These specific samples included 

collecting the uppermost 0-10 cm of sediment using a hand trowel (Andronikov et al. 

2000; Xiao et al., 2011). The core sampling took place in 2016. Sediment cores collected 

were 30-35 cm in depth. Correspondingly in the 2016 sampling event, six sediment 

samples were collected from locations on campus and adjacent roads in the contributing 
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watershed. These remaining six selected were collected within the delineated watershed 

contributing to the detention basin (Figure 10). 

 

 

 

 

 

 

 

Topographic Surveys. During the 2015 field sampling, transects were taken at 

each sampling location using the auto-level, stadia rod, and a 100 meter tape (Appendix 

E) to evaluate the changes in elevation and topography. Samples were mainly collected 

along the survey transect line to provide accurate elevation measurements for each 

sampling location. The distance of the samples from the transect line were recorded along 

with the elevation of each sample location.  

 

 

 

 

 

 

 

 

Sample Type 2015 2016 Total 

Surface 30 0 30 

 

Core 0 18 18 

 

Roadside 0 6 6 

 

Duplicate Core 0 15 15 

Table 1. Number and type of samples collected during two sampling periods 
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Fig. 9. Locations of 2015 surface samples 

Fig. 10. 2016 sediment samples collected on campus and core samples           

 

collected throughout detention basin 
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Laboratory Analysis                                                                                                                     

To understand the extent of contamination within the selected basin, different 

laboratory methods were used to begin the sediment analysis. Standards, blanks, and 

duplicate samples were processed throughout all laboratory tests following individual 

OEWRI SOPs. The validity and quality of results were determined through relative 

percent difference (RPD) and quality assurance and quality control (QA/QC) between 

duplicates and standards (New Jersey Department of Environmental Protection, 2014). 

Sample Preparation. The sediment samples collected were first placed in glass 

jars and transported to PDC Laboratories in order to determine the PAH concentrations. 

After the samples were returned to MSU, samples were placed in drying ovens at 60
o
 

Celsius for approximately 24 hours (Pavlowsky, 2013). After samples were removed 

from the drying ovens, sediment samples were then weighed in the glass jar without the 

lid. Jar weight was tared to view only the sample weight. Once samples were weighed, 

sediment was sieved to < 2 mm. After the completion of sieving, all samples were placed 

in specific XRF bags and labeled accordingly by sample name and date collected. 

Preparation methods were completed following the designated OEWRI SOPs. 

Organic Matter Loss on Ignition (OM-LOI). The methods followed were 

generated by the SSSA methods of soil science. All samples were placed in laboratory 

ovens at 105
o
 Celsius for four hours. Samples were then placed in a corresponding oven 

at 600
o
 Celsius for eight hours (OEWRI SOP). Standard calculations may be seen in the 

OEWRI SOP.  

Sediment and Soil pH. The pH values of selected samples were determined to 

understand the acidity levels and potential effect on pollutant mobility of the sediment 
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samples collected within the basin. Following the OEWRI designed SOP 

(http://oewri.missouristate.edu/assets/OEWRI/OEWRI_SOP_003_pH_9-30-15_.pdf), the 

pH values of a select 11 samples were tested using the pHep pH analysis meter. These 

samples were taken from the most recent 2016 sediment samples. The 2016 samples were 

used in order to observe the acidity levels as sample’s depth increased. Another 

stipulation influencing the sample selection was the amount of sediment remaining after 

all laboratory tests had been completed. The pH meter was calibrated with pH 4.0 and 7.0 

pH buffers (OEWRI SOP). Two duplicates and a DI blank were run throughout the 

analysis. Twenty grams of sediment were added to 20 mL of DI water in a 250 mL 

beaker and stirred with a glass rod approximately every 20 minutes for six hours.  

Laser Diffraction Particle Size Analyzer (LS 13 320). The laser diffraction 

particle size analyzer was used to determine the different grain sizes within each 

individual sample (Di Stefano et al., 2010). This test was performed using the laboratory 

instrument LS 13 320 following the OEWRI SOP for this laboratory instrument 

(http://oewri.missouristate.edu/assets/OEWRI/Particle_Sizer_R01_Final_.pdf). This 

process was performed five times with two duplicates per batch. Both the 2016 PAH 

analyzed and duplicate core samples were tested for grain-size analysis. Quality 

assurance and check (QA/QC) permitted a (±) 20% error for data. All duplicate RPDs 

were averaged to understand the overall percent error for the total samples (OEWRI 

SOP). Overall percent error for samples (n=69) run were as follows: Sand, 13.6%; silt,       

-14.1%; and clay, -11.5% error. All determined values were below the QA/QC limit of 

(±) 20% (Appendix C-2). 
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Gas Chromatography-Mass Spectrometry (GC/MS) Method 8270. Sediment 

and soil samples were analyzed for PAH concentration by PDC laboratories (1805 W 

Sunset St, Springfield, MO 65807). An Agilent 7890A instrument and GC/MS Method 

8270 was used to determine the concentration amounts of each individual types of PAHs 

within each sample. GC/MS is used to separate volatile and organic compounds within a 

given mixture or solution and determine the molecular composition of each sample 

(Philips Innovation Services, 2013). Thus providing the values of individual PAHs within 

each sample tested. 

Once raw data was received from PDC laboratories, the total concentration of 

each sample was determined by combining the concentrations of the EPA16 standard 

PAHs. PAH analysis is based upon the EPA16, which selects 16 specific PAHs to use in 

contamination comparison (Khadar et al., 2010; Pavlowsky, 2013; Irwin et al., 1997). 

The select PAH types were added together to conclude the final concentration for each 

sample. Any individual PAH analyses that received a “less-than” value, indicating that 

the sample value was below detection limit (< DL) were given a concentration value 

assumed to be half of the detection limit (i.e. A value of < 2,200 yields 2,200/2, resulting 

in a value of 1,100 to be added to the concentration total). 

            X-Ray Fluorescence Analysis Method 6200. XRF method 6200, following the 

OEWRI provided SOP, was used to analyze the sample for elemental concentrations 

(Gowd et al., 2010; Howari et al., 2000). The elements of focus were chosen to be lead 

(Pb), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and calcium (Ca). Samples were 

analyzed in two batches (2015 and 2016 samples). Each batch had two duplicates and 

two standards, which were averaged for a single precision and accuracy value (OEWRI 
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SOP). The overall determined precision (n=69) for Pb was 28.4%, Zn was 3.6%, Cu was 

2.6%, Fe was 3.8%, Mn was 7.6%, and Ca was 13% (Appendix B-5). Precision should be 

within (±) 20% of the duplicate (http://oewri.missouristate.edu/assets/OEWRI/XRF.pdf). 

The average precision for all elements were below the (±) 20% level, with the exception 

of Pb which was 8% higher than QC limit (OEWRI SOP).  The probable cause of the 

high RPD of Pb was that the duplicate sample 38A had increased amounts of sand 

(>70%) (Appendix B-3).  Sand-sized grains have the potential to disrupt XRF readings 

and result in skewed results (OEWRI SOP).  However, the overall accuracy (n=69) 

determined for Pb was 1.6%, Zn was -5.3%, Cu was 0.8%, Fe was -3.4%, Mn was 9.9%, 

and Ca was -3.7% (Appendix B-4). All accuracy values determined were within the (±) 

20% QA/QC limit (Jasperoid Standard Concentration; OEWRI SOP). 

            Cesium-137. Cesium-137 (Cs-137) was calculated as a method to understand the 

age of the basin and a generalized understanding of how long the contaminants have been 

accumulating (Ritchie and McHenry, 1990). Cs-137 has no natural source of introduction 

into the environment, and is only produced through nuclear fission primarily induced by 

nuclear weapons testing (Ritchie and McHenry, 1990). The first introduction of Cs-137 

into the environment was in the year 1952 and the peak concentration occurred in 1963-

1964 (Ritchie and McHenry, 1990; USGS, 2016). Following the OEWRI SOP, each of 

the duplicate core samples were transferred from the XRF bags to containers specified for 

the gamma spectrometer. Samples were then analyzed for the concentration of Cesium-

137 located within the sample. Samples were tested using the Gamma spectrometer. A 

total of fourteen samples and two duplicate samples were analyzed by the gamma 

spectrometer. All core samples were analyzed except for one, 38B. Sample 38B had an 
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inadequate amount of sediment remaining to provide an accurate result reading. Units 

were altered from Curie (uCi/Unit) to Becquerel (Bq/kg), in order to continue analyses. 

To convert the units from Curie to Becquerel, the equation  

uCi/kg * 37,000 

was used (OEWRI SOP). This was performed for both uncertainty and activity values. 

 

ArcGIS 

ArcGIS was used as a method to view spatial and topographic relationships 

throughout the data (Kooistra et al., 2001). An initial map generated included all 

detention basins on the campus, drains, pipelines, campus buildings, roads, and parking 

lots. All data used for this map was generated by the Missouri State University Facilities 

Management. This data was extracted from the OEWRI server and entered into ArcMap. 

Once this general map was created, a digital elevation model (DEM) was added to see 

any significant topography. The DEM data was found on the OEWRI server database.  

The drainage network and flow direction were provided by MSU and 

observations by the author. Observations during and after storms assisted in the 

knowledge of the campus runoff movement.  

DEM and LiDAR Analysis. Supplied by the OEWRI server, a one-meter LiDAR 

and DEM of the detention basin and campus was added to a blank map. This bare-earth 

DEM was the standard DEM used for all terrain analysis of the detention basin. The 

OEWRI server also provided the LiDAR and aerial imagery of Springfield, MO from the 

year of 2012. Both datasets were used as the basis for the following GIS procedures. 

After both 2015 and 2016 sampling occurred, the GPS coordinates were taken at each 
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sample location using a Trimble and corresponding PAH concentrations were added to 

the GIS map. 

Watershed Delineation and Elevation. The local watershed within or adjacent 

to the basin was delineated as a way of understanding the watershed behavior. This was 

performed by using the watershed tool in ArcGIS. The resulting delineated watershed 

feeding the basin was further separated into three categories: West (W), Northwest (NW), 

and North (N). The separation of the watershed made it possible to calculate the total 

amount of the basin being influenced by different sources (Vittala et al., 2008; Comair et 

al., 2012). Once the watershed had been identified, the area of the watershed was 

calculated. The area calculations were performed in ArcGIS 10.4 using the Calculate 

Geometry tool. 

To determine the elevation in meters above sea level, the Point to Value Spatial 

Statistics tool in ArcGIS was used. This method compared the sampling GPS point to the 

location on the base DEM. By doing so, it calculated a list of elevation values for each 

sampling location. 

 

Statistical Analysis 

            To observe correlations between the differing factors, statistical methods were 

required. The statistical analysis portion of this study was based on 30-54 sample values. 

Two programs were used to complete statistical analysis: IBM SPSS Statistics program 

version 22 and Microsoft Office Excel, 2013. Statistical testing and correlations 

incorporated all 2015 and 2016 values, which have been analyzed for PAH concentration. 
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In order to visually observe any correlations between the samples, GIS was utilized for 

additional statistical testing.  

IBM-SPSS. Sample data was entered into the IBM-SPSS to develop regression 

models using multiple variables (Rogerson, 2010). The regression model chosen for 

analysis was a multivariate, linear regression model. Pearsons R values were used for 

statistical comparison throughout data. This was used as a method to observe any 

influences on PAH concentrations throughout the basin or among other existing 

variables. This regression model assumed that there was no multicollinearity between 

independent variables (Rogerson, 2010). 

Excel Computer Program. All field and laboratory data and results were entered 

into Excel datasheets. IBM-SPSS results were also added into Excel for further data 

analysis and representation. 
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RESULTS AND DISCUSSION 

 

            This chapter presents the results and analysis of PAH concentrations in channel, 

bottom, core, and catchment from sediments collected from the stormwater basin system. 

Sixty-nine samples were evaluated including, 30 basin, 18 core, 5 road/campus, 1 edge of 

parking lot, and 15 duplicate core samples. Fifty-four samples were evaluated for PAH 

concentration including, 30 basin, 18 core, five road/campus, and one edge-of parking lot 

samples. Throughout the duration of this study, 54 PAH-analyzed samples were 

collected. However, for sub-basin analysis, there were limited numbers of samples 

available for statistical analysis for each sub-basin. Though definite trends were 

observed, the small numbers of samples collected did not allow for statistically 

significant conclusions. Samples were not uniformly distributed throughout the basin, but 

focused primarily at inlets, outlets, and trickle channels. This prohibited the complete 

analysis of sediment distribution throughout the basin.  

 

Watershed Analysis and Land Use 

            The drainage area of the stormwater basin is 0.22 km
2
. Within the total drainage 

area, the permeable surfaces covered 46.8% of the total watershed. The smallest 

contributor was roads with 11.4% (Table 2). The watershed areas drain into the 

stormwater basin and encompass a portion of Grand Street, National Avenue, parking lots 

22 and 24, and the eastern portion of the MSU campus. The basin is separated into three 

regions (Table 2). The basin receives drainage from three sub-areas: West, Northwest, 

and North (Figure 11). 
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The West sub-watershed influenced approximately 0.043 km
2
 in area and 20% of the 

central retention basin. The majority of the West sub-watershed was covered by the coal-

tar lots 22 and 24, which contributed approximately 70% of the West sub-watershed. The 

Northwest portion, receiving the main runoff from a portion of campus and Grand Street, 

is roughly 0.076 km
2
 in area and influences approximately 56% of the central retention 

basin. The North portion, which receives runoff from the corner of Grand Street and 

National Avenue, is approximately 0.102 km
2
 and contributes the remaining 23% of the 

primary, central basin (Figure 11). 

 

 

 

 

 

 

 

Watershed Areas  
Permeable 

Surface (km
2
) 

Parking 

lots (km
2
) 

Roads 

(km
2
) 

Buildings 

(km
2
) 

Total Area 

(km
2
) 

Total (km
2
) 0.103 0.048 0.025 0.045 0.221 

% 46.8 21.6 11.4 20.3 (100%) 

 

West (km
2
) 

 

0.010 

 

0.030 

 

0.003 

 

0.000 

 

0.043 

% 4.51 13.62 1.45 0.06 (19.5%) 

 

Northwest (km
2
) 

 

0.039 

 

0.001 

 

0.010 

 

0.026 

 

0.076 

% 17.93 0.38 4.36 11.76 (34.4%) 

 

North (km
2
) 

 

0.054 

 

0.017 

 

0.012 

 

0.019 

 

0.102 

% 24.33 7.58 5.55 8.47 (46.1%) 

Table. 2. The square kilometers and percent contribution from land use in the watershed 

 elements 
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Basin Sediment Analysis 

            The primary results of the basin analysis include PAH concentrations (μg/kg), 

metal concentrations (ppm), grain size analysis, and OM-LOI.  

Fig. 11. The segmented watershed feeding the detention basin  

Coal-tar lot 

Northwest 

North 

West 
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            PAH Contamination. Published toxicity limits indicate that sediment-PAH16 

concentrations below 1,610 μg/kg are considered non-toxic. Alternatively, concentration 

levels that are above 22,800 μg/kg are considered to be toxic and harmful to sediment-

dwelling organisms (MacDonald et al., 2000). Sample values show that of the 54 samples 

evaluated, 65% are above the toxicity level and are considered to be harmful to the 

environment (Appendix A-1). The remaining 35% were above the non-toxic limit, but did 

not exceed the 22,800 μg/kg threshold. Samples were separated into two groups: basin 

and channel samples (Figures 13a-13b). Basin samples were soil samples collected from 

grassy areas adjacent and distant from channel (Figure 13a). Channel samples were 

collected in trickle channels, inlets, or outlet regions (Figure 13b). It was found that 

channel samples contained higher concentrations compared to basin soil samples, 

disregarding the south sub-basin since (no channel samples were collected within the 

south sub-basin) (Figure 14). All channel samples contained total PAHs above 22,800 

µg/kg (Table 3). The basin soil samples showed the lowest percentage of samples above 

the toxicity level, but all samples were above the threshold limit (Table 3). Two-thirds of 

core and road samples were above the toxic level (Table 3). 

The 2015 basin samples (n=30) were separated into four sub-basins based on the 

inlets and outlets of the basin as well as flow paths. These sub-basins included: West 

inlet, South, Central outlet, and Central sub-basins (Figure 12). The West inlet sub-basin 

incorporated the coal-tar sealed parking lot inlet region. The Central outlet sub-basin 

included the outlet region in the eastern corner of the basin. The South sub-basin was the 

trickle channel between the West inlet and the Central outlet. The Central sub-basin 

included the northern two inlets and a portion of the northern primary basin.  
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Channel Basin Core Roads 

Limit 

(µg/kg) 

n 10 20 18 6 N/A 

 

Not toxic 0% 0% 0% 0% < 1,610 

 

 

Threshold 0% 55% 33% 33% 1,610-22,800 

 

Toxic 100% 45% 67% 67% > 22,800 

Table 3. The percentage of each sample type for a given toxicity limit. 

Fig. 12. Sub-basins in the detention basin 
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The sub-basin with the highest PAH concentration was the Central outlet, with a 

maximum concentration of 712,500 μg/kg. The sub-basin with the lowest concentration 

was the South, with a maximum value of 41,100 μg/kg (Table 4).  

 

 

Sample 

type 

 

West 

(µg/kg) 

South 

(µg/kg) 

Central Outlet 

(µg/kg) 

Central 

(µg/kg) 

Road-side 

(µg/kg) 

Channel n 2 - 6 2 - 

 

Minimum 258,150 - 94,200 90,200 

 

 

Median 397,700 - 198,100 145,300 

 

 

Maximum 537,250 - 712,500 200,400 

 

       Basin n 3 5 8 4 - 

 

Minimum 9,855 3,280 5,445 3,485 

 

 

Median 15,235 3,520 46,325 26,228 

 

 

Maximum 93,400 41,100 80,500 43,300 

 

       Core n 7 - 5 6 - 

 

Minimum 3,200 - 12,950 21,670 

 

 

Median 9,250 - 61,150 42,790 

 

 

Maximum 206,300 - 79,450 220,600 

 

       Roads n - - - - 6 

 

Minimum - - - - 9,940 

 

Median - - - - 50,575 

 

Maximum - - - - 534,650 

 

 

 

 

 

 

 

Table 4. PAH16 concentrations for each sample type and location 
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A        B 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Basin soil sample collected (A) and channel sediment sample collected (B) 

Fig. 14. Channel and basin total PAH16 concentrations of each sub-basin 
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2015 Sub-basin Metal Concentration. The total basin heavy metal 

concentrations were also separated into four sub-basins.  The sub-basin values were 

based on the original 2015 samples, which included 30 samples (Table 5) (Appendix B-1 

- B-9). 

  

 

The highest median concentrations of each of the individual metals was found to 

be in the Central outlet (n=14). The lowest total concentration of each individual metal 

was located in the South sub-basin (n=5), except for Mn and Fe (Figure 15). The highest 

levels of Pb within the Central Outlet sub-basin had a maximum concentration of 135 

Sample 

Location 

 

n 
Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

West 

 
5 

      
 

Minimum 

 
29 56 10 16,274 207 3,435 

 
Median 

 
64 122 10 18,163 545 25,391 

 
Maximum 

 
78 244 10 28,776 792 113,898 

         South 

 
5 

      
 

Minimum 

 
35 53 < DL 19,572 433 2,327 

 
Median 

 
47 76 < DL 21,066 616 3,501 

 
Maximum 

 
65 115 < DL 23,597 664 11,063 

         Central 

Outlet 

 

14 

      
 

Minimum 

 
41 78 11 17,145 94 2,979 

 
Median 

 
75 430 80 20,396 416 86,498 

 
Maximum 

 
135 673 169 31,098 727 245,052 

         Central 

 
6 

      

 

Minimum 

 

53 174 14 18,892 320 14,032 

 
Median 

 
78 231 21 21,194 421 89,640 

 

Maximum 

 

107 1,019 279 29,900 484 197,374 

Table 5. Sub-basin sediment-metal concentration 
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ppm and total concentration of 1,137 ppm (Figure 15). The determined value of 135 ppm 

is above the toxicity level of 128 mg/kg (Macdonald et al., 2000; Agency for Toxic 

Substances and Disease Registry, 2007). No other individual Pb values were found to 

exceed the designated toxicity level, but two samples did fall below the non-toxic 

threshold of 35.8 mg/kg (Macdonald et al., 2000). The greatest Zn values had a maximum 

value of 673 ppm and a total concentration of 5,973 ppm. Total Cu concentration in the 

SE sub-basin was concentration of 842 ppm. The greatest individual Cu concentration 

was found in the Central sub-basin (n=6), reaching a max value of 279 ppm. Copper 

values were significantly lower in the West inlet (n=5) and South sub-basins, providing a 

maximum value of 10 ppm in the West inlet sub-basin and value below detection limit 

within the South sub-basin. The Fe levels were significantly higher in the Central outlet 

sub-basin with a total concentration of 317,787 ppm and maximum individual sample 

value of 31,098 ppm also located in the Central outlet sub-basin. The West inlet sub-

basin was found to have the lowest Fe value, with a total concentration of 102,826 ppm. 

The maximum individual sample value for Mn was located in the West inlet sub-basin, 

reaching 792 ppm. The highest total concentration of Mn was found in the SE sub-basin 

reaching 6,461. Calcium was shown to have the highest individual value, totaling 

245,052 ppm in the SE sub-basin and total concentration of 1,511,904 ppm in the SE sub-

basin. The lowest concentration values for Ca were found in the South sub-basin, with an 

individual value of 11,063 ppm and total concentration of 188,563 ppm (Figure 15). Sub-

basin samples were averaged to observe the overall contamination per region.  
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Fig. 15. Metal concentration by sub-basin 
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Grain Size Analysis. Percent sand was found to have the maximum percentage 

for all sub-basins excluding the south sub-basin (Table 6) (Appendix C-1).  The South 

sub-basin showed that silt was the maximum percentage of substrate, whereas sand was 

the lowest percentage of the substrate type (Table 6). The West inlet and Central outlet 

showed similar behaviors with grainsize percentages, with a maximum sand percentage 

of approximately 85% (Table 6). Clay, however showed a higher percentage in the 

Central outlet with 37% compared to the West inlet clay contribution of 21%. 

Sand concentration was significantly higher in channel samples compared to basin soil 

samples (Table 6). Silt and clay were higher in basin samples compared to channel 

sediment samples. 

 

Location n Sand (%) Silt (%) Clay (%) 

West 5 

Channel 

(n=2) 

Basin 

(n=3) 

Channel 

(n=2) 

Basin 

(n=3) 

Channel 

(n=2) 

Basin 

(n=3) 

Maximum 

 

85.4 11.4 30.7 76.1 10.3 21.0 

Median 

 

72.1 9.5 20.7 69.6 7.2 20.9 

Minimum 

 

58.9 4.1 10.7 67.6 4.0 19.9 

        South 5  (n=0)  (n=5) (n=0) (n=5) (n=0)  (n=5) 

Maximum 

 

- 11.0 - 70.7 - 22.1 

Median 

 

- 9.4 - 69.3 - 20.8 

Minimum 

 

- 8.3 - 68.3 - 20.7 

        Central 

Outlet 14 (n=6)  (n=8) (n=6) (n=8) (n=6) (n=8) 

Maximum 

 

85.0 22.2 58.6 72.0 16.1 37.4 

Median 

 

73.1 11.3 20.4 67.5 6.5 21.2 

Minimum 

 

25.3 7.0 10.5 51.8 4.3 17.4 

        Central 6 (n=2) (n=4) (n=2)  (n=4) (n=2) (n=4) 

Maximum 

 

75.1 73.1 26.0 73.7 8.6 22.5 

Median 

 

70.3 12.2 22.5 67.3 7.2 19.2 

Minimum   65.5 6.4 19.1 20.8 5.8 6.1 

Table 6. Grain size concentrations for each sub-basin 
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The areas closest to the inlets and outlet had highest percentages of sand 

compared to the basin soil samples, which were higher in silt and clay (Figure 16). 

However, the Central outlet had the highest percentage of clay, but receives runoff 

contribution from all regions of the basin. 

There was an inverse relationship between sand and silt/clay. Sand content 

generally had a positive relationship with the increase in PAH concentration, whereas silt 

and clay had a negative correlation (Figure 17). The correlations between PAH 

contamination and sand may indicate source contamination, rather than substrate 

preference. Following the OEWRI SOP 

(http://oewri.missouristate.edu/assets/OEWRI/Particle_Sizer_R01_Final_.pdf), total 

percent error calculated for all samples and sand standards was found to be below the (±) 

20% limit (Appendix C-2 and C-3). 

 

Fig. 16. Percent sand distribution throughout the basin (n=30) 
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The method selected for grainsize analysis (laser diffraction particle size analysis) 

is often not the standard measurement used for grain size analysis. The sieve-hydrometer 

is most commonly used for grainsize distribution analysis (Di Stefano et al., 2010). The 

laser diffraction method has been found, in certain cases, to inaccurately interpret the 

sand and clay percentages, overestimating the sand percent and underestimating the clay 

percentages (Di Stefano et al., 2010). The QA/QC methods used for the laser diffraction 

particle size analysis are unable to accommodate samples which have high sand content. 

To account for this, the overall average RPD was recorded for all duplicates (Appendix 

C-2 and C-3). 

OM-LOI. The frequency distribution of OM-LOI for each sub-basin was 

calculated to determine any influence or patterns found in relation to contaminants and 

Fig. 17. Relationship of grain size to PAH concentrations 
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organic matter concentrations (Syroventik et al., 2007; Oakley et al., 1981). Organic 

matter may increase the mobility of contaminant particles, particularly metals, so it is 

assumed that regions with higher organic percentages may result in regions of higher 

contamination concentration (Syroventik et al., 2007). Organic matter is also considered a 

strong adsorbent for PAH particles if the organic matter is found in high concentration 

(Yang et al., 2008; Srogi, 2007). 

OM-LOI results (Appendix D-1) showed similar behavior as the metal 

concentrations. OM-LOI values were highest in the basin soil samples in the Central 

outlet and Central sub-basins and lowest in the channel sediment in the South and West 

sub-basins (Table 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Location n LOI   

West 5 Channel (n=2) Basin (n=3) 

 Maximum 

 

5.7 10.6 

Median 

 

5.6 10.2 

Minimum 

 

5.5 6.8 

    South 5 Channel (n=0) Basin (n=5) 

 Maximum 

 

- 12.0 

Median 

 

- 10.1 

Minimum 

 

- 8.4 

    Central Outlet 14 Channel (n=6) Basin (n=8) 

 Maximum 

 

23.8 14.0 

Median 

 

10.6 11.5 

Minimum 

 

5.7 10.3 

    Central 6 Channel (n=2) Basin (n=4) 

 Maximum 

 

12.7 10.2 

Median 

 

11.2 10.1 

Minimum   9.7 8.0 

Table 7. LOI for each sub-basin 
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            Spatial Distribution of PAH and Metal Sources in the Basin. The spatial 

distribution patterns observed throughout this study have shown significant patterns with 

PAH contamination in relation to location and elevation. Contamination decreases as it 

increases in distance from inlets and outlet locations (Motelay-Massei et al., 2004; Feng 

et al., 2007). As seen in Figure 18, the regions of highest concentrations are found near 

the runoff inlets and outlet regions. PAH contamination had the highest concentrations in 

the SW inlet and SE outlet. The West inlet was supplied by a coal-tar sealed parking lot 

and the SE outlet received runoff from the entire basin (Figures 18a-18b). Locations with 

the lowest concentrations showed to be the central basin, furthest from the inlet regions. 

 

A B 

 

 

 

 

 

 

 

 

 

 

 
Fig. 18. Trickle channel leading to Central outlet (A). Trickle channel 

located in West sub-basin (B) 
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As elevation increased, the PAH concentration sequentially decreased (Appendix 

A-7) (Guo, 1997). However, results showed that at the elevation of 396.4 m, residing in 

the SW outlet, a concentration spike occurred (Figure 20). The samples found to increase, 

despite elevation, were channel samples. This suggests that elevation has a strong 

influence on contamination levels, but different sources and locations may have increased 

exposure to PAHs (Guo, 1997).  

Metal concentrations showed similar trends as PAHs, concentrating near inlets 

and outlet regions of the basin (Figure 21). The Central sub-basin generally had low 

levels of metal contamination except for Pb. Lead values were highly concentrated in the 

Central outlet and Central sub-basin; all other metals were generally low concentrations 

throughout the Central sub-basin (Figure 21). Copper and Zn values were lowest near the 

West inlet sub-basin (near the coal-tar sealed parking lot) and highest in the northern inlet 

and Central outlet. Manganese was most concentrated along the trickle channel ranging 

from the West inlet, through the South sub-basin, to the Central outlet. Calcium was 

found primarily in the inlets and outlet regions, but low in the South and Central sub-

basins (Figure 21). 

Local sedimentation patterns appear to have the strongest influence on metal 

distribution. The highest concentrations of metals were typically found near inlets and 

outlet regions of the basin with lower values with increased distance from the inlet 

sources (Motelay-Massei et al., 2004). However, metal type varied by location, which 

suggests that additional sources may be contributing to metal contamination (Figure 21). 
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Fig. 19. Distribution of sediment-PAH concentrations of basin sampling locations. 

Detention basin with the sampling locations and PAH concentrations 

 

Fig. 20. PAH concentration changes in response to elevation 



 

 

49 

 Fig. 21. Metal concentration distribution throughout the detention basin 
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Ring Number Analysis.  The molecular structure was noted for each of the 

individual EPA16 molecules. To represent the weight and structure of the PAH molecule, 

the number of benzene rings found within the organic compound were listed. Ring counts 

for selected EPA16 samples were found to vary from 2-6 rings (Table 8). Concentrations 

for the individual EPA16 were calculated using PDC Laboratories raw data (Appendices 

A- 4-5). Individual PAHs with the highest average PAH concentrations were found to be 

the same for both 2015 and 2016 samples (Figures 22a-22b). The lowest individual PAHs 

were also found to be the same between the 2015 and 2016 samples based on average 

percent contribution. The lower molecular weights contributed significantly lower values 

to the total concentration found throughout the basin (Tables 9-10). This suggests that the 

individual EPA16 samples with fewer benzene rings, resulting in a lower molecular 

weight, were more likely to be transported away from the source (Mahler, et al., 2014). 

The average coal-tar and asphalt sealant percent distribution of the select PAHs from two 

previous studies is included in Tables 9-10 (Pavlowsky, 2012; Mahler et al., 2014).  

 

 
 

 

Fig. 22. The highest (top) and lowest (bottom) individual PAHs found within the samples 

(www.theadvocateproject.eu). 
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Rings Individual PAHs 

2 Acenaphthene 

2 Acenaphthylene 

2 Naphthalene 

2(3) Fluorene 

3 Anthracene 

3 Phenanthrene 

3(4) Fluoranthene 

4 Benzo(a)anthracene 

4 Pyrene 

4 Chrysene 

4(5) Benzo(b)fluoranthene 

4(5) Benzo(k)fluoranthene 

5 Benzo(g,h,i)perylene 

5 Dibenzo(a,h)anthracene 

5 Benzo(a)pyrene 

5(6) Indeno(1,2,3-cd)pyrene 

Highest Individual 

PAHs 2015 (%) 2016 (%) 

Coal-Tar  

(%) 

Asphalt 

(%) 

Pyrene 12.07 11.50 15.37 13.35 

 

Fluoranthene 12.13 13.34 

 

21.77 

 

19.45 

 

Chrysene 9.32 8.65 

 

9.32 

 

8.79 

 

Benzo(b)fluoranthene 9.73 12.48 

 

11.38 

 

10.74 

Table 9. Highest individual PAHs found and percent contribution for each 

sampling set (Pavlowsky, 2012; Mahler et al., 2014) 

Table 8. Ring count for individual EPA16 
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Correlation Matrix. The first 30 sediment samples were correlated to observe 

the detailed relationships throughout the data. PAH concentrations, organic matter, and 

grain size were compared throughout these correlations. Pearson’s R values were used as 

basis of comparison. 

PAH concentrations showed a similar correlation with all three grain sizes (Table 

11A). PAHs were negatively correlated with clay (-0.634) and silt (-0.68), but positively 

correlated with sand (0.689). Areas of highest sand percentages appeared to be located 

near the inlets and outlet regions, which is predominantly where increased PAH 

concentrations were found (Figures 16 and 19). This suggests that regions of high sand 

content are likely regions of increased PAH concentration. 

Lead, Zn, Cu, and Ca showed significant correlations (Table 11A). The regions 

predominantly influenced by Pb, Zn, Cu, and Ca were in the SE outlet and at the Central 

inlet (Figure 21). Runoff sources which primarily contribute to these regions are road 

Lowest Individual 

PAHs 2015 (%) 2016 (%) 

 

Coal-Tar (%) 

 

Asphalt (%) 

Naphthalene 2.76 2.89 0.32 1.5 

 

Acenaphthylene 2.76 2.89 

 

0.03 

 

0.05 

 

Acenaphthene 2.76 2.89 

 

0.94 

 

1.5 

 

Fluorene 2.76 2.89 

 

1.26 

 

1.85 

 

Anthracene 2.76 2.89 

 

3.17 

 

2.57 

 

Dibenzo(a,h)anthracene 3.36 3.10 

 

0.61 

 

0.69 

Table 10. Lowest individual PAHs found and percent contribution for each sampling set 
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runoff from Grand Street and National Avenue as well as the coal-tar sealed parking lot 

(Figure 6). 

 OM-LOI showed no significant correlation with any other variable, suggesting 

that organic matter has no apparent correlation with substrate type (Table 11A). Neither 

the organic matter nor heavy metals displayed strong correlation with PAH concentration 

for the total basin sample analysis (Table 11A). While it is expected that PAHs may 

correlate with organic matter (Syroventik et al., 2007; Yang et al., 2008; Srogi, 2007) 

data suggests that PAH concentration is not significantly influenced by the organic matter 

or metal types (Table 11A). However, channel and basin samples from the 2015 sampling 

were separated. Sand and PAH concentration had a positive correlation in channel 

samples, but showed no correlation in the basin samples (Table 11B and 11C). Organic 

matter showed to have a larger influence in basin sediment, insinuating that organic 

matter may influence the contaminant behavior (Table 11B). 

Sources. PAH and metal concentrations were predominantly found in close 

relation to the inlet or outlet locations. PAHs showed a positive correlation with sand in 

all basins except the South sub-basin (Figure 16). This suggests that sand-sized particles 

may be indicative of regions with PAH contamination. This may be due to source 

contamination or the collection of sand-sized PAH particulates that had been abraded 

from the parking lot and deposited near the inlet (Figure 1).  

Highest PAH concentrations were found in the West inlet and Central outlet 

(Figure 19). The SW inlet receives direct runoff from the coal-tar sealed lot (Figure 6). 

This runoff is transported directly to the SE outlet. The South sub-basin had low PAH 

values as well as low correlations (Table 4). 
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Table 11 A. Pearson R correlation of 2015 samples (n=30) 

Sample 

Analysis 

PAH LOI Pb Zn Cu Fe Mn Ca Sand Silt Clay 

PAH 1 -0.13 -.020 -.195 -.214 .067 .153 -.178 .689
**

 -.680
**

 -.634
**

 

LOI  1 -.022 .232 .267 -.022 -.336 .300 -.240 .255 .164 

Pb   1 .479
**

 .256 -.037 -.335 .416
*
 -.021 -.015 .126 

Zn    1 .774
**

 .287 -.551
**

 .779
**

 -.267 .228 .352 

Cu     1 .304 -.326 .578
**

 -.285 .272 .287 

Fe      1 .191 .195 .215 -.216 -.186 

Mn       1 -.511
**

 .328 -.317 -.322 

Ca        1 -.217 .202 .235 

Sand         1 -.990
**

 -.909
**

 

Silt          1 .843
**

 

Clay           1 

** Correlation is significant at the 0.01 level (2-tailed). 

* Correlation is significant at the 0.05 level (2-tailed). 
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                             Table 11 B. Pearson R correlation of 2015 Basin samples (n=20) 

Basin PAH LOI Pb Zn Cu Fe Mn Ca Sand Silt Clay 

PAH 1 0.467 0.118 0.146 0.161 0.235 -0.072 -0.042 0.167 -0.06 -0.324 

 

LOI 

 

1 0.201 0.514 0.627 0.41 -0.338 0.244 -0.186 0.206 0.053 

 

Pb 

  

1 0.568 0.275 0.03 -0.363 0.588 -0.124 0.025 0.28 

 

Zn 

   

1 0.762 0.341 -0.536 0.816 -0.079 -0.032 0.285 

 

Cu 

    

1 0.408 -0.258 0.627 -0.033 0.006 0.077 

 

Fe 

     

1 0.131 0.137 0.278 -0.271 -0.162 

 

Mn 

      

1 -0.548 0.199 -0.154 -0.201 

 

Ca 

       

1 -0.123 0.061 0.2 

 

Sand 

        

1 -0.94 -0.655 

 

Silt 

         

1 0.357 

 

Clay 

          

1 
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Table 11 C. Pearson R correlation of 2015 Channel samples (n=10) 

Channel PAH LOI Pb Zn Cu Fe Mn Ca Sand Silt Clay 

PAH 1 -0.295 -0.037 -0.163 -0.212 -0.089 -0.094 -0.326 0.336 -0.348 -0.29 

 

LOI 

 

1 -0.318 0.138 0.202 -0.367 -0.465 0.452 -0.797 0.805 0.76 

 

Pb 

  

1 -0.033 0.054 -0.317 -0.312 -0.295 0.465 -0.457 -0.49 

 

Zn 

   

1 0.982 0.272 -0.518 0.717 -0.252 0.262 0.20 

 

Cu 

    

1 0.118 -0.554 0.642 -0.272 0.282 0.22 

 

Fe 

     

1 0.256 0.38 0.2 -0.198 -0.20 

 

Mn 

      

1 -0.437 0.132 -0.146 -0.07 

 

Ca 

       

1 -0.624 0.633 0.58 

 

Sand 

        

1 -1 -0.99 

 

Silt 

         

1 0.99 

 

Clay 

          

1 
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This sub-basin is the primary flow path for runoff water, which suggests that the 

PAH and contaminated particles within the South sub-basin are being flushed into the SE 

outlet (Figure 6). The SE outlet receives runoff from the road as well as runoff from the 

central basin and trickle channels. Road runoff may contain vehicular-transported or 

weathered coal-tar particles as well as incomplete combustion materials (Readman et al., 

2002; Crane, 2013). These contaminants may enter into the basin through the stormwater 

drains or inlets and accumulate within the basin sediment (Srogi, 2007). The areas of 

highest PAH contamination are likely a result of coal-tar sealant contribution, but may 

also be influenced by additional sources such as incomplete combustion of fuels, 

windblown PAH particulates, or vehicular emissions (Ahrens and Depree, 2010; 

Readman et al., 2002; Mahler et al., 2005). 

Metals similarly collected in the inlets or outlets (Figure 21). Copper, Ca, Pb, and 

Zn were all found in higher concentrations in the Central inlet and SE outlet. The Central 

inlet receives primary runoff from Grand Street and National Avenue. The SE outlet 

receives its sources from the entirety of the basin, including the northern inlet. Metals 

commonly contributed from cars are Pb, Zn, Fe, Cu, Cd, Cr, Ni, and Al (Conservation 

Currents, Northern Virginia Soil and Water Conservation District, 2017). This suggests 

that these metals may primarily be contributed from the roads compared to the coal-tar 

lot. Calcium, however is commonly added to the environment through construction 

(Martin et al., 2015). Limestone is often added to cement mixtures as a binding agent 

(Martin et al., 2015). Recent and ongoing construction across the MSU campus has likely 

contributed loose particulates of this disrupted cement into the basin through runoff, 

increasing the Ca concentration throughout the basin.  
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Alternatively, Mn and Fe had higher concentrations near West inlet, Central 

outlet, and South sub-basins (Figure 21). PAHs have been found to bind to the Fe and 

Mn- oxide coatings on substrate such as sand and silt (Tessier et al., 1979). This suggests 

that a possible relationship between the locations of Fe and Mn relates to the binding of 

Fe and Mn-oxides with PAHs (Tessier et al., 1979). Also seen in Figure 21, Pb shows 

significant concentrations in the central basin ranging from 69 – 135 ppm. As seen in 

aerial photos (Figure 7), the basin was comprised of houses and parking lots. Lead 

additives in gasoline were not officially prohibited until 1996, suggesting that a 

contributor of the lead in the central basin may be from previously leaded gasoline 

(Newell and Rogers, 2003). Lead-based paint was used in homes and buildings until 

1978, when it was banned for being a health hazard (Centers for Disease Control and 

Prevention, 2014; Agency for Toxic Substances and Disease Registry, 2007). Houses in 

the basin likely contributed lead into basin soil, due to the age at which they were built. 

The pH values collected were found to range between a pH value of 7.1 - 7.5 

(Table 12). Soil is considered to be strongly acidic and harmful to plant growth when it 

reaches a pH value between 4.0-5.0 (Bickelhaupt, 2017). Determined pH values 

suggested that acidity levels of basin soils ranged from neutral to weakly alkaline 

(Bickelhaupt, 2017). The primarily neutral pH values suggest that the acidity of the basin 

soil has no significant influence on the contaminants in the basin (Faure, 1998; Silberg, 

2010). Due to this, it can be assumed that the acidity levels of the basin soil and sediment 

are insignificant in relation to the results. 
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Core Sample pH RPD (%) Sediment Type 

1 31 7.3 

 

Silt 

1 33 7.2 

 

Mud 

1 35 7.1 

 

Clay 

 

2 37 7.5 

 

Mud/silt 

2 38(1) 7.1 -1.4 Clay 

2 38(2) 7.2 

 

Clay 

2 39 7.4 

 

Clay 

2 41 7.4 

 

Clay/mud 

 

3 42 7.2 

 

Mud 

3 44 7.5 

 

Mud/silt 

3 46(1) 7.1 -1.4 Mud 

3 46(2) 7.2 

 

Mud 

DI 

Blank DI Blank 7.3 

 

DI Blank 

3 48 7.3 

 

Clay & mud 

 

 

Core Analysis 

Three sediment cores were collected throughout the sediment basin as well as a 

duplicate core near each PAH-analyzed core (Figure 23, C). Core one was taken in the 

Central outlet region, core two (A) was collected in the SE corner of the basin near the 

trickle channel, and core three was taken in the West inlet sub-basin near the coal-tar inlet 

near the trickle channel (B). 

 

Table 12. pH values determined for select samples and substrate 

type 
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PAH Core Values. No values were below the non-toxic range of 1,610 μg/kg, but 

67% of the samples were found to be above the toxic threshold of 22,800 μg/kg (Table 

13; Appendix A-2) (Macdonald et al., 2000). Roadside samples had the highest 

maximum concentration yielding 534,650 μg/kg followed by Core 2 with a maximum 

value of 220,600 μg/kg in the upper most 5 cm of the core sediment (Table 4; Figures 

A B 

C 

Fig. 23. Core 2 location (A) core 3 location (B) and example of sediment core sampled 

(C) 
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24a-24c). Core 3 was found to have the lowest determined value with a minimum value 

of 3,200 μg/kg (Table 4). The value of 3,200 μg/kg was found in the 25-35 cm range in 

depth (Figures 24a-24c). 

PAH concentrations showed a continuous decrease with the increase in depth, 

diminishing at the depth of 27-35 cm whereas the regions of highest contamination were 

found within the upper 0-10 cm (Figures 24a-24c). This shows that the depth of 

contamination is relatively shallow throughout the basin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Core Depth (cm) 

PAH Concentration 

(µg/kg) 

1 0-10 79,450 

1 10-15 54,450 

1 15-20 72,700 

1 20-25 61,150 

1 25-30 12,950 

 

2 0-10 

 

220,600 

2 10-15 136,200 

2 15-20 48,250 

2 20-25 29,290 

2 25-30 37,330 

2 30-35 21,670 

 

3 0-10 

 

206,300 

3 10-15 119,400 

3 15-20 51,400 

3 20-25 9,250 

3 25-30 3,200 

3 30-35 3,200 

3 35-40 3,200 

 
 

 

Table 13. PAH16 concentration of core samples 
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2016 Sediment Core Metal Values. The metal concentrations for core samples 

were calculated using same methods (Appendices B-2 and B-3). The maximum 

concentrations of Pb and Zn values were found in the roadside samples, with a maximum 

Pb concentration of 349 ppm and a Zn concentration of 643 ppm (Table 14). The lowest 

Pb and Zn values were located in Core 3, with a Pb concentration of 83 ppm and a Zn 

value of 147 ppm (Table 14).  The highest Cu concentration was located in Core 2, with a 

concentration of 68 ppm (Table 14) followed closely by a concentration of 63 ppm in the 

roadside samples (Table 14). The lowest Cu concentration was located in Core 3, which 

stated that there were no detectable Cu values (< DL) (Table 14). Iron values appeared to 

be very high throughout all samples, but the highest recorded value was located in Core 

2, with a concentration of 33,929 ppm (Table 14). The lowest Fe value was found to be 

20,453 ppm, in Core 3 (Table 14). Core 1 had the highest Mn value with a concentration 

of 1,087 ppm (Table 14). Core 3 showed the lowest concentration of Mn, with a 

maximum value of 872 ppm (Table 14). The highest Ca values were located in the 

roadside samples, with a mean concentration of 283,687 ppm (Table 14). The lowest Ca 

values were found to be in Core 3, with a maximum concentration of 41,843 ppm (Table 

14). The response of metal concentrations with the increase was analyzed for both the 

PAH-analyzed core and duplicate core (Tables 15-16).  
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Sample 

Location   
n 

Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

Core 1 

 
5 

      
 

Maximum 

 
111 541 53 30,154 1,087 73,460 

 
Median 

 
71 346 34 20,792 798 52,945 

 
Minimum 

 
43 65 20 18,889 583 4,547 

         Core 2 

 
6 

      

 

Maximum 

 

115 541 68 33,929 1,049 110,488 

 
Median 

 
92 242 33 25,579 652 37,209 

 

Minimum 

 

62 110 16 19,367 136 16,316 

         Core 3 

 
7 

      
 

Maximum 

 
83 145 < DL 20,453 872 41,843 

 
Median 

 
64 111 < DL 19,487 536 14,415 

 
Minimum 

 
37 21 < DL 15,646 451 2,592 

         Roads 

 
6 

      
 

Maximum 

 
349 643 63 30,126 1,003 283,687 

 

Median 

 

114 572 31 23,806 381 77,459 

  Minimum   35 98 28 15,019 242 6,038 

Table 14. Metal values for core and road samples 
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Core 

Depth 

(cm) 

Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

1 0-10 71 429 37 20,792 660 60,132 

 

10-15 111 541 53 30,154 1,087 73,460 

 

15-20 73 346 31 20,837 798 52,945 

 

20-25 61 198 20 19,316 894 29,477 

 

25-30 43 65 < DL 18,889 583 4,547 

 

2 0-10 104 541 67 19,367 631 110,488 

 

10-15 70 180 16 25,198 1,049 34,350 

 

15-20 62 110 < DL 33,929 715 16,316 

 

20-25 115 234 17 31,416 336 32,700 

 

25-30 83 250 33 25,959 136 40,067 

 

3 0-10 65 141 < DL 19,487 536 37,085 

 

10-15 76 145 < DL 20,103 644 41,843 

 

15-20 62 115 < DL 18,626 518 28,288 

 

20-25 83 111 < DL 20,020 534 14,415 

 

25-30 37 51 < DL 16,174 872 4,574 

 

30-35 < DL 21 < DL 15,646 451 2,592 

         

 

 

 

        

Table 15. Metal concentration in response to depth 
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Table 16. Duplicate core metal concentration in response to depth 

Duplicate 

Core 

Depth 

(cm) 

Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

1 0-10 66 356 43 21,696 909 44,923 

 

10-15 103 360 33 20,800 845 58,471 

 

15-20 60 144 13 21,823 854 18,291 

 

20-25 44 104 10 22,427 866 17,709 

 

25-30 40 113 15 22,302 630 23,103 

 

2 0-10 113 510 72 19,371 531 111,592 

 

10-15 94 363 52 20,529 576 72,262 

 

15-20 76 199 20 23,081 844 37,307 

 

20-25 69 138 < DL 29,188 929 23,673 

 

3 0-10 58 143 < DL 18,307 531 32,586 

 

10-15 62 120 < DL 19,953 551 31,835 

 

15-20 89 113 < DL 20,444 749 16,898 

 

20-25 93 129 < DL 24,338 854 13,337 

 

25-30 111 105 < DL 22,413 957 9,011 

 

30-35 112 129 < DL 21,514 732 10,152 

        

 

2016 OM-LOI Core Values. The highest regions of OM-LOI were found to be in 

Core 2 (Appendix D-2), reaching 12.9%, and road-side samples with a maximum of 

14.9%. Core 3 had the lowest percentage of OM-LOI with a maximum of 8%. Agreeing 

with the maximum and minimum values, average values of the cores showed matching 

results for highest and lowest OM-LOI values of the sediment cores taken. Duplicate core 

values (Appendix D-3), which did not include road-side samples, supported the previous 

findings indicating the region with highest OM-LOI for the core samples is Core 2 in the 

Central inlet and Core 3 has the lowest value is in the West inlet. 

Cesium – 137 (Cs-137). Cesium activity values for core one ranged from a 

minimum of 8.4 to a maximum of 13.5 Bq/kg (OEWRI SOP). Core two activity ranged 

from a minimum of 6.6 Bq/kg to a maximum of 10.7 Bq/kg (Table 17). Core three had an 
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activity range of 5.0 Bq/kg to 9.1 Bq/kg (Table 17). Cs-137 values showed no distinct 

patterns with depth (Figures 24a-24c). Due to the weaker activity values and no 

significant trends with the increase in depth, this suggests that this is a young basin which 

has been disturbed. The disturbances have homogenized the basin soil, disrupting the 

expected trend of Cs-137 dating back to approximately 1963 (USGS, 2016).  

 

 

 

 

 

 

 

 

Sample Core 

 

Depth 

(cm) 

Mass 

(kg) 

Activity 

(Bq/kg) 

Uncertainty 

(Bq/kg) 

Activity 

RPD 

(%) 

Uncertainty 

RPD (%) 

31(1) 1 3 0.2 12.0 0.5 

  31(2) 1 3 0.2 11.2 0.5 1.8 0.8 

32 1 7 0.1 8.4 1.0 

  33 1 15 0.2 11.8 0.5 

  34 1 20 0.1 12.7 0.6 

  35 1 25 0.1 13.5 0.8 

   

36 2 

 

5 0.1 7.8 1.4 

  37 2 10 0.1 10.7 1.3 

  38A 2 15 0.1 6.6 0.9 

   

42 3 

 

5 0.1 7.9 0.6 

  43 3 10 0.1 7.4 0.5 

  44(1) 3 15 0.1 5.0 0.9 

  44(2) 3 15 0.1 7.3 0.5 -9.4 11.4 

45 3 20 0.1 5.5 0.6 

  46 3 20 0.1 6.2 0.8 

  47 3 28 0.1 9.1 0.5 

  

Table 17. Sediment core Cs-137 activity and uncertainty values 
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Management Implications 

Urban stormwater basins can trap fine-grained sediment and associated pollutants 

(Guo, 1997; Birch et al., 2006). However, trap efficiency may vary from basin to basin 

depending on the design and residence time of water in the basin to allow for settling of 

suspended particles to take place (Birch et al., 2006). Basins that accumulate sediment 

can reduce pollution risk to downstream waters, while those that pass contaminants freely 

offer little protection to receiving water bodies (Fischer et al., 2003). To evaluate the 

effect of the present basin to reduce off-site pollutant transport, estimated annual loadings 

of PAHs to the basin were compared to the mass of PAHs stored in basin soils and 

channel deposits. If stored rates are relatively high, then some level of pollution control is 

assumed.  

To understand the amount of PAHs contributed by coal-tar sealants within a 3-5 

year time period, the mass of coal-tar sealant needed to cover an area (kg) and the amount 

of PAHs within that area (mg/kg) were calculated. Coal-tar sealant has a bulk density of 

1.15 g/cm
3
. Approximately 0.89 l/m

2
 of coal-tar sealant is applied on a parking lot on 

average (Yang et al., 2010; EPA, 2012; Star-Seal of Florida inc., 2014). Coal-tar sealcoat 

typically contains at least 20% coal-tar pitch, which is 50% or more PAHs by mass (EPA, 

2012). Further, up to 50% of PAHs may volatilize from curing sealcoat within 1-2 

months after application (Van Metre et al., 2012). Using these assumptions, 52.2 

grams/m
2
 PAHs are applied to parking lots on average. Therefore, the 0.048 km

2
 of coal-

tar sealed parking lots in the catchment contribute 2,487 kg of PAHs throughout a 4-year 

time period (Table 18). This results in approximately 621 kg/yr of PAHs annually 

contributed by the coal-tar sealed parking lots within the sub-watershed. PAH 

Fig. 18a. PAH concentration and 

Cs-137 activity with depth for core 

1 
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contributions from coal-tar lots are 100 to 1000 times higher than PAH contributions 

from concrete or asphalt lots (USGS, 2011; Mahler et al., 2014). Therefore, annual PAH 

loads from coal-tar lots reflect > 95% of the total PAH load to the basin. 

 

 

The mass storage of sediment was calculated for basin soil and trickle channels by 

multiplying the volume of the sub-basin by the soil bulk density. A bulk density of 1.4 

g/cm
3
 was used for soils and sediment in this study since soils in this area have bulk 

density values from 1.3-1.5 g/cm
3
 (Hughes, 1982). Seen in Figure 25, sediment depths of 

the West, South, Central Outlet, and Central sub-basins (n=10) were measured with a tile 

probe (Table 18). Trickle channels were accounted for separately, which resulted in West 

inlet, South, Central outlet, and the North trickle channel (n=4). The dredged sediment (5 

m
3
) in the spring of 2016 was incorporated into calculations, using the median values of 

the PAH concentrations within the basin Central outlet sub-basin (Table 19). 

Parking Lot   
Sub-

Watershed  Area (m
2
)   PAHs (g)   PAHs (kg)  

1 North     1,408   73,542   73  
 

16 
 

North        754   39,369  40 
 

14 
 

North     6,507   339,702   340  
 

9 
 

North     1,849   96,518   97  
 

29 
 

North     9,131   476,665   477 
 

 22 & 24  
 

West   28,000   1,461,600   1461  
 Total     47,649  2,487,396   2,487 

Table 18. Parking Lots in watershed contribution of PAHs into watershed 



 

 

 

70 

 

 

 

 

    

 

     

 Because all 2015 surface samples were collected to a maximum depth of 5 cm, a 

depth of 5 cm was assigned to the basin samples for the PAH mass storage calculation 

(Table 19). PAH mass storage was calculated by multiplying the median PAH 

concentration of each sub-basin by its respective mass sediment storage. Probe depths 

were used to identify recent sediment deposits throughout the basin soil area (not used for 

mass storage calculation) ranged from 1 – 4 cm in depth. This indicates sedimentation 

ranges from 0.6 - 2.4 mm/year, based on the 17 year accumulation of the basin. Trickle 

channel sediment storage was calculated using the probe depths collected in the spring of 

2017 (Figure 25). Results showed that a total of 21 kg of PAHs were stored within the 

Fig. 25. 2017 probe depths taken throughout basin floor and trickle channel 

regions 
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basin with an annual storage rate of 1.2 kg/yr (Table 19 and Table 20). It can be assumed 

that the basin has retained < 1% of the coal-tar introduced by runoff. This suggests that 

the 99% of the PAHs are transported out of the basin outlet to contaminate local streams. 

However, this calculation is based on the assumption that all of the sealant on the parking 

lots was removed and delivered to the basin by runoff after volatilization losses were 

considered.
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Table 19. Basin soil storage of PAHs (kg) 

Sub-Basin  

 Depth 

(cm)  

 Area 

(m
2
)  

 Volume 

(m
3
)  

 Sediment Mass Storage 

(kg)  

 

n 

PAHs Avg. 

(ug/kg)  PAH mass (kg)  

 West Inlet  

              

5  

          

404  

                 

20  

                                     

30,271  

 

-  -  - 

 West  

              

5  

       

2,848  

               

142  

                                   

213,614  

 

3 

           

39,497                        8  

 South  

              

5  

          

507  

                 

25  

                                     

38,037  

 

5 

           

11,300                        0  

 Central Outlet  

              

5  

          

990  

                 

50  

                                     

74,263  

 

8 

           

39,676                        3  

 Central  

              

5  

       

3,205  

               

160  

                                   

240,411  

 

4 

           

24,810                        6  

 

 Dredged  

(July 26, 2016) 

              

5  

          

990  

                   

5  

                                       

7,000  

 

 

8 

           

39,676                        0  

 Total    

       

7,955  

               

402  

                                   

603,596  

 

                             17  
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Table 20. Channel sediment storage of PAHs (kg) 

 

 

  

 

 

 

 

 

 

 

Trickle Channel Probe Depth (cm) Area (m
2
) Volume (m

3
) Sediment Mass Storage (kg) n PAHs(ug/kg) PAH mass (kg) 

West Inlet  1 71 0.02 3,175 2           397,700                1 

 

South 2 217 0.01 3,249 

 

- -                - 

  

Central Outlet   2 203 0.25 9,153 

 

6           275,983                3 

  

Central  1 102 0.08 7,664 

 

2           145,300                1 

 

 Total  

 

593 0.36 23,241 

 

 

             4 
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CONCLUSIONS 

 

            PAH contamination in rural and urban regions has been extensively studied, as 

well as the correlation to coal-tar sealants (Crane, 2013; Boffetta et al., 1997; Eisler, 

1987; Krein and Schorer, 2000; Mahler et al., 2014). Coal-tar sealants are one of the 

leading contributors of PAHs into the environment, and have been found to contaminate 

sediment with PAH concentrations approximately 1,000 times higher than asphalt-based 

sealants (Eisler, 1987; USGS, 2011; McKinney, 2012; Crane, 2013; Van Metre and 

Mahler, 2013; EPA, 2016). Despite the environmental concerns, coal-tar sealants are still 

commonly used throughout society (Crane, 2013).  

            Missouri State University has used coal-tar sealants throughout the campus region 

over the past 20 years. However, there has not been a reapplication in the last 1.5 years 

(Missouri State University Campus Facilities, 2016). This study evaluated the PAH 

contaminated trends in an urban stormwater basin on campus that drains 0.22 km
2
 with 

coal-tar sealed parking lots contributing 22% of the drainage. Contaminants such as 

PAHs and heavy metals have been accumulating within this specific basin for 

approximately 17 years. Sediment PAH concentrations exceed toxic limits in most cases. 

While PAHs are stored in sediment deposits and soils in the basin, most PAHs delivered 

to the basin by stormwater pass through it and into local streams. 

The main findings of this study include: 

1. There is significant sediment-PAH contamination throughout the basin. PAH 

concentrations in basin soils and sediments ranged from 3,200- 712,500 μg/kg 

(Appendix A-1). Sixty-five percent of samples exceeded the PAH toxicity limit 

for sediment-dwelling organisms of 22,800 μg/kg (MacDonald et al., 2000). No 

samples were found to be below the non-toxic limit of 1,610 μg/kg, suggesting 
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that all samples collected and analyzed pose a threat to the surrounding 

environment (Crane, 2013; Eisler, 1987; MacDonald et al., 2000). 

 

2. Highest PAH concentrations occurred in sediment deposits in the trickle channel 

and aggraded deposits near sub-basin inlets and outlets. PAH concentrations were 

lower in basin soils compared to channel deposits and in Central sub-basin (11% 

of drainage area from a coal-tar lot) compared to West sub-basin (70% of 

drainage area from a coal-tar lot). This suggests that PAH-contaminated sediment 

is transported throughout the basin and that it is primarily contributed from coal-

tar sealed lots. 

 

3. The highest concentrations were found for high molecular weight PAHs (4-6 

rings) with each contributing 9-13% of the total PAH16 concentrations. Low 

molecular weight PAHs (2-3 rings) only contributed about 3% each. This agrees 

with previous studies which have shown that lower molecular weight PAHs 

contribute a smaller amount of total accumulated PAHs due to their higher 

transport and volatility capability (Mahler et al., 2014). However, the difference 

in concentration of individual EPA16 may also be due to source supply. The coal-

tar sealant may contribute larger quantities of high molecular weight PAHs 

compared to the low molecular weight PAHs. 

 

4. Grainsize analysis indicated correlation between sand-sized particles and PAH 

concentration within channel samples. Sand and PAH particulates are deposited in 

the trickle channels by flood events. Alternatively silt and clay, specifically clay, 

were primarily found throughout the basin soil and generally showed weaker 

correlations with PAHs. Sand is predominantly found within the channel systems, 

as well as the highest PAH concentrations (Figure 16 and 19). Sand-sized 

particles are likely weathering products released from degrading roadways and 

other urban surfaces. However, PAH-containing particles tend to be preferentially 

deposited in the trickle channels, along with sand grains (EPA, 2016; Mahler et 

al., 2005; Pavlowsky, 2013). Therefore, both sand and sediment particles tend to 

be deposited together in the trickle channels of the basin. The process by which 

this happens is unclear and needs to be studied further. 

 

5. Metal concentrations were influenced by three main sources: urban runoff, 

groundwater seepage, and eroded sediment supplied from natural or construction 

materials. Metal concentrations were determined for Zn (53-1,019 ppm), Cu 

(<DL- 279 ppm), Fe (16,274-31,098 ppm), Mn (94-792 ppm), Pb (29-135 ppm) 

and Ca (2,327-245,052 ppm). Copper, Zn, Fe, and Pb are commonly contributed 

by cars exhaust and wear, suggesting that vehicles and urban surface weathering 

may be a significant source of these metals entering the basin (Conservation 

Currents, Northern Virginia Soil and Water Conservation District, 2017). Iron and 

Mn were found in higher concentrations near a naturally occurring spring in the 

West sub-basin. This suggests that they may be contributed naturally from the 

local groundwater seepage. Elevated calcium concentrations were likely caused 

by the addition of eroded particles from concrete and other pavement surfaces. 
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6. Organic matter-PAH relationships are stronger in basin soil area and weaker in 

channel sediment. Channel sediment samples showed an R value of -0.29 

correlation between PAH and LOI. Alternatively, PAH and LOI correlations in 

basin soil samples was 0.47 (Table 11B and 11C). Basin soil samples showed a 

median value range from 10.1 to 11.5% compared to channel sediment, which 

ranged from 5.6 to 11.2%. Organic matter relationships follow similar patterns 

from previous studies (Syroventik et al., 2007; Srogi, 2007). Further studies are 

needed to observe definite trends. 

 

7. Core samples collected from locations of relatively high sediment deposition were 

typically contaminated with PAHs to depths of 0.25-0.35 m with concentrations 

decreasing with depth. However, the depth of PAH contamination in the basin is 

typically < 5 cm. Additionally, the basin soils contained weak Cs-137 activity 

with no obvious trends indicating recent age as expected (Figure 24a -24c). Coal-

tar sealants were found to be one of the leading causes for PAH contamination 

throughout urban watersheds beginning in the 1960s (USGS, 2011; USGS, 2015). 

Assuming that additional sources of PAHs have remained consistent, the 

intensified popularity and use of coal-tar sealants since the 1960s is a likely cause 

for the increase in PAH concentrations in basin cores (USGS, 2015).  

 

8. Only < 1% of the PAH mass from urban runoff including coal-tar lots is being 

stored in the detention basin annually. These findings suggest that while the 

majority of the PAHs are contributed by coal-tar sealed parking lots, they are not 

being deposited or stored for long-term periods in the basin, but are transported 

downstream into Fassnight and Wilson Creeks to possibly contribute to water 

quality problems. 

 

This study found that there are toxic levels of PAHs and elevated concentrations of 

metals within the detention basin. This supports previous studies which stated that 

detention basins often retain increased concentrations of contaminants (Guo, 1997; Birch 

et al., 2006). Significant amounts of PAHs are contributed by runoff from coal-tar sealed 

parking lots. Highest concentrations of PAHs were found in the West sub-basin where 

coal-tar sealed lots cover approximately 70% of the drainage area and roads only 7% 

(Figure 11). Lower PAH concentrations are found in the Central sub-basin area with 11% 

lot cover and higher road coverage including direct drainage from high traffic Grand 

Street and National Avenue. Therefore, coal-tar lots represent major sources of PAHs to 
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this basin. These results may be generally extrapolated to other urban stormwater 

detention basins, but more studies are needed. Specific sources of PAHs to the basin were 

not directly evaluated in this study. 

 

Future Work 

This study provided a detailed analysis of basin sediment contamination and 

sediment-PAH relationships. However, this study did not quantify dissolved or 

particulate PAHs in runoff. Future research may include the collection of stormwater 

runoff from the various inlets to observe how the PAH concentrations are dispersed from 

the inlets throughout the basin (McCarthy and Zachara, 1989; Walsh et al., 2005). 

Understanding the rate at which accumulation is occurring may result in the exploration 

of bioremediation techniques possible for this basin (Piskonen and Itavaara, 2004; 

Haritash and Kaushik, 2009). Additional sample collection and analysis may verify the 

trends reported by this study or provide new insights into PAH distribution patterns and 

processes.  
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APPENDICES 

 

Appendix A - PAH Concentrations 

Appendix A-1 - 2015 Sediment Samples PAH Concentrations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date 

Sampled Sample 

Concentration 

(ppb) Location 

11/13/2015 1 258,150 SW 

11/13/2015 2 537,250 SW 

11/13/2015 3 93,400 SW 

11/13/2015 4 9,855 SW 

11/13/2015 5 15,235 SW 

11/13/2015 6 3,280 S 

11/13/2015 7 5,240 S 

11/13/2015 8 3,520 S 

11/13/2015 9 41,100 S 

11/13/2015 10 3,360 S 

11/13/2015 11 357,500 SE 

11/13/2015 12 712,500 SE 

11/13/2015 13 7,580 SE 

11/13/2015 14 61,750 SE 

11/13/2015 15 8,680 SE 

11/13/2015 16 5,445 SE 

11/13/2015 17 47,750 SE 

11/13/2015 18 80,500 SE 

11/13/2015 19 94,200 SE 

11/13/2015 20 295,900 SE 

11/13/2015 21 95,500 SE 

11/13/2015 22 44,900 SE 

11/13/2015 23 60,800 SE 

11/13/2015 24 100,300 SE 

11/13/2015 25 17,255 Central 

11/13/2015 26 43,300 Central 

11/13/2015 27 90,200 Central 

11/13/2015 28 200,400 Central 

11/13/2015 29 35,200 Central 

11/13/2015 30 3,485 Central 
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Appendix A-2 - 2016 Sediment Sample PAH Concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date Sampled Sample 

Concentration 

(ppb) Core 

Core depth 

(cm) 

9/1/2016 31 79,450 1 0-3 

9/1/2016 32 54,450 1 3_15 

9/1/2016 33 72,700 1 15-20 

9/1/2016 34 61,150 1 20-25 

9/1/2016 35 12,950 1 25-27 

9/1/2016 36 220,600 2 0-5 

9/1/2016 37 136,200 2 5_10 

9/1/2016 38 48,250 2 10_15 

9/1/2016 39 29,290 2 15-20 

9/1/2016 40 37,330 2 20-25 

9/1/2016 41 21,670 2 25-30 

9/1/2016 42 206,300 3 0-10 

9/1/2016 43 119,400 3 10_15 

9/1/2016 44 51,400 3 15-20 

9/1/2016 45 9,250 3 20-25 

9/1/2016 46 3,200 3 25-30 

9/1/2016 47 3,200 3 30-34 

9/1/2016 48 3,200 3 34-35 

9/2/2016 49 65,700 N/A N/A 

9/2/2016 50 35,450 N/A N/A 

9/2/2016 51 15,300 N/A N/A 

9/2/2016 52 9,940 N/A N/A 

9/5/2016 53 534,650 N/A N/A 

9/5/2016 54 73,450 N/A N/A 
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Appendix A-3- 2015 Individual PAHs with 2-3 Benzene Rings (ppb) 

 

2015 

Samples Ace Any Ant Flu Nap Phe 

1 1,650 1,650 1,650 1,650 1,650 14,000 

2 1,850 1,850 1,850 1,850 1,850 32,000 

3 2,100 2,100 2,100 2,100 2,100 2,100 

4 205 205 205 205 205 205 

5 205 205 205 205 205 205 

6 205 205 205 205 205 205 

7 210 210 210 210 210 210 

8 220 220 220 220 220 220 

9 220 220 220 220 220 1,200 

10 210 210 210 210 210 210 

11 1,800 1,800 1,800 1,800 1,800 25,000 

12 1,900 1,900 1,900 1,900 1,900 38,000 

13 210 210 210 210 210 210 

14 230 230 230 230 230 1,700 

15 220 220 220 220 220 220 

16 215 215 215 215 215 215 

17 250 250 250 250 250 1,300 

18 2,500 2,500 2,500 2,500 2,500 2,500 

19 2,200 2,200 2,200 2,200 2,200 4,900 

20 3,400 3,400 3,400 3,400 3,400 18,000 

21 3,350 3,350 3,350 3,350 3,350 3,350 

22 2,300 2,300 2,300 2,300 2,300 2,300 

23 2,200 2,200 2,200 2,200 2,200 2,200 

24 1,850 1,850 1,850 1,850 1,850 8,200 

           25 195 195 195 195 195 740 

26 1,750 1,750 1,750 1,750 1,750 1,750 

27 2,600 2,600 2,600 2,600 2,600 2,600 

28 2,400 2,400 2,400 2,400 2,400 16,000 

29 2,200 2,200 2,200 2,200 2,200 2,200 

30 205 205 205 205 205 205 
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 Appendix A-4 2015 Individual PAH concentrations with 4-6 Benzene Rings (ppb) 

2015 Samples BaA BaP BbF BghiP BkF Chr DahA Fth InP Py 

1 14,000 21,000 24,000 18,000 24,000 29,000 5,900 41,000 18,000 41,000 

2 40,000 48,000 55,000 39,000 43,000 55,000 15,000 85,000 37,000 79,000 

3 5,200 7,900 9,000 8,100 8,600 9,500 2,100 12,000 7,400 11,000 

4 470 900 1,100 1,000 830 1,000 205 1,100 920 1,100 

5 700 1,400 2,000 1,400 1,600 1,700 205 1,900 1,300 1,800 

6 205 205 205 205 205 205 205 205 205 205 

7 210 210 520 430 420 500 210 640 210 630 

8 220 220 220 220 220 220 220 220 220 220 

9 1,900 4,200 4,900 3,900 4,300 5,000 1,200 5,000 3,600 4,800 

10 210 210 210 210 210 210 210 210 210 210 

11 23,000 32,000 34,000 23,000 29,000 37,000 7,500 61,000 22,000 55,000 

12 42,000 59,000 72,000 61,000 55,000 74,000 17,000 110,000 55,000 120,000 

13 210 650 800 650 610 780 210 900 630 880 

14 2,900 5,700 7,900 7,700 5,600 6,500 1,700 7,300 6,600 7,000 

15 220 750 1,100 800 750 900 220 950 750 920 

16 215 215 570 590 430 460 215 490 490 480 

17 2,200 4,800 5,600 5,900 4,600 4,900 1,400 6,000 4,700 5,100 

18 2,500 6,300 8,400 7,300 6,000 7,600 2,500 9,500 6,500 8,900 

19 5,000 6,900 8,700 7,200 6,800 9,000 2,200 13,000 6,500 13,000 

20 16,000 23,000 31,000 21,000 20,000 31,000 6,900 47,000 20,000 45,000 

21 3,350 6,700 10,000 7,900 6,800 9,100 3,350 11,000 7,200 10,000 

22 2,300 2,300 4,600 2,300 2,300 2,300 2,300 5,200 2,300 5,200 

23 2,200 4,600 5,700 5,000 4,400 5,400 2,200 6,600 4,600 6,900 

24 5,700 7,000 7,800 6,400 6,800 9,300 1,850 16,000 6,000 16,000 

25 980 1,500 1,900 1,300 1,400 1,800 460 2,400 1,300 2,500 

26 1,750 1,750 4,400 1,750 1,750 4,600 1,750 6,500 1,750 6,800 

27 2,600 6,800 8,600 6,300 6,600 9,200 2,600 13,000 5,900 13,000 

28 12,000 15,000 19,000 12,000 12,000 20,000 2,400 34,000 12,000 34,000 

29 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 

30 205 205 205 205 205 205 205 205 205     410 
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Appendix A-5- 2016 Individual PAHs with 2-3 Benzene Rings (ppb) 

2016 Samples Ace Any Ant Flu Nap Phe 

31 230 230 230 5,800 7,600 1,600 

32 2,250 2,250 2,250 2,250 4,800 2,250 

33 2,300 2,300 2,300 2,300 6,500 2,300 

34 2,250 2,250 2,250 2,250 4,500 2,250 

35 210 210 210 680 1,200 210 

36 2,600 2,600 2,600 11,000 20,000 2,600 

37 2,250 2,250 2,250 6,900 12,000 2,250 

38 2,350 2,350 2,350 2,350 2,350 2,350 

39 240 240 240 1,500 2,600 590 

40 260 260 260 2,000 3,100 630 

41 245 245 245 1,100 1,600 245 

42 2,050 2,050 2,050 14,000 12,000 2,050 

43 2,000 2,000 2,000 7,700 6,600 2,000 

44 2,000 2,000 2,000 2,000 2,000 2,000 

45 200 200 200 470 790 200 

46 200 200 200 200 200 200 

47 200 200 200 200 200 200 

48 200 200 200 200 200 200 

49 2,200 2,200 2,200 2,200 2,200 2,200 

50 1,650 1,650 1,650 1,650 1,650 1,650 

51 900 900 900 900 900 900 

52 220 220 220 520 660 220 

53 1,650 1,650 1,650 20,000 47,000 7,400 

54 1,650 1,650 1,650 1,650 4,800 1,650 
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Appendix A-6- 2016 Individual PAHs with 4-6 Benzene Rings (ppb) 

2016 Samples BaA BaP BbF BghiP BkF Chr DahA Fth InP Py 

31 230 3,700 230 11,000 9,000 5,400 7,600 12,000 6,800 7,800 

32 2,250 2,250 2,250 7,100 5,900 2,250 4,600 7,300 2,250 2,250 

33 2,300 2,300 2,300 9,200 7,800 2,300 6,300 10,000 5,900 6,300 

34 2,250 2,250 2,250 8,100 6,700 2,250 5,100 7,400 4,600 4,500 

35 210 430 210 1,800 1,500 680 1,200 1,900 1,100 1,200 

36 2,600 9,000 2,600 33,000 27,000 12,000 22,000 33,000 19,000 19,000 

37 2,250 4,800 2,250 19,000 16,000 8,000 13,000 19,000 12,000 12,000 

38 2,350 2,350 2,350 6,300 5,300 2,350 2,350 6,100 2,350 2,350 

39 240 1,100 240 4,300 3,700 1,900 2,900 4,200 2,700 2,600 

40 260 1,600 260 5,900 4,900 2,600 3,900 5,200 3,400 2,800 

41 245 1,200 245 3,600 3,000 1,500 2,100 2,800 1,800 1,500 

42 2,050 10,000 2,050 33,000 28,000 14,000 22,000 32,000 19,000 10,000 

43 2,000 5,600 2,000 19,000 15,000 7,700 12,000 18,000 11,000 4,800 

44 2,000 2000 2,000 7,100 6,000 2000 4,700 7,500 4,100 2,000 

45 200 200 200 1,200 990 600 900 1,300 820 780 

46 200 200 200 200 200 200 200 200 200 200 

47 200 200 200 200 200 200 200 200 200 200 

48 200 200 200 200 200 200 200 200 200 200 

49 2,200 2,200 2,200 12,000 8,900 2,200 6,800 9,200 4,600 2,200 

50 1,650 1,650 1,650 5,500 4,200 1,650 1,650 4,300 1,650 1,650 

51 900 900 900 900 1,800 900 900 900 900 900 

52 220 460 220 1,500 1,200 600 930 1,300 780 670 

53 1,650 24,000 1,650 92,000 78,000 27,000 56,000 76,000 52,000 47,000 

54 1,650 5,200 1,650 11,000 11,000 4,800 7,300 7,700 5,400 4,700 
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Appendix A-7- Detention basin elevation with corresponding PAH concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample Basin 

Elevation (meters above sea 

level) Concentration (ppb) 

1 SW 396.225 258,150 

2 SW 396.357 537,250 

3 SW 396.455 93,400 

4 SW 396.495 9,855 

5 SW 396.443 15,235 

6 S 396.150 3,280 

7 S 395.945 5,240 

8 S 396.153 3,520 

9 S 395.592 41,100 

10 S 395.799 3,360 

11 SE 395.358 357,500 

12 SE 395.366 712,500 

13 SE 395.648 7,580 

14 SE 395.570 61,750 

15 SE 395.676 8,680 

16 SE 395.772 5,445 

17 SE 395.535 47,750 

18 SE 395.399 80,500 

19 SE 395.285 94,200 

20 SE 395.245 295,900 

21 SE 395.248 95,500 

22 SE 395.613 44,900 

23 SE 395.507 60,800 

24 SE 395.319 100,300 

25 Central 396.269 17,255 

26 Central 395.907 43,300 

27 Central 396.776 90,200 

28 Central 395.672 200,400 

29 Central 396.200 35,200 

30 Central 396.364 3,485 
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Appendix A-8- Coal-tar and Asphalt sealant averages from two previous studies (Mahler 

et al., 2014; Pavlowsky, 2012) 

EPA16 Coal-tar Average (%) AS Average (%) 

Nap 0.32 1.51 

Any 0.03 0.06 

Ace 0.94 1.50 

Flu 1.27 1.85 

Phe 14.35 14.86 

Ant 3.17 2.58 

Fth 21.77 19.45 

Py 15.37 13.36 

BaA 6.01 6.07 

Chr 9.32 8.80 

BbF 11.38 10.74 

BkF 3.22 3.84 

BaP 6.51 6.86 

InP 2.44 4.00 

DahA 0.61 0.70 

BghiP 2.34 3.53 
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Appendix B – Metal Contamination Analysis 

 

Appendix B-1- 2015 Sediment Sample’s Metal Contamination 

2015 

Samples 

Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

1 69 166 < DL 28,776 545 113,898 

2 55 122 < DL 22,150 792 39,133 

3 78 244 < DL 18,163 434 25,391 

4 29 56 < DL 16,274 586 3,435 

5 64 94 10 17,463 207 6,706 

6 36 53 < DL 23,597 616 2,882 

7 57 76 < DL 19,785 623 2,327 

8 65 80 < DL 19,572 664 3,501 

9 < DL 115 < DL 21,066 433 11,063 

10 35 73 < DL 21,581 518 3,841 

11 75 413 153 21,257 679 157,213 

12 135 447 < DL 17,647 288 221,978 

13 53 78 < DL 20,958 727 2,979 

14 51 157 11 20,572 454 24,955 

15(1) 41 88 < DL 23,322 476 5,835 

15(2) 53 92 < DL 24,171 475 5,391 

16 52 107 < DL 24,249 642 14,989 

17 75 283 25 18,387 223 41,524 

18 98 622 86 20,219 403 101,191 

19 100 590 122 31,098 361 171,210 

20 63 632 86 17,145 94 245,052 

21 87 673 169 18,272 236 142,267 

22 87 329 28 19,500 347 61,914 

23 93 470 52 18,513 428 71,805 

24 56 655 73 25,856 443 188,860 

25 77 195 18 20,872 446 38,721 

26 53 251 21 19,366 355 197,374 

27 78 1,019 240 29,900 320 161,371 

28 69 439 279 21,844 396 140,559 

29 107 211 21 18,892 481 26,425 

30(1) 102 174 14 21,516 484 14,032 

30(2) 98 159 12 20,655 420 11,077 
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Appendix B-2- 2016 Sediment Sample’s Metal Contamination 

2016 

Samples 

Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

31 71 429 37 20,792 660 60,132 

32 111 541 53 30,154 1,087 73,460 

33 73 346 31 20,837 798 52,945 

34 61 198 20 19,316 894 29,477 

35 43 65 < DL 18,889 583 4,547 

36 104 541 67 19,367 631 110,488 

37 101 432 68 20,747 672 77,229 

38 70 180 16 25,198 1,049 34,350 

39 62 110 < DL 33,929 715 16,316 

40 115 234 17 31,416 336 32,700 

41 83 250 33 25,959 136 40,067 

42 65 141 < DL 19,487 536 37,085 

43 76 145 < DL 20,103 644 41,843 

44 62 115 < DL 18,626 518 28,288 

45 83 111 < DL 20,020 534 14,415 

46(1) 37 51 < DL 16,174 872 4,574 

46(2) 39 47 < DL 17,008 1,026 5,414 

47 43 47 < DL 20,453 777 5,574 

48 < DL 21 < DL 15,646 451 2,592 

49 50 597 28 22,698 262 283,687 

50 35 570 63 30,126 242 256,284 

51 132 643 31 19,871 1,003 10,750 

52 95 100 < DL 24,914 480 6,038 

53 167 98 < DL 15,019 281 18,484 

54 349 574 < DL 28,439 603 136,434 
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Appendix B-3- 2016 Duplicate Core Metal Contamination 

Duplicate 

Core 

Pb 

(ppm) 

Zn 

(ppm) 

Cu 

(ppm) 

Fe 

(ppm) 

Mn 

(ppm) 

Ca 

(ppm) 

31 66 356 43 21,696 909 44,923 

32 103 360 33 20,800 845 58,471 

33 60 144 13 21,823 854 18,291 

34 44 104 10 22,427 866 17,709 

35 40 113 15 22,302 630 23,103 

36 113 510 72 19,371 531 111,592 

37 94 363 52 20,529 576 72,262 

38A(1) 76 199 20 23,081 844 37,307 

38A(2) 175 218 19 23,659 841 38,718 

38B 69 138 < DL 29,188 929 23,673 

42 58 143 < DL 18,307 531 32,586 

43 62 120 < DL 19,953 551 31,835 

44 89 113 < DL 20,444 749 16,898 

45 93 129 < DL 24,338 854 13,337 

46 111 105 < DL 22,413 957 9,011 

47 112 129 < DL 21,514 732 10,152 

 

 

 

Appendix B-4- 2015 and 2016 overall determined accuracy  

 

 

 

 

 

 

 

Appendix B-5- 2015 and 2016 overall determined precision 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Batch Pb Zn Cu Fe Mn Ca 

2016 -1.8 -6.7 -0.2 -4.8 -7.1 -5.1 

2015 5.0 -3.9 1.8 -2.1 26.9 -2.3 

Average 1.6 -5.3 0.8 -3.4 9.9 -3.7 

Batch Pb Zn Cu Fe Mn Ca 

2015 14.8 6.7 7.7 3.8 7.2 15.7 

2016 42.1 0.5 -2.6 3.8 7.9 10.3 

Average 28.4 3.6 2.6 3.8 7.6 13.0 
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Appendix B-6- 2015 SW sub-basin percentile, minimum, and maximum values 

Percentile Pb Zn Cu Fe Mn Ca 

min 29 56 10 16,274 207 3,435 

10 39 71 10 16,750 298 4,743 

25 55 94 10 17,463 434 6,706 

50 64 122 10 18,163 545 25,391 

75 69 166 10 22,150 586 39,133 

90 74 213 10 26,126 710 83,992 

max 78 244 10 28,776 792 113,898 

 

 

Appendix B-7- 2015 Central sub-basin percentiles, minimum and maximum values 

Percentile Pb Zn Cu Fe Mn Ca 

min 53 174 14 18,892 320 14,032 

10 61 185 16 19,129 338 20,229 

25 71 199 19 19,743 365 29,499 

50 78 231 21 21,194 421 89,640 

75 96 392 185 21,762 472 156,168 

90 105 729 260 25,872 483 179,373 

max 107 1,019 279 29,900 484 197,374 

 

 

 

Appendix B-8- 2015 South sub-basin percentiles, minimum and maximum values 

Percentile Pb Zn Cu Fe Mn Ca 

min 35 53 < DL 19,572 433 2,327 

10 35 61 < DL 19,657 467 2,549 

25 36 73 < DL 19,785 518 2,882 

50 47 76 < DL 21,066 616 3,501 

75 59 80 < DL 21,581 623 3,841 

90 63 101 < DL 22,791 648 8,174 

max 65 115 < DL 23,597 664 11,063 
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Appendix B-9- 2015 SE sub-basin percentiles, minimum and maximum values 

Percentile Pb Zn Cu Fe Mn Ca 

min 41 78 11 17,145 94 2,979 

10 51 94 24 17,835 227 8,581 

25 54 189 34 18,419 303 29,097 

50 75 430 80 20,396 416 86,498 

75 92 614 113 22,806 471 167,711 

90 99 648 155 25,374 668 212,043 

max 135 673 169 31,098 727 245,052 
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Appendix C – Laser Diffraction Particle Size Analysis 

 

Appendix C-1- 2015, 2016, and duplicate core grainsize analysis 

Sample ID   

Textur

e (%)      

Particle 

Diamet

er (µm)     

  % Sand %Silt %Clay Mean Mode d10 d50 d90 

(code) 

(2,000 - 

62.5µm

) 

(62.5 - 

3.9µm

) 

(<3.9µ

m) (µm) (µm) (µm) (µm) (µm) 

MSU-1 85.4 10.7 4.0 512.7 517.2 20.1 474.0 1,035.4 

MSU-2 58.9 30.7 10.3 403.3 1090.8 3.7 322.4 1,044.8 

MSU-3 11.4 67.6 21.0 34.8 23.8 1.6 15.7 73.9 

MSU-4 4.1 76.1 19.9 23.2 26.1 1.7 16.3 44.6 

MSU-5 9.5 69.6 20.9 31.6 23.8 1.6 15.6 61.0 

MSU-6 8.6 69.3 22.1 30.0 26.1 1.5 15.3 56.6 

MSU-7 10.5 68.6 20.9 34.0 23.8 1.6 15.8 66.8 

MSU-8 8.3 70.7 21.1 30.2 23.8 1.6 15.5 55.0 

MSU-9 9.4 69.9 20.8 31.4 26.1 1.6 16.3 60.6 

MSU-10(1) 11.0 68.3 20.7 34.9 26.1 1.6 16.3 71.4 

MSU-10(2) 5.5 72.4 22.1 23.7 26.1 1.5 14.9 47.7 

MSU-11 85.0 10.5 4.5 584.0 824.5 15.0 583.5 1,154.2 

MSU-12 83.7 11.8 4.5 478.1 993.6 16.4 415.9 1,015.0 

MSU-13 10.8 51.8 37.4 25.9 4.0 0.9 5.9 68.1 

MSU-14 10.2 68.1 21.7 31.2 23.8 1.6 15.0 64.8 

MSU-15 11.9 66.7 21.5 35.2 26.1 1.6 15.9 77.4 

MSU-16 10.8 66.9 22.3 33.6 26.1 1.6 15.4 68.7 

MSU-17 7.0 72.0 21.0 26.9 23.8 1.7 15.2 50.8 

MSU-18 11.9 70.8 17.4 36.0 28.7 2.0 19.6 71.8 

MSU-19 58.0 32.6 9.3 248.6 517.2 4.2 125.2 684.9 

MSU-20(1) 62.5 29.0 8.5 208.5 153.8 4.7 116.4 589.9 

MSU-20(2) 71.8 21.6 6.6 265.2 203.5 7.5 155.4 713.8 

MSU-21 25.3 58.6 16.1 67.9 28.7 2.3 25.5 171.5 

MSU-22 22.2 59.6 18.3 71.8 23.8 1.9 18.9 239.7 

MSU-23 12.2 70.0 17.8 32.9 26.1 1.9 19.3 75.3 

MSU-24 84.2 11.5 4.3 502.6 751.1 16.6 502.4 969.8 

MSU-25 17.1 64.6 18.4 54.8 26.1 1.9 20.0 133.9 

MSU-26(1) 73.1 20.8 6.1 383.4 751.1 8.5 352.5 856.9 

MSU-26(2) 86.6 10.2 3.2 532.2 567.8 28.3 511.9 1,023.2 

MSU-27 65.5 26.0 8.6 284.3 517.2 4.8 205.8 730.7 

MSU-28 75.1 19.1 5.8 411.6 751.1 10.1 369.6 912.8 

MSU-29 6.4 73.7 20.0 24.3 26.1 1.7 16.8 49.3 

MSU-30(1) 7.4 70.1 22.5 26.0 23.8 1.5 14.8 51.2 
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Appendix C-1 

Cont. 

MSU-30(2) 8.0 69.7 22.3 26.2 23.8 1.5 14.9 52.8 

MSU-31 10.4 70.5 19.1 34.0 26.1 1.7 17.5 65.6 

MSU-32 12.6 67.8 19.6 37.9 26.1 1.7 17.6 81.6 

MSU-33 10.9 69.7 19.4 35.0 26.1 1.7 17.5 68.2 

MSU-34 6.5 72.2 21.3 27.3 26.1 1.5 15.6 50.3 

MSU-35 1.3 76.4 22.2 17.8 23.8 1.5 14.4 39.3 

MSU-36 21.9 63.1 15.0 46.9 28.7 2.3 24.6 137.0 

MSU-37 19.4 62.9 17.8 58.5 26.1 1.9 20.6 166.8 

MSU-38 12.5 66.1 21.4 35.3 26.1 1.5 16.4 88.0 

MSU-39 11.5 67.0 21.5 33.7 26.1 1.5 16.7 75.5 

MSU-40(1) 20.7 61.6 17.8 66.0 26.1 1.9 21.4 184.7 

MSU-40(2) 18.6 61.0 20.4 49.2 28.7 1.6 19.5 170.6 

MSU-41 24.0 59.2 16.9 82.2 28.7 2.0 23.2 288.3 

MSU-42 25.6 56.9 17.5 92.5 23.8 1.9 21.6 359.9 

MSU-43 24.8 57.2 18.0 91.9 23.8 1.9 20.9 348.0 

MSU-44 20.9 59.7 19.4 84.6 23.8 1.7 18.5 346.2 

MSU-45 7.4 68.8 23.8 25.8 23.8 1.4 13.2 49.6 

MSU-46 2.6 70.7 26.8 15.9 19.8 1.2 10.6 36.3 

MSU-47 2.5 70.2 27.3 15.6 19.8 1.2 10.3 35.6 

MSU-48 2.1 68.9 29.0 14.7 19.8 1.1 9.4 34.4 

MSU-49 83.8 12.8 3.4 347.9 517.2 25.4 261.9 809.8 

MSU-50(1) 71.5 24.2 4.3 247.2 517.2 14.0 155.1 617.5 

MSU-50(2) 74.8 21.6 3.7 241.3 223.4 21.0 161.5 584.6 

MSU-51 49.3 39.5 11.2 304.8 993.6 3.4 58.7 940.0 

MSU-52 12.8 68.3 18.9 36.6 26.1 1.8 17.7 78.2 

MSU-53 22.3 60.9 16.8 88.6 26.1 2.1 21.7 311.3 

MSU-54 57.7 33.1 9.2 204.2 245.2 4.3 103.6 540.1 

MSU-31_split 17.3 64.3 18.4 55.4 26.1 1.8 19.0 135.6 

MSU-32_split 13.9 67.1 19.0 36.4 26.1 1.8 18.1 95.4 

MSU-33_split 10.1 68.9 21.1 30.1 23.8 1.5 16.3 63.9 

MSU-34_split 8.7 69.9 21.4 28.7 23.8 1.5 16.0 56.1 

MSU-35_split(1) 6.0 71.8 22.2 23.9 23.8 1.5 15.2 47.7 

MSU-35split(2) 8.3 69.8 21.9 32.3 26.1 1.5 15.5 54.8 

MSU-36_split 18.2 65.7 16.1 41.4 28.7 2.1 22.3 102.8 

MSU-37_split 13.6 67.1 19.3 36.9 26.1 1.7 18.3 85.9 

MSU-38A_split 10.0 68.0 22.0 32.2 26.1 1.5 15.8 63.7 

MSU-38B_split 11.1 66.4 22.4 37.1 26.1 1.5 15.8 72.1 

MSU-42_split 22.5 59.7 17.9 93.6 26.1 1.9 20.7 383.9 

MSU-43_split 20.6 60.3 19.1 88.7 23.8 1.8 19.1 344.1 

MSU-44_split 6.9 69.3 23.8 29.1 23.8 1.4 13.3 48.9 

MSU-45_split 7.9 67.7 24.4 31.7 23.8 1.3 12.9 51.4 
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Appendix C-1 

Cont. 

MSU-46_split 2.5 71.5 25.9 18.3 23.8 1.3 11.6 38.2 

MSU-47_split(1) 2.2 72.4 25.4 18.1 23.8 1.3 11.8 37.8 

MSU-47split(2) 7.7 68.4 23.9 25.7 23.8 1.4 13.0 50.6 

         

          

 

 

Appendix C-2- Sample duplicate RPD (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Appendix C-3- Sand Duplicates RPD (%) 

  

 

  

 

 

 

 

 

 

 

 

 

Sample %Sand %Silt %Clay 

10 -66.19 5.87 6.37 

20 13.80 -28.90 -25.84 

26 16.86 -68.16 -61.91 

30 7.87 -0.64 -0.72 

40 -10.64 -0.93 13.92 

50 4.52 -11.66 -15.87 

35_split 32.34 -2.81 -1.42 

47_split 110.44 -5.60 -6.30 

Average 13.6 -14.1 -11.5 

ES63 VFS FS 

1 -4.01 4.04 

2 0.71 -0.94 

3 -4.44 4.62 

4 -4.48 4.83 

5 -4.05 4.01 

Average -3.254 3.312 

ES250 MS 

1 2.95 

2 3.6 

3 3.25 

4 3.29 

5 4.56 

Average 3.53 
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Appendix D – Organic Mass Loss on Ignition Sample Analysis 

Appendix D -1- 2015 Sediment Sample OM-LOI Data 

 

 

Sample 

Number 

Preburn 

Total 105 C 

weight (g) 

Preburn 

sample 

weight (g) 

Preburn 

weight 

loss (g) 

600 C 

postburn 

Total 

weight 

600 C 

postburn 

Sample 

weight 

600 C 

postburn 

weight 

loss 

WATER 

weight 

loss in 

oven 

(%) 

OM 600 

weight 

loss on 

ignition 

(LOI-%) 

 

 

RPD (%)  

 

MSU1 16.81 5.01 0.04 16.53 4.73 0.28 0.76 5.51  

MSU2 15.86 4.98 0.05 15.58 4.69 0.29 0.96 5.74  

MSU3(1) 17.29 4.95 0.10 16.79 4.44 0.51 2.04 10.23  

MSU3(2) 15.71 4.90 0.1 15.21 4.39 0.51 2.01 10.31 -0.021 

MSU4 17.11 4.93 0.09 16.78 4.60 0.33 1.70 6.77  

MSU5 15.40 4.90 0.11 14.88 4.38 0.52 2.12 10.60  

MSU6 16.64 4.91 0.12 16.15 4.41 0.49 2.31 10.09  

MSU7 16.56 4.92 0.09 16.14 4.51 0.42 1.71 8.44  

MSU8 16.57 4.92 0.09 16.11 4.46 0.46 1.86 9.43  

MSU9 17.32 4.89 0.12 16.73 4.30 0.59 2.39 12.04  

MSU10(1) 16.82 4.89 0.12 16.25 4.32 0.57 2.42 11.61  

MSU10(2) 16.18 4.88 0.12 15.62 4.32 0.57 2.36 11.63 -0.16 

MSU11 16.42 5.02 0.01 15.96 4.57 0.46 0.25 9.10  

MSU12 16.53 4.96 0.05 16.01 4.45 0.51 0.96 10.37  

MSU13 16.22 4.89 0.11 15.72 4.39 0.50 2.18 10.30  

MSU14 16.90 4.90 0.10 16.34 4.34 0.56 2.09 11.40  

MSU15 16.38 4.90 0.10 15.88 4.40 0.50 2.10 10.30  

MSU16 18.28 4.89 0.11 17.74 4.36 0.54 2.26 10.98  

MSU17 16.18 4.90 0.10 15.61 4.33 0.57 2.10 11.70  
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Appendix D-1 cont. 2015 Sediment Sample OM-LOI Data 

 

 

Sample 

Number 

Preburn 

Total 105 C 

weight (g) 

Preburn 

sample 

weight (g) 

Preburn 

weight 

loss (g) 

600 C 

postburn 

Total 

weight 

600 C 

postburn 

Sample 

weight 

600 C 

postburn 

weight 

loss 

WATER 

weight 

loss in 

oven 

(%) 

 

 

 

 

 

 

 

 

 

 

 

 

MSU18(1) 16.81 4.90 0.11 16.17 4.26 0.64 2.11 

MSU18(2) 16.03 4.91 0.11 15.37 4.25 0.66 2.14 

MSU19 16.56 4.99 0.06 16.02 4.45 0.54 1.09 

MSU20 18.71 4.93 0.08 17.90 4.12 0.81 1.62 

MSU21 17.09 4.87 0.14 15.93 3.71 1.16 2.86 

MSU22 15.36 4.88 0.13 14.68 4.20 0.68 2.54 

MSU23(1) 16.34 4.91 0.10 15.75 4.32 0.59 1.97 

MSU23(2) 15.47 4.92 0.11 14.9 4.34 0.57 2.09 

MSU24 15.39 5.00 0.03 15.10 4.71 0.29 0.52 

MSU25 18.09 4.91 0.10 17.59 4.41 0.49 2.06 

MSU26 16.24 5.01 0.02 15.84 4.61 0.40 0.31 

MSU27(1) 17.35 4.96 0.07 16.72 4.33 0.63 1.42 

MSU27(2) 18.14 4.98 0.07 17.55 4.39 0.59 1.4 

MSU28 18.46 4.99 0.05 17.98 4.51 0.48 0.96 

MSU29 15.66 4.90 0.10 15.16 4.41 0.50 2.08 

MSU30 18.99 4.88 0.12 18.50 4.39 0.49 2.47 
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Appendix D-2- 2016 Sediment Sample’s OM-LOI Data 

                         

Sample 

Number  Preburn 

Total 105 C 

weight (g) 

 Preburn 

sample 

weight (g) 

 Preburn 

weight 

loss (g) 

                  

600 C 

postburn 

Total 

weight 

  600 C 

postburn 

Sample 

weight 

          600 

C postburn 

weight loss  

WATER 

weight 

loss in 

oven 

(%) 

OM 600 weight 

loss on ignition 

(LOI-%) 

 

 

RPD 

(%) 

MSU31 17.35 4.96 0.06 16.82 4.42 0.53 1.15 10.74  

MSU32 15.70 4.95 0.06 15.24 4.48 0.47 1.22 9.44  

MSU33 16.30 4.97 0.04 15.88 4.56 0.42 0.76 8.35  

MSU34 16.40 4.96 0.04 16.07 4.64 0.32 0.86 6.53  

MSU35 16.62 4.97 0.03 16.40 4.75 0.22 0.66 4.40  

MSU36 18.12 4.94 0.06 17.48 4.30 0.64 1.28 12.90  

MSU37(1) 16.07 4.95 0.05 15.55 4.43 0.53 0.99 10.63  

MSU37(2) 17.13 4.95 0.05 16.61 4.43 0.52 1.14 10.47 1.52 

MSU38 17.37 4.96 0.04 17.02 4.61 0.35 0.87 7.06  

MSU39 15.44 4.94 0.07 15.10 4.61 0.33 1.37 6.73  

MSU40 15.34 4.95 0.06 14.91 4.52 0.42 1.22 8.58  

MSU41 16.47 4.94 0.06 15.98 4.45 0.49 1.29 9.86  

MSU42 18.43 4.96 0.05 18.03 4.56 0.40 0.94 7.98  

MSU43(1) 16.04 4.96 0.04 15.71 4.62 0.34 0.77 6.81  

MSU43(2) 16.20 4.97 0.04 15.86 4.62 0.34 0.76 6.89 -1.29 

MSU44 16.45 4.96 0.05 16.16 4.67 0.29 1.01 5.86  

MSU45 19.09 4.97 0.05 18.85 4.73 0.24 0.93 4.82  

MSU46 16.72 4.98 0.04 16.50 4.76 0.22 0.76 4.46  

MSU47 16.72 4.97 0.05 16.52 4.78 0.19 1.04 3.92  

MSU48 16.88 4.97 0.05 16.70 4.79 0.17 0.90 3.52  

MSU49(1) 16.11 5.00 0.01 15.81 4.70 0.31 0.28 6.13  

MSU49(2) 17.32 4.98 0.02 17.02 4.67 0.31 0.49 6.22 -1.54 
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Appendix D-2- cont. 2016 Sediment Sample’s OM-LOI Data 

                         

Sample 

Number  Preburn 

Total 105 C 

weight (g) 

 Preburn 

sample 

weight (g) 

 Preburn 

weight 

loss (g) 

                  

600 C 

postburn 

Total 

weight 

  600 C 

postburn 

Sample 

weight 

          600 

C postburn 

weight loss  

WATER 

weight 

loss in 

oven 

(%) 

OM 600 weight 

loss on ignition 

(LOI-%) 

 

 

RPD 

(%) 

 

MSU50 18.38 4.99 0.01 18.14 

 

4.75 

 

0.24 0.24 4.87 

 

MSU51 17.01 4.34 0.67 16.48 3.81 0.53 13.32 12.16  

MSU52 15.69 4.90 0.12 14.96 4.17 0.73 2.42 14.89  

MSU53(1) 15.83 4.94 0.07 15.30 4.42 0.52 1.47 10.62  

MSU53(2) 17.7007 4.9552 0.0621 17.1794 4.4339 0.5213 1.2377 10.5203 0.92 

MSU54 16.24 4.94 0.06 15.70 4.40 0.54 1.27 10.92  
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Appendix D- 3- 2016 Duplicate Core Sediment Samples OM-LOI Data 

                         

Sample 

Number 

Preburn 

Total 105 

C weight 

(g) 

Preburn 

sample 

weight (g) 

Preburn 

weight 

loss (g) 

600 C 

postburn 

Total 

weight (g) 

600 C 

postburn 

Sample 

weight (g) 

600 C 

postburn 

weight 

loss (g) 

WATER 

weight loss in 

oven (%) 

OM 600 

weight loss on 

ignition (LOI-

%) 

 

 

RPD 

(%) 

MSU-31 15.75 4.95 0.07 15.23 4.42 0.53 1.33 10.68  

MSU-32 16.86 4.93 0.08 16.38 4.45 0.48 1.62 9.69  

MSU-33 16.59 4.96 0.05 16.28 4.65 0.31 0.96 6.29  

MSU-34 15.43 4.96 0.05 15.15 4.68 0.28 1.07 5.66  

MSU-35 16.61 4.97 0.05 16.37 4.72 0.24 0.99 4.91  

MSU-36 16.21 4.93 0.08 15.54 4.26 0.67 1.58 13.62  

MSU-37(1) 18.72 4.93 0.07 18.16 4.38 0.55 1.42 11.19  

MSU-37(2) 16.51 4.94 0.06 15.94 4.38 0.56 1.25 11.4 -0.47 

MSU-38A 17.04 4.94 0.07 16.70 4.60 0.34 1.34 6.79  

MSU-38B 16.52 4.95 0.06 16.21 4.64 0.31 1.27 6.28  

MSU-42 18.13 4.96 0.05 17.73 4.56 0.39 0.94 7.96  

MSU-43 17.18 4.96 0.05 16.85 4.62 0.34 0.92 6.83  

MSU-44 17.39 4.96 0.05 17.13 4.70 0.26 0.90 5.18  

MSU-45(1) 16.53 4.96 0.05 16.28 4.71 0.24 0.93 4.90  

MSU45(2) 16.48 4.95 0.06 16.21 4.68 0.27 1.18 5.49 -2.76 

MSU46 16.95 4.96 0.05 16.71 4.72 0.24 0.96 4.79  

MSU47 15.52 4.96 0.05 15.29 4.74 0.22 1.04 4.51  
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Appendix E- Basin Elevation Transects 

 

Appendix E-1-2015 SW transect with corresponding sampling locations 

 
 

 

 

Appendix E-2- South Sub-basin transect with corresponding sampling locations 
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Appendix E-3- South Sub-basin, transect two, with sampling locations

 
 

 

 

Appendix E-4-SE Sub-basin with corresponding sampling locations 
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Appendix E-5- SE Sub-basin, transect two, with sampling locations 

 
 

 

 

 

Appendix E-6- SE Sub-basin, transect three, with sampling locations
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