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ABSTRACT 

Shoreline erosion is a problem around the world that is getting worse as sea level rises 

and populations expand into coastal areas. It is important to identify areas at the greatest 

risk for shoreline erosion so environmental planners will have the knowledge and time to 

mitigate potential resource losses. The Galleon Fish Sanctuary in St. Elizabeth Parish is a 

6 km stretch of shoreline along the south coast of Jamaica composed of mangrove forests, 

sand beaches, and coral reefs. This study assesses shoreline form and composition in the 

sanctuary in order to provide new information about the relationships between beach 

topography, vegetation, substrate, and changes in the shoreline position. Beaches were 

surveyed and other geomorphic characteristics were recorded at 28 sites. Erosion rates for 

Galleon for the years 2012-2016 were determined using historical aerial photograph 

analysis and averaged +0.23 m/yr, ranging from -3.0 to 2.6 m/yr. It was found that 32% 

of the shoreline in the sanctuary was stable, 44% of the shoreline was accreting, and 24% 

of the shoreline was eroding. Since 2003, 36% of the beaches in Malcolm Bay and 53% 

of the beaches in Hodges Bay have recovered to their 2003 pre-Hurricane Ivan position. 

Toppled vegetation, coarse substrate, and active scarps were indicators of erosion. 

Mangroves in the sanctuary are at risk for erosion, which is a concern because they 

provide protection to the beaches and swamp ecosystems. A classification system was 

developed to categorize beaches based on erosion risk.  
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CHAPTER 1- INTRODUCTION 

 

 Shoreline erosion is a problem that threatens coastal environments, economies, 

and societies around the world. Human activity and development along the coast can 

cause and intensify shoreline erosion (Escudero et al., 2014). Natural events such as 

hurricanes and sea level rise also cause shoreline erosion, and these events are getting 

worse due to climate change (Leatherman et al., 2000). There are important 

socioeconomic reasons to protect beaches. In the Caribbean, tourism is one of the largest 

contributors to the revenue of coastal communities (Gable, 1991; Gable and Aubrey, 

1990; Bueno et al., 2008). Coastal regions need to be able to support tourists with the 

culture and services they expect, including environmental tourism (de Souza Filho et al., 

2011, Fonseca et al., 2014). To provide these services, shoreline management must be 

rooted in effective assessment of beach vulnerability so politicians, planners, and 

conservationists can use their resources efficiently to protect beaches. However, beach 

types and geography vary regionally. Therefore, erosion vulnerability assessments must 

understand the behavior of different beach types in an area because they all respond 

differently to erosion (Robinson et al., 2012). 

Monitoring human and natural rates of shoreline erosion is of interest because 

they are helpful for planning and managing communities in coastal areas. As of 2011, 

40% of the world’s population lives within 100 km of the coast, and as of 2014, 10% of 

the world’s population lives 10 m or less above sea level. These numbers will only 

increase over time (Losada et al., 2011; Silva et al., 2014). Humans cause erosion by 

building along coastlines and constructing beach protection structures which prevent 
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natural beach migration (Nordstrom and Jackson, 2013). Building dams and dredging 

sand also cause shoreline erosion by reducing the sediment supply to beaches.  

In general, sand beaches form and change in response to the wave energy in the 

area and the size and strength of the material on the beach where the waves break (Wright 

and Short, 1984). Sand transported cross-shore or along the shore forms offshore bars, a 

foreshore that slopes upwards to the berm, the raised part of a beach formed by the 

furthest extent of the high tide, and a relatively horizontal backshore behind the berm 

(Cambers, 1998) (Figure 1). Dunes or cliffs can be found in the backshore. In tropical 

areas, mangroves may be present on the shore and in coastal wetlands and coral reefs can 

be found offshore. These features help protect a beach (Ellison and Zouh, 2012; Maragos 

et al., 1996).  

 

  

Figure 1: Diagram of a beach profile showing the locations of the backshore, foreshore, 

and nearshore, as well as beach features such as the berm and beach scarps (Modified 

from The British Geographer, 2015).  
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Climate change is creating an even greater need for understanding beaches and 

how to manage natural erosion, since it contributes to sea level rise and stronger storm 

systems (Silva et al., 2014). Climate change is causing global sea level to rise rapidly as 

polar ice caps and glaciers melt (Leatherman et al., 2000). Thermal expansion, which 

occurs when ocean temperatures increase, causes sea level rise as the same mass of water 

increases in volume and is responsible for up to half of the sea level rise that has occurred 

in the past century (Feagin et al., 2005; Leatherman et al., 2000). Since 1970, sea level 

has risen about 10 cm, and current predictions report that sea level could rise another 0.5 

m to 1.6 m globally by 2100 (Robinson et al., 2012). Sea level rise is linked not only to 

coastal flooding, but to increased erosion as well. Erosion increases because a rise in sea 

level causes the inundation of low lying areas, allowing wave energy to reach much 

further inland. Based on this, Leatherman et al. (2000) estimate that for every 10 cm of 

sea level rise the shoreline will retreat 15 m due to erosion, a 1:150 ratio.  This landward 

migration of coastal environments continues as sea level rises as long as there are no 

natural or anthropogenic barriers (Linhoss et al., 2015). However, if sea level rises too 

quickly and beach migration is not able to keep up or there are obstacles to migration, 

erosion will occur and the coastal area will thin including land available for communities 

and ecological services (Martins and Pereira, 2014). 

Hurricanes and other strong storms can cause intense erosion over a short period 

of time. Webster et al. (2005) claim that storm intensity and frequency have increased 

since 1970 and attribute this to climate change. Beaches are greatly modified by storms, 

causing changes in morphology and grain size (Simeone et al., 2014). Strong storms are 

associated with waves with greater energy and height, which causes sand to be eroded 
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from the shore and deposited in offshore bars (Nelson, 1991). Inundation and overwash, 

which occur when sea water erodes through or overtops the dunes, are also associated 

with storms (Wang et al., 2006). Wang et al. (2006) investigated the recovery of beaches 

after a hurricane and found that the foreshore and berm experienced rapid growth within 

a month after a storm. After 90 days the pre-storm berm height is reached, although the 

new berm is located further inland. Sand deposited in the offshore bar is gradually 

redeposited onshore after the storm, driving storm recovery (Nelson, 1991). Wang et al. 

(2006) confirm that post-storm beach profiles tend to have a gentler slope than pre-storm 

beach profiles, with steeper angles being restored within a month after a storm as well.  

Beaches naturally respond to storms, but sea level rise and stronger and more frequent 

storms will disrupt this natural cycle, causing permanent beach loss (March and Smith, 

2012). 

Coastal areas act as buffers between the land and sea. They provide protection to 

the sea from pollution such as agricultural chemical runoff and excessive sedimentation 

from construction. Coastal areas also protect inland areas from destructive wave energy 

and coastal flooding. Coastal areas are also important habitats for a variety of wildlife. 

Sand beaches serve as nesting sites for turtles, mangroves serve as habitats for crocodiles 

and birds and provide places for fish to lay eggs and young to develop, and coral reefs are 

homes for many marine creatures (Fish et al., 2005, Ellison and Zouh, 2012; Burke and 

Maidens, 2006).       

In tropical areas, both coral reefs and mangroves help protect shorelines, from 

erosion. Coral reefs dissipate wave energy before it reaches the shore, which helps reduce 

erosion (Maragos et al., 1996). This benefit is jeopardized when pollution, sedimentation, 
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sea level rise, storms, and ocean acidification kill coral reefs (Maragos et al., 1996; 

Hughes et al., 2010).  Mangroves filter nutrients and sediment before they can enter the 

sea. They also protect the coast by reducing wave energy, anchoring beaches, and 

reducing storm surge (U.S. Fish and Wildlife Service, 1999; Bell and Lovelock, 2013). In 

places where mangroves are unsustainably harvested or extensive erosion has occurred, 

replanting mangroves can help reestablish shoreline protection (Cuc et al., 2015). 

Therefore, conservation efforts to maintain or restore coral reefs and mangrove forests 

offer opportunities to protect shorelines.  

In Jamaica, which has 895 km of coastline, the need to assess shoreline erosion is 

especially important (Figure 2). Tourism and fishing are primary sources of income for 

many coastal towns in Jamaica, both of which are greatly affected by shoreline erosion 

(Sary et al., 2003; Burke and Maidens, 2006; Oderiz et al., 2014). Beach resorts and 

ecotourism rely on healthy beaches, coral reefs, and mangroves in order to support the 

industry (Oderiz et al., 2014, Burke and Maidens 2006).  Changes in coastal ecosystems 

due to beach erosion can lead to a decline in annual fish catches (Sary et al., 2003). 

 The Galleon Fish Sanctuary is a marine protected area in St. Elizabeth parish that 

was designated in 2009 (Figure 3). Fish sanctuaries in Jamaica are coastal areas where no 

fishing is allowed, also known as no-take areas (BREDS- Treasure Beach Foundation, 

2016).  The Jamaican government established fish sanctuaries to try to reduce the effects 

of overfishing in Jamaica’s coastal waters. The hope is that fish can hatch and grow in the 

safety of the fish sanctuary and then when they reach maturity they can leave the fish 

sanctuary, increasing the fish stock outside of the sanctuary where fishing is allowed 

(BREDS- Treasure Beach Foundation, 2016). The sanctuary must offer good habitats for 
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Figure 2: Map of the Caribbean. Jamaica is outlined in red (modified from Esri, 2011). 

 

juvenile fish, such as mangroves, coral reefs, and sea grass. In Jamaica, the government 

approves the sanctuary and offers funding to maintain it, but it is managed by a local 

community organization or partnership. The Galleon Fish Sanctuary is managed by 

BREDS- Treasure Beach Foundation, a community group based in Treasure Beach, 

Jamaica. Fish sanctuaries can help replenish the fish stock in an area, which would be 

useful for the 2,000 fishermen in the area surrounding Galleon Fish Sanctuary (BREDS- 

Treasure Beach Foundation, 2016; C-Fish, 2012). 
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Figure 3: The southwestern part of St. Elizabeth Parish, with Galleon Fish Sanctuary 

circled in red (Esri, 2011). 

 

 

The Galleon Fish Sanctuary is also threatened by erosion due to global sea level 

rise. Sea level rise rates in the Caribbean have averaged about 2.7 mm/yr in the past 

(Robinson et al., 2012). Zelzer (2015) analyzed shoreline position changes along the 

Black River Bay, which includes Galleon Fish Sanctuary, in response to Hurricane Ivan, 

which occurred in September 2004. Erosion rates for the Galleon Fish Sanctuary were 

calculated for the years 2003-2012 and showed that almost 40% of the shoreline was 

eroding. Although some of the beach in the sanctuary has recovered since the 2004 

hurricane, other areas are recovering more slowly or are eroding.  
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Objectives 

The goal of this thesis project is to gain an understanding of the relationships 

between beach characteristics and beach change in the Galleon Fish Sanctuary in order to 

develop a risk map that can be used for efficient monitoring and management of the area. 

Geomorphic assessments of beach form, vegetation, and sediment or substrate can be 

used to understand the patterns and causes of beach erosion rates (Hanslow, 2007; Hapke 

et al., 2011; Miot da Silva, 2008). The results of these assessments can be used by coastal 

managers to allocate resources efficiently to protect beaches and the people living in the 

area. In Jamaica, shoreline erosion of the Galleon Fish Sanctuary has the potential to 

affect ecological productivity and the sustainability of local communities. Assessing how 

the beaches along the shoreline of the sanctuary respond to erosion can be used to 

achieve a better understanding of how beach changes, vegetation patterns, and substrate 

are related to erosion patterns and rates. Developing a risk map based on current erosion 

rates and erosion indicators for the Galleon Fish Sanctuary will help in the conservation 

of the area, as resources can be focused to protect areas at the greatest risk for erosion. 

The objectives of this research project are as follows: 

 

1) Assess topographic shoreline profiles, erosion indicators, and vegetation 

characteristics along the shore of the fish sanctuary. This information will 

quantify beach forms and erosion indicators of the beaches at 32 beach sites, 

including sand beach and mangrove beach sites. Different beach types were 

analyzed in order to determine how beach morphology responded to erosional 

forces;  

2) Determine the recent rates of shoreline change in Galleon Fish Sanctuary from 

2012 to 2016 using satellite images. Compare the recent rates to the historical 

shoreline change rates from the years 2003- 2012 reported by Zelzer (2015). 

This is done to evaluate where beach recovery has occurred since Hurricane Ivan 

and subsequent storms as well as areas where erosion trends are continuing;  
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3) Determine the relationships among geographic location, erosion or accretion 

history, and beach morphology to better be able to understand recent and 

historical beach change and predict future effects; and 

 

4) Evaluate the geomorphic processes and resource threats associated with erosion 

risk and create an erosion risk map for Galleon. A classification system is 

developed based on erosion history, substrate resistance and mangrove influence. 

Classification systems have long been used by beach geomorphologists in their 

research to more effectively convey their findings (Borges et al., 2014). 

Recommendations are provided for monitoring and management goals for 

conservation purposes. 

 

Hypotheses 

It is expected that areas with higher rates of erosion will have beach 

characteristics typically associated with erosion, such as lower beach angles with wide 

beach widths and low berms, eroded backbeaches, active scarps, toppled vegetation, 

larger substrate, and overwash deposits (Wang et al., 2006; Hanslow, 2007; Folk et al., 

1970; Shipman, 2008). It is also expected that erosional beaches will lack high 

percentages of ground vegetation, leaf litter, and beach ridges, which are characteristics 

of stable or accretionary beaches. Mangroves located seaward of the berm erode more 

quickly than those located landward of the berm (Ellison and Zouh, 2012). Areas 

protected by coral reefs are predicted to have lower rates of erosion than areas that are not 

protected by coral reefs. With a lack of recent hurricanes in the area, current erosion 

patterns are likely caused by sea level rise, human activity, or long-term recovery from 

past hurricane erosion events.   
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Benefits 

Scientifically, protecting shorelines is extremely important. The protection of 

coral reefs as marine protected areas is beneficial as long as it is properly managed 

(Burke and Maidens, 2006). Mangroves and coral reefs provide habitats for fish, and 

sandy beaches serve as nesting sites for sea turtles (Ellison and Zouh, 2012; Burke and 

Maidens, 2006; Fish et al., 2005). Mangrove repopulation is also advantageous in areas 

where it has been unsustainably harvested (Cuc et al., 2015). Coral reefs and mangroves 

help protect shorelines, so protecting them helps prevent erosion to an even greater 

extent. 

 The results of this study will raise the awareness of local authorities to beach 

erosion problems and the complex pattern of both changing and relatively stable 

shorelines in their communities. Economically, protecting coastal areas is also very 

important. Tourism is often one of the largest contributors to the revenue of coastal 

regions, especially in the Caribbean (Gable, 1991; Gable and Aubrey, 1990; Bueno et al., 

2008). Combining tourism and protected coastal features encourages policy makers to 

take a stand against erosion (Oderiz et al., 2014).  

 Information about the beach characteristics that indicate erosion will be given to 

the management of the Galleon Fish Sanctuary so that they can allocate their resources to 

the most threatened areas along the shoreline. This will help improve the sustainability of 

the marine protected area as a fish nursery that will improve fishing in the area. 

Successful management of the fish sanctuary can also help provide the local community 

with educational, recreation, and occupational services (C-Fish, 2012). Having a good 

place to fish is also important, especially when it is a way of life for people living near 
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the coast who need to provide for their families. Creating and maintaining fish 

sanctuaries can help restore some of the fish populations decimated by overfishing. Coral 

reefs and mangroves within the sanctuary provide nurseries for young fish to mature. 

Fishermen in Jamaica have benefitted from fish sanctuaries for this reason. 
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CHAPTER 2- BACKGROUND 

 

Shoreline management is very difficult if there is no way to assess the 

vulnerability of a shoreline. Planners and local governments need to understand the risks 

that threaten development along the coast in order to prevent infrastructure and economic 

failure. Protection of fragile coastal ecosystems is also important as they act as a natural 

defense against erosion and serve as a habitat to many organisms. The addition of 

geomorphologists to management teams ensures that shoreline assessments can 

effectively address vulnerability to erosion (Alcantara-Ayala, 2002). 

   

Geomorphic Beach Vulnerability Assessments 

Many beach vulnerability assessments used for management purposes include 

geomorphic factors. Murali et al. (2015) determined which beaches along a coastline 

were at the greatest risk of erosion based on remote sensing data and digital shoreline 

analysis. They concluded that the rapid erosion in the area is caused by natural and 

human factors such as storms and dam construction. Borges et al. (2014) developed a 

Coastal Vulnerability Index (CVI) with a rating scale based on the degree of 

vulnerability. The vulnerability was determined using remote sensing and field data, and 

focused on cliff type, storm wave exposure, chance of flooding, and presence of shoreline 

protection structures. Borges et al. (2014) anticipate that their CVI will be used by coastal 

management for the purpose of focusing resources on areas that are comparatively more 

vulnerable. Cambers (1998) outlined which beaches in particular need attention based on 

their erosion rate. They suggested protecting beachfront property, conserving beaches, or 
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finding a way to compromise on these two options. Lam et al. (2014) investigated factors 

that make a shoreline vulnerable to hurricanes, such as exposure, low ability to adapt, and 

the socioeconomic status of people in coastal areas. From this they developed a weighted 

index that could be used as a tool to determine where and how to reduce vulnerability by 

increasing resilience. 

Geomorphic assessments can also be used to evaluate erosion risk. In large study 

areas, such as the 1460 km shoreline of New England and the Mid Atlantic, geomorphic 

analysis was used to broadly classify beaches as rocky coasts, bluffs with narrow 

beaches, mainland beaches, and barrier beaches (Hapke et al., 2011). The geomorphic 

shoreline types were then further broken down based on substrate size, tidal influence, 

and depositional landforms such as spits and barrier beaches. During the past 25-30 

years, 60% of the shoreline in this study area has been experiencing erosion. The 

classification of the shoreline using the different shoreline form types helped determine 

which beach types are more susceptible to erosion (Hapke et al., 2011). A variety of 

geomorphic shoreline indicators can be used to determine the state of a beach. Hanslow 

(2007) compared the significance of the changes in shoreline position, high water line 

position, vegetation line position, scarp position, beach volume, and dune volume of a 

beach in Australia. Vegetation line position yielded more statistically significant trends 

than shoreline position and high water line position, but if the data is available, scarp 

position, beach volume, and dune volume are more accurate indicators of erosion and 

accretion trends. Geomorphic indicators can also be used to determine the effectiveness 

of protective structures. Shoreline protective structures can cause beaches to narrow, 

reduce sediment transport, and scour and erode by reflecting wave energy in comparison 
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to similar beaches without the structures (Shipman 2010).  Toppled vegetation, active 

scarps, and overwash fan deposits indicated this increased erosion. Shipman (2010) 

recommended softer erosion control in the form of beach nourishment, using vegetation 

as stabilization, and rip rap such as cobbles or woody debris.  

A geomorphic study that classifies shorelines based on its relationship with 

erosion rate has not been completed in Jamaica. As an important natural resource, the 

Galleon Fish Sanctuary needs to be protected against hurricanes, sea level rise, and 

human activities. Understanding the erosion risk for an area allows for the allocation of 

resources to protect beaches that are more vulnerable to erosion.  

 

Beach Type and Change 

Different types of beaches can be found around the world, but they can also be 

found juxtaposed along a single stretch of shoreline. Being able to identify and 

understand the characteristics of each type is important for effective shoreline 

management. Beaches that are in a state of dynamic equilibrium experience a balance 

between erosional and depositional forces (Passeri et al., 2014). Erosion is driven by 

higher wave energy reaching further inland. Storms, sea level rise, and human alterations 

of the shoreline can cause an increase in wave energy, an increase in extent of wave reach 

inland, or a decrease in sediment supply (Wong, 2003). Accretion occurs in areas of low 

wave energy or increases in sediment supply (Allen, 1981). There are some sandy 

beaches that are in a state of dynamic equilibrium or accretion, but most are in a state of 

erosion. Worldwide, about 70% of the worlds sand beaches are eroding, 10% or less are 
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accreting, and 20-30% are stable (Wong, 2003). Different variables affect each beach 

type and determine if and how much the shoreline is eroding. 

Sandy Beaches. Sandy beaches provide protection against waves, serve as a 

habitat for many organisms, and are economically important as tourist destinations 

(Absalonsen and Dean, 2011). The most seaward part of the beach is the surf zone, the 

offshore area where breaking waves roll in to shore. The foreshore, the area of the beach 

between the high tide and low tide marks, is located between the surf zone and the 

backshore (Cambers, 1998). The backshore is located behind the berm and is where 

vegetation can start growing. Landward of the backshore is where dunes can form 

(Cambers, 1998) (Figure 4). 

Sandy coastline evolution is driven by the transport of sediment parallel to the 

shoreline, where it is either deposited or eroded (Absalonsen and Dean, 2011). This  

 

 

Figure 4: Galleon Fish Sanctuary beach with features labeled.  
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longshore current is caused by waves breaking at an angle other than perpendicular to the 

beach. The current can transport large amounts of sediment a long distance in coastal 

areas if it does not meet with interference. Anything that stops or deflects the longshore 

current would be considered interference such as beach protection structures like 

breakwaters, groins, and jetties or natural features such as resistant headlands, and coral 

reefs, shore parallel barrier islands that protect the shoreline like a natural breakwater. 

Wave energy is dependent on how the wave approaches the shore. Waves break 

when the base of the wave experiences friction on the bed of the shore, which causes the 

energy of the wave is dissipated (Wright et al., 1991). Beaches can either be dissipative 

or reflective depending on where waves break on the shore. Dissipative beaches are wide 

and slope gently and are associated with high wave energy (Wright and Short, 1984; 

Short and Hesp, 1982). Dissipative beaches also tend to have shore parallel bars and 

channels. Reflective beaches are steeper and narrower, with waves running up far onto 

the shore (Wright and Short, 1984). Reflective beaches are associated with low wave 

energy, and cusps and distinct berms are more common on reflective beaches (Short and 

Hesp, 1982). Dissipative beaches tend to have large dune systems while reflective 

beaches have little dune development. The energy of a wave as it breaks onshore is also 

related to wave refraction. Wave energy is refracted by resistant headlands, causing 

erosion where waves converge on the headland and along its flanks and deposition in the 

bays (Razak et al., 2014). 

Beach sediment can come from river inputs, offshore sediment deposits, and 

erosion of the coast. The size of the sediment on a beach is dependent on wave energy 

and the amount of time it has been transported. In general the greater the wave energy, 
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the larger the particles deposited on the beach can be. Rivers are the major source of 

sediment that enters the ocean (Milliman and Meade, 1983). Whether this sediment is 

transported as suspended sediment or bedload or is deposited depends on wave energy 

and grain size. Cross-shore sediment transport occurs when sediment is transported from 

onshore to offshore and vice versa. This is caused by changes in wave energy, which 

occur seasonally and during strong storms. It is also caused by changes in sea level.  

Houston (2015) explains how in order for a beach affected by sea-level rise to achieve 

equilibrium, offshore sediment must be transported onshore by wave energy. 

A sediment budget is an analysis of the inputs and outputs of sediment in a system 

and what drives the sediment to be transported or deposited (Allen, 1981). Sediment 

budgets can be used to understand changes in the amount of sediment a river delivers to 

the ocean. This is important because the amount of sediment input from a river 

determines the amount of sediment that can be deposited on beaches by longshore 

currents. According to Syvitski et al. (2005), humans have increased the amount of 

sediment entering rivers by causing sediment erosion, but the overall amount of sediment 

entering the ocean has decreased due to the construction of dams that trap sediment. 

Cross-shore sediment transport to and from offshore deposits is also a factor in the 

amount of sediment on beaches. Sediment is often transported onshore during fair 

weather or offshore during storms (Wright et al., 1991). Cross-shore sediment transport is 

also a seasonal occurrence in some locations around the world. In areas where wave 

frequency and direction change depending on whether it is summer or winter, there are 

annual cycles of beach accretion and beach erosion as sand is transported onshore and 

offshore (Aubrey, 1979). Shoreline erosion is also a source of sediment. Sea level rise, 



 

18 

intense and frequent storms, and certain shoreline protection structures such as sea walls 

and groins all worsen erosion (Nordstrom and Jackson, 2013). 

Shoreline retreat of sandy beaches caused by sea level rise is often estimated 

using the Bruun Rule, an equation that represents the distance a beach profile will shift. 

This method is fairly inaccurate, as it ignores several important variables (Cooper and 

Pilkey, 2004). Combining this method with tidal gauge data and historical erosion rates 

interpreted from aerial photographs helps to makes sea level rise estimates more accurate 

(Feagin et al., 2004). Absalonsen and Dean (2011) estimate past erosion rates from 1971-

2006 in Florida and find an erosion rate between +0.3 to +2.4 m/yr, but this accretion is 

due to extensive beach nourishment projects. Cambers (1998) reports erosion rates on the 

Caribbean island of  Nevis range from -6.53 to +1.2  m/yr.  Robinson et al. (2012) find 

erosion rates to average -0.41 m/yr in Negril, Jamaica for the years 1991-2008 based on 

field surveys, aerial surveys and satellite imagery. Any of the human or natural causes of 

erosion could affect sandy beaches, though the exact cause would depend on the local 

conditions. 

Coral Reef Protected Beaches. Barrier reefs and fringing reefs are typically 

associated with controlling beach morphology and erosion (Maragos et al., 1996). Barrier 

reefs are detached from the shore, whereas fringing reefs are adjacent to the shore. Coral 

reefs grow both upward and seaward depending on sea level. Coral can’t survive above 

the water and if sea level rises faster than the coral can grow upward, it will die. There 

are three main types of coral species, including branching coral, massive coral, and 

encrusting coral (Hughes, 1994). Massive coral and encrusting coral are much more 

resilient to wave energy than branching coral, while branching forms of coral are more 
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resistant to sedimentation (Hughes, 1994; Rogers, 1990). A reef is considered healthy if 

there is a diverse population of coral and fish and a minimal population of algae. If the 

opposite is true, the reef is considered degraded (Hughes and Connel, 1999). Globally, 

coral cover has decreased more than 50% since the 1970s (Green et al., 2008). In Jamaica 

live coral cover has decreased from 50% to 3% between the 1970s and 1990s (Hughes, 

1994). Some recovery has occurred, with live coral cover averaging 15% (Creary et al., 

2008).  

Coral reefs are very beneficial features along tropical coastlines. Coral reefs help 

to protect beaches from erosion by dissipating wave energy (Maragos et al., 1996). They 

also reduce the amount of damage caused by hurricanes and storm surge on shore (Burke 

and Maidens, 2006, Temmerman et al., 2013). Coral that is stressed by bleaching, algal 

encrustation, rising sea levels, or sedimentation and has low live coral cover is more 

susceptible to damage by wave energy, which causes the beaches they protect to erode 

(Maragos et al., 1996; Hughes et al., 2010). Healthy reefs protect beaches from erosion 

and create systems that are more likely to be close to dynamic equilibrium. Without reefs 

to protect the beaches, they will erode at rates similar to what is seen in unprotected 

beaches subject to the many causes of erosion. Coral reefs are also an important habitat 

for aquatic life.  Herbivorous fish and invertebrates such as parrot fish and sea urchins 

graze on algae, which is beneficial for the coral, and predatory fish then feed on them 

(Hughes, 1994). Invasive species such as the lionfish upset this balance (Creary et al., 

2008). 

Coral reefs are important to the economy as fisheries and tourist attractions 

(Burke and Maidens, 2006).  Fish, mollusks, and crustaceans can all be found in reef 
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environments and are harvested from reef environments to sell and for sustenance (Aiken 

et al., 2002). Overfishing is a significant problem, depleting many of the large predatory 

fish populations (Hughes, 1994). Establishing marine protected areas and fish sanctuaries 

that include reefs within their boundaries can help fish populations grow again by 

providing a safe place for juvenile fish to mature (Aiken, 2012). 

There are many human and natural causes of reef degradation. Excessive 

sedimentation causes water to become cloudy, which can decrease the amount of light 

available for photosynthesis, and can bury coral, killing it (Rogers, 1990). Dredging and 

sediment loaded runoff from areas of human development, construction, and agriculture 

along shorelines are some of the main sources of sediment entering the ocean. Hurricanes 

can cause damage to coral reefs because of the increase in wave energy associated with 

them (Hughes and Connel,, 1999). If hurricanes occur more frequently than coral can 

recover, the damage done to the coral can be even worse than one large storm in the long 

term. Algal blooms can be caused by agricultural runoff of fertilizers or by decreases in 

the number of herbivorous fish (Hughes, 1994; Burke and Maidens, 2006). 

Mangroves. Wetlands are areas where frequent inundation causes the soil to be 

saturated, limiting the vegetation that can grow there (Cambers, 1998). In low lying 

tropical areas, one of the most common types of coastal wetland is mangrove forests. 

They are located in the intertidal zone, meaning that during high tide the lower parts of 

the trees could be submerged in sea water (Bell and Lovelock, 2013).  Mangroves cannot 

survive in pure freshwater and require salinities above 0 but below 40 parts per thousand 

(U.S. Fish and Wildlife Service, 1999). Mangrove stands are divided into three main 

types, fringe, basin, and riverine (Schaeffer-Novelli et al., 2000). Fringe and riverine  
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mangroves are exposed to flowing water, while basin mangroves have standing water 

(Figure 5).  

 Mangrove forests grow in a mixture of sand, fine silts and clays, and organics up 

to a meter above sea level (Ellison and Zouh, 2012; Phan et al., 2015). The health of a 

mangrove forest depends a lot on the sediment delivered to and within the system. If the 

sediment is eroded from the seaward boundary of the forest, the mangrove forest will be 

forced to migrate inland (Ellison and Zouh, 2012). However, mangroves also generate 

their own sediment in the form of peat and detritus. Mangroves enhance sedimentation by 

trapping sediment, and efforts to plant more in areas where erosion is occurring helps to 

stabilize the forests (Cuc et al., 2015). Mangroves filter sediment out of runoff water, 

which helps prevent excessive sedimentation of coral reefs (Ellison and Zouh, 2012). 

Wider mangrove forests are better at promoting stability and reducing flooding. These 

benefits are threatened by sea level rise, subsidence, land loss, and more severe and 

frequent storms. Sea level rise causes the landward retreat of mangroves, a process 

known as relocation (Williams et al., 1999). Erosion of mangrove forests can also be 

caused by the loss or submergence of sediment from around the roots of the mangroves,  

 

 

 

Figure 5: Diagrams of the three main types of mangrove forests, fringe mangrove forests, 

basin mangrove forests, and riverine mangrove forests (Modified from Hensel et al., 

2014). 
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which causes trees to collapse as their roots are weakened. Sand beaches serve as a 

protective barrier for mangroves just as mangrove roots anchor sand beaches in place. 

Coastal squeeze occurs when mangroves cannot migrate inland due to the presence of 

human development or mountains (Schleupner, 2008). This causes the width of the forest 

to narrow. The erosion of mangrove forests leads to further erosion inland, as healthy, 

wide mangrove forests dissipate wave energy and significantly reduce wave height (Cuc 

et al., 2015).   

Thampanya et al. (2006) analyzed mangrove forests and sand beaches in southern 

Thailand at four study sites along the coast, covering a total of about 650 km of coast. 

While some are expanding, there is a net loss of forest in the area. The erosion rate ranges 

from -1.6 to -6.7 m/yr, and in areas of accretion, the rate of accretion is 1.0 to 8.9 m/yr 

(Thampanya et al., 2006). They also found that the sand beaches were experiencing a 

larger degree of beach change than the mangrove beaches. The eastern coast, which has 

sand beaches, experienced erosion along 29% of its shoreline and accretion along 3% to 

21% of its coastline. The western coast, which has predominantly mangrove beaches, 

experienced erosion along 11% of its beaches and accretion along 2%-9% of its beaches. 

Therefore, mangroves provide much more stability to beaches by protecting them against 

wave energy.   

Galleon Fish Sanctuary has sand beaches, mangrove forests, and coral reefs. The 

presence of these 3 different beach types adds complexity and diversity to the sanctuary. 

Based on the general trend of erosion found in previous studies, there should be concern 

that the shoreline of the sanctuary is threatened by erosion due to sea level rise, storms, 

and human activities.   
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CHAPTER 3- STUDY AREA 

 

 Jamaica is located south of Cuba and west of Haiti in the Caribbean Sea (Figure 

2). Jamaica is 236 km in length and ranges from 35-82 km in width, making it the third 

largest island in the Caribbean (Richards, 2008). The coastline is 895 km in length and 

has a variety of beach types, including headland embayments, sandy beaches, estuaries, 

mangroves, coral reefs, and rocky shorelines or cliffs. Jamaica’s climate is considered 

tropical maritime. The southern coast of the island usually receives less rain than the 

northern coast, with the wettest months from May to June and September to November 

and the driest months from December to March (Richards, 2008). The average 

temperature year round is about 27°C (80°F). Hurricanes most frequently occur from 

June to November. The predominant wind direction is from the east, which helps form 

the southeast to northwest longshore current found along the south shore of Jamaica 

(Norrman and Lindell, 2010). Rafted reeds and vegetation cut from the Black River in 

order to keep the waterway clear for boats wash up on the shore of the Galleon Fish 

Sanctuary, providing evidence of this southeast to northwest wind and current direction. 

 The Galleon Fish Sanctuary is located in St. Elizabeth parish just west of town of 

Black River in southern Jamaica and was established in 2009 (C-Fish, 2012) (Figure 3). It 

is managed by The BREDS Foundation, which works out of Treasure Beach, Jamaica. 

The shoreline of the Galleon Fish Sanctuary is relatively undeveloped. Galleon Harbor 

and is located just south of the western boundary of the sanctuary on the headland. The 

sanctuary has a shoreline boundary that is about 6 km in length and a seaward boundary 

that is about 4.5 km in length. There are three main sections of the sanctuary, Malcolm  
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Bay, Hodges Bay, and Dead-Man Hole, located west to east, respectively (Figure 6). The 

shoreline of the sanctuary is characterized by sandy beaches along the eastern part of 

Malcolm Bay, mangrove forests along the western part of Malcolm Bay and along 

Hodges Bay and Dead-Man Hole, and a resistant headland that separates Malcolm Bay 

from Hodges Bay. Coral reefs can also be found right offshore of the resistant headland, 

Hodges Bay, and Dead-Man Hole. The sand beaches in Galleon Fish sanctuary are 

reflective, characterized by narrow beach widths and the presence of cusps. 

 

Geology and Soils 

 The geology of southern Jamaica is characterized by a primarily limestone karst 

landscapes. It is highly fractured because of its location on the northern edge of the 

Caribbean Plate where it meets the North American Plate (Robinson and Hendry, 2012).  

 

 

Figure 6: The Galleon Fish Sanctuary with Malcolm Bay, Hodges Bay, and Dead-Man 

Hole labeled, as well as neighboring towns Crawford and Black River (Google Earth Pro, 

2016).  
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Within the study area, the headlands on either side of each bay are composed of resistant 

rock (Figure 7). Maps modified from data obtained from MONA Geoinformatics does 

not specify the rock type. The soil types identified in the study area include the Bonny 

Gate, Crane, and Mangrove Swamp (MONA, 2001) (Figure 8). The Bonny Gate, located 

by the Galleon Harbor, is a stony loam rich in aluminosilicates. The Crane soil Institute 

(2001) show that there is also a non-limestone portion within the study area but type is a 

Holocene sand sheet found along the shoreline of the sanctuary wherever the Mangrove 

Swamp soil type is not present. The Mangrove Swamp soil type is a gravelly clay loam, 

and its distribution matches up well with the land cover of mangrove forests, which can 

be seen in Figure 9 (MONA, 2001). 

 

 

Figure 7: The geology of the coast along Galleon Fish Sanctuary. The western portion 

is non-limestone. The eastern portion is Troy Limestone (modified from MONA, 2001). 
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Figure 8: A soils map of the coast along the Galleon Fish Sanctuary. The soil types 

identified in the study area include the Bonny Gate, Crane, and Mangrove Swamp 

(modified from MONA, 2001). 

 

Vegetation and Land Cover 

 The land bordering the Galleon Fish Sanctuary is largely undeveloped (Figure 9). 

The small town of Crawford is located at the western extent of the sanctuary, and the 

town of Black River is located at the eastern extent of the sanctuary. Mangrove forests 

and fields extend at least 1 km inland of the sanctuary’s shoreline boundary, if not 

further.  Red mangroves, black mangroves, white mangroves, and buttonwoods are all 

found along the coast of the sanctuary. A wide variety of other shoreline plants are also 

present. There are also fields for grazing livestock such as cows and goats. This 

sustenance farming could cause runoff into the bay to have higher levels of nitrogen and 

phosphorous. 
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Figure 9: Land cover map of area surrounding Galleon Fish Sanctuary (MONA, 2001). 

 

Sediment System 

 Sediment deposited along the Galleon Fish Sanctuary may have originated from a 

variety of sources. Mangroves forests create deposits of peat and detritus. Sediment that 

has eroded from other beaches or has entered the erosion through fluvial systems can be 

transported by longshore drift. The longshore drift along the south coast of Jamaica is 

predominantly east to west, although bays may create a counter current (Norrman and 

Lindell, 2010). A delineation of the Black River watershed, the mouth of which is located 

less than 2.5 km east of the Galleon Fish Sanctuary, was used to find the Stream Power 

Index (SPI) in ArcMap (Dogwiler et al., 2010). The SPI shows where there are high 

slopes and high flow accumulation in the watershed, indicating higher risk for erosion 

(Wilson and Gallant, 2000) (Figure 10). Sediment coming from the Black River is most 
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likely to come from the limestone mountains of the southern part of the cockpit country, 

assuming it can be weathered, as limestone is resistant to physical weathering alone. This 

could be deposited on the beaches of the Galleon Fish Sanctuary. Carbonate sediment 

deposited on the beaches could also be from the coral reefs that border the sanctuary. 

About 20-40% of the sand in Galleon is carbonate, based on observations made in the 

field, and is likely from these reef sources. Silica deposits can be found north of the 

sanctuary, and the mining of this material could cause the deposition of quartz sand on  

 

 

Figure 10: Map depicting delineated watershed of the Black River and the areas with a 

stream power index at or above the 90th percentile. 

 



 

29 

the beach if transport between the source and the beach exists (Jackson and West-

Thomas, 1994). These deposits have a provenance in the granitic Central, Above Rock, 

and Blue Mountain Inlier groups. Sediment eroded from these interior mountains was 

transported by rivers and deposited on the marine shelf before low sea levels exposed 

them and they were transported by wind and deposited in their current locations.  

 

 

Hurricanes 

 Hurricanes can cause extensive damage along shorelines, but beaches usually 

recover within a few months or years (Wang et al., 2006). However, if there is not 

enough deposition along a beach or sea level rise outpaces deposition, the damage done 

by hurricanes can last much longer. In the Caribbean, there are usually about 6 hurricanes 

and 4 tropical storms per hurricane season (McKenzie, 2012). Since 2004, there have 

been five tropical storms or hurricanes with a path within 75 nautical miles (138.9 km) of 

Black River, Jamaica in southwest Jamaica (Office for Coastal Management, 2013). 

Hurricane Charley was a Category 1 Hurricane with a path along the south coast of 

Jamaica in August of 2004. Hurricane Ivan, a Category 4 storm, also followed a path 

south of Jamaica a month later in September of 2004 and caused widespread damage. In 

Negril, along western Jamaica, there was an average of 16 m of erosion caused by 

Hurricane Ivan (Robinson et al., 2012). In August of 2007, another Category 4 hurricane, 

Hurricane Dean followed a path along the south shore of Jamaica (Office for Coastal 

Management, 2013). The next year, in August of 2008, Hurricane Gustav, which was a 

tropical storm when it made landfall in Jamaica, took a path just a few kilometers north 

of Black River. The most recent hurricane within 75 nautical miles of was Hurricane 
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Sandy in October of 2012. Hurricane Sandy was a Category 1 storm that followed a south 

to north path on the east side of Kingston, Jamaica, which is located about 110 km 

directly east of Black River. 

 

Erosion Rates 2003-2012 

 Previous research done by Zelzer (2015) assessed beach change along 32 km of 

shoreline from Font Hill to Parottee Point. She determined shoreline erosion rates using 

IKONOS satellite imagery for the years 2003, 2007, and 2012. The focus was on the 

erosion and recovery in the area after Hurricane Ivan in 2004. From these erosion rates 

she predicted the loss of land within the next 10 and 30 years. She found that sand 

beaches without coral protection had the highest rates of erosion, while resistant 

limestone headlands and mangroves had the lowest rates of erosion or were stable. 

Beaches without coral reef protection experienced almost 3.5 times as much erosion as 

beaches protected by coral reefs. For the years 2003-2012, she found that Malcolm Bay 

was eroding along 69% of the shoreline and Hodges Bay and Dead-Man Hole was 

eroding along 31% (Figure 11).  
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Figure 11: Historical shoreline change rates for 2003-2012 (Zelzer, 2015) Satellite 

imagery is from 2003 and obtained from The Nature Conservancy (2011). 
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CHAPTER 4- METHODS 

  

The methods needed to assess beach erosion in Galleon Fish Sanctuary require 

GIS, field data collection, and data analysis. The sampling design was created to best 

represent the range of eroding, stable, and accreting beaches occurring along the 

shoreline boundary of the Galleon Fish Sanctuary. Data collection in the field included 

surveying the beaches along transects and recording beach properties such as vegetation, 

beach angle, and substrate. Relationships between beach characteristics and known 

erosion rates were evaluated using Microsoft Excel descriptive statistics and IBM SPSS 

linear regression statistics. Significant relationships were used to develop a classification 

system for beach erosion risk.  

 

Geographic Information Systems 

ArcMap 10.2.2 was used to create an interactive field map. A DEM provided 

elevation information for the study area. The pixel resolution was 30 m2, with 1 m 

vertical resolution. The elevation along the shoreline was all 2 m or less below sea level, 

except for along the headland where a few areas were up to 4 m high. The geology map 

layer, soils map layer, land cover layer were created using data from the MONA 

Geoinformatics Institute (2001) (Figures 7, 8, and 9). Satellite imagery was also used to 

determine land cover (Figure 6). 

The erosion rate data from Zelzer (2015) is from the years 2003-2012. Zelzer 

calculated the changes in vegetation line by digitizing the vegetation line for April 2003, 

December 2007, and March 2012 and then measuring the distance between the lines. The 
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historical erosion rate was then calculated by dividing the vegetation line change in 

meters by the number of years between the photo years. Erosion is indicated by negative 

beach change rates, accretion is indicated by positive beach change rates (Figure 11). The 

transects from Zelzer (2015) for Galleon Fish Sanctuary were symbolized based on their 

beach change rate to represent historical erosion and accretion rates as well as stability.  

 

Recent Erosion Rates 

 Recent erosion rates were determined for the years 2012 to 2016. The base map 

used was the March 2012 satellite image from Zelzer, which has a 0.5 m resolution 

(2015). A satellite image from Google Earth Pro from March 15, 2016 georectified in 

ArcMap to the 2012 image (Appendix A). This 2016 image has a 1.6 m resolution. The 

georectification was done at a 1:500 m scale with 9 control points and a 2nd order 

polynomial transformation (Hughes et al., 2006).  The root mean square error of the 

georectification was 1.04 m. The vegetation line was then digitized for both years, and 

the distance between the two vegetation lines was calculated at 50 m transect intervals 

along the transects (Figure 12) (Murali et al., 2015). The transects used for this study are 

the same transects used for the Zelzer (2015) study so recent erosion rates could be 

compared to the historical erosion rates. The vegetation line was used for both the Zelzer 

study and this study because the water line can be difficult to determine in the satellite 

imagery and is variable due to tides and storms (Hanslow, 2007). The distance of the 

vegetation line change was divided by 4 because the satellite images were from March 

2012 and March 2016. Negative values indicate erosion, or the vegetation line moving 

inland, and positive values indicated accretion, or the vegetation line moving seaward. 
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Figure 12: Method used to determine the updated erosion rates for Galleon Fish 

Sanctuary. The vegetation line for 2012 and 2016 was digitized and the distance between 

the lines was measured. The base map is from 2016 (Google Earth Pro, 2016). 

 

The test point error for the 2012 and 2016 images was calculated by placing ground 

control points on the corner of the 6 buildings for each satellite photo year in ArcMap and 

calculating the distances between points on the same building corners (Hughes et al., 

2006). The test point error was found to be 1.36 m, so any change between -0.34 m/yr 

and +0.34 m/yr was insignificant and considered stable.  

The Trimble GPS points from both research trips were added to an ArcMap file. 

The GPS latitude and longitude data can be found in Appendix B. An erosion rate was 

assigned to each field beach transect based on the ArcMap layer with the recent erosion 

rate and the GPS location of the field transects for each sample site. Field transects 

located between erosion transects were given the average of the erosion rates on either 

side of it. 

Legend

Sample Site GPS Points

2016 Vegetation Line

2012 Vegetation Line

Erosion Rate 2012-2016

(-1.49m/yr) - (-0.341m/yr)

(-0.34m/yr) - 0.34m/yr

0.341m/yr - 1.50m/yr
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Sample Site Selection 

Sample sites were chosen to indicate a range of historical erosion rates along the 

shoreline of the Galleon Fish Sanctuary were well represented (Figure 13). Sample sites 

were also chosen based on accessibility by boat or walking. There are no sample sites in 

Dead-Man Hole since mangroves and other vegetation made access difficult. ‘Sample 

sites were designed to have triplicate transects located 20 m apart. This layout allowed 

for accuracy and error analyses to be performed. Table 1 shows the characteristics of 

each sample site. 

 

Field Methods  

The first round of field work was completed in January of 2016. Training on how 

to do a beach survey and perform consistent qualitative assessments took place before 

data collection began. All measurements and observations were recorded on field sheets 

at each site (Appendix C). For this study, a sand beach site has a beach berm on the 

seaward side of the vegetation and a mangrove site has a berm that has retreated into the 

 

Figure 13: Field sample sites, location based on GPS points. Each sample site had 3 

transects. 
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Table 1: Sample site properties and locations.  

Site Bay Soil Type Geology Land 

Cover 

Historical 

Beach 

State 

Recent 

Beach 

State 

Beach 

Km 

1 Malcolm Bonnygate Non-

Limestone 

Sand Eroding Eroding 0.45-

0.5 

2 Malcolm Mangrove 

Swamp 

Non-

Limestone 

Sand Stable Eroding 0.6-

0.65 

3 Malcolm Mangrove 

Swamp 

Non-

Limestone 

Sand Eroding Stable 0.75-

0.8 

4 Malcolm Mangrove 

Swamp 

Non-

Limestone 

Sand Eroding Accreting 0.9-

0.95 

5 Malcolm Mangrove 

Swamp 

Non-

Limestone 

Sand Stable Accreting 0.95-

1.05 

6 Malcolm Mangrove 

Swamp 

Non-

Limestone 

Sand Eroding Stable 1.1-1.2 

7 Malcolm Mangrove 

Swamp 

Non-

Limestone 

Sand Stable Accreting 1.25-

1.3 

8 Malcolm Crane Limestone Sand Stable Accreting 1.45-

1.5 

9 Malcolm Crane Limestone Sand Stable Accreting 1.7-

1.75 

10 Malcolm Crane Limestone Sand Eroding Accreting 1.85-

1.9 

11 Malcolm Crane Limestone Sand Eroding Accreting 1.95-

2.0 

12 Malcolm Crane Limestone Sand Eroding Accreting 2.15-

2.2 

13 Malcolm Crane Limestone Sand Eroding Accreting 2.25-

2.35 

14 Malcolm Crane Limestone Sand Eroding Accreting 2.45-

2.5 

15 Malcolm Crane Limestone Sand Eroding Eroding 2.5-

2.55 

16 Malcolm Crane Limestone Sand Eroding Stable 2.65-

2.7 

17 Malcolm Crane Limestone Sand Eroding Eroding 2.8-

2.85 

18 Hodges Mangrove 

Swamp 

Limestone Mang-

rove 

Stable Eroding 4.05-

4.1 

19 Hodges Mangrove 

Swamp 

Limestone Mang-

rove 

Accreting Eroding 4.1-

4.15 

20 Hodges Mangrove 

Swamp 

Limestone Sand Stable Accreting 4.15-

4.2 
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Table 1. Continued 

Site Bay Soil Type Geology Land 

Cover 

Historical 

Beach 

State 

Recent 

Beach 

State 

Beach 

Km 

21 Hodges Mangrove 

Swamp 

Limestone Sand Eroding Stable 4.2-

4.25 

22 Hodges Mangrove 

Swamp 

Limestone Sand Eroding Stable 4.25-

4.3 

23 Hodges Mangrove 

Swamp 

Limestone Sand Eroding Stable 4.35-

4.4 

24 Hodges Mangrove 

Swamp 

Limestone Sand Eroding Stable 4.45-

4.5 

25 Hodges Mangrove 

Swamp 

Limestone Sand Stable Accreting 4.5-

4.55 

26 Hodges Mangrove 

Swamp 

Limestone Sand Stable Stable 4.55-

4.6 

27 Hodges Mangrove 

Swamp 

Limestone Sand Stable Stable 4.6-

4.65 

28 Hodges Mangrove 

Swamp 

Limestone Sand Stable Accreting 4.7-

4.75 

29 Hodges Mangrove 

Swamp 

Limestone Mang-

rove 

Stable Accreting 4.75-

4.8 

30 Hodges Mangrove 

Swamp 

Limestone Mang-

rove 

Stable Stable 4.8-

4.85 

31 Hodges Mangrove 

Swamp 

Limestone Sand Stable Accreting 5.65-

5.7 

32 Hodges Mangrove 

Swamp 

Limestone Sand Stable Accreting 5.7-

5.75 
a MONA Geoinformatics, 2001- Soil Map Data 

b MONA Geoinformatics, 2001- Geology Map Data 

c MONA Geoinformatics, 2001- Land Cover Map Data; Google Earth Pro, 2016 

d Zelzer, 2015- Historical Erosion Rates 2003-2012 

e Recent Erosion Rates, this study; Google Earth Pro, 2016 

f Beach Km, see Appendix B 

 

vegetation. At sand beach sites, full topographic surveys were completed. At mangrove 

sites, the distance from the edge of the forest to the berm was measured and the height of 

the berm was estimated. Transects were set up with the auto level on the berm at 10 m on 

the measuring tape. The transects extended 10 m inland from the berm and around 20 m 
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into the water from the water line. Three transects spaced 20 m apart were surveyed at 

each sand beach sample site. 

Topographical profiles were done in the field using survey equipment. The 

surveying sheet was loosely based on the protocol developed by Psuty and Skidds (2012). 

Two teams of four to five people used Topcon AT-B4 auto levels on tripods to determine 

the elevations along the profile transects using metric stadia rod measurements. An 

elevation measurement was taken along each transect at every change in slope and at 

important beach features such as the vegetation line, the berm, and the water line (Boon 

and Green, 1988). The measurements were noted on the field sheets. GPS points were 

also taken along each transect with a Trimble and a GPS camera at 0 m on the tape, at the 

berm (10 m), and the water line. A total of 28 sand beach surveys and 4 mangrove beach 

surveys were sampled. Beach characteristics were also observed and recorded as either 

present or not present on the field sheets at each site (Table 2). A photo log of field work 

can be found in Appendix D.   

 Beach profiles were graphed using the beach survey measurements for each 

transect (Appendix E). A complete file with all of the beach profiles and geomorphic 

assessments can be found on the Ozarks Environmental Water Resources Instistute 

server. Using these topographic profile, it was possible to determine the berm height and 

the beach width from the berm to the water line. Berm height was found by determining 

the vertical elevation of the berm above the water line. Beach width was found by 

subtracting the horizontal tape distance of the waterline from the horizontal tape distance 

of the berm. The waterline is used as a reference because the tidal range on the south 

coast of Jamaica is very low, averaging about a 0.4 m difference between low and high  
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Table 2: Beach erosion or accretion indicator method of measurement and Relative 

Percent Difference (RPD) of the triplicate spatial variability.  

Beach 

Characteristic 

Method of 

Measurement 

Reference 25th 

Percentile 

of RPD 

50th 

Percentile 

of RPD 

75th 

Percentile 

of RPD  

Berm Height 

(m) 

Auto Level Weir et al., 

2006 

17.8 30.2 36.2 

Beach Width 

(m) 

Auto Level Boon and 

Green, 1988 

30.0 50.8 64.3 

Beach Angle 

(degrees) 

Electronic 

Level 

Wang et al., 

2006 

9.8 25.2 27.7 

Active Scarp Presence or 

Absence 

Short and 

Hesp, 1982 

0 0 200 

Toppled 

Vegetation 

Presence or 

Absence 

Williams et 

al., 1999 

0 0 200 

Substrate >2 

mm 

Presence or 

Absence 

Folk et al., 

1970 

0 0 200 

Vegetated 

Backbeach 

Presence or 

Absence 

Hanslow, 

2007 

0 0 200 

Beach Ridge Presence or 

Absence 

Goy et al., 

2003 

0 0 0 

 

tide (Renaud et al., 2003). The neap tide range is about 0.2 m and the spring tide range is 

about 0.6 m. Low berm heights and  

narrow beach widths are associated with erosion (Wang et al., 2006). Duplicate site 

measurements yield relative percent differences (RPD) ranging from 8.4-48.6% for berm 

height and 1.5-64.7% for beach width. The slope of the beach face was measured at three 

points for each transect at the midpoint between the berm and the water line using a 2 ft 

long electronic level. Beach slope increases with larger sediment size and lower wave 

energy (Wang et al., 2006). Duplicate site measurements yield a RPD from 0-64.7%.    

The presence of the following characteristics indicate erosion. Active scarps are 

nearly vertical slopes located seaward of the berm and indicate higher wave energy than 

what formed the berm (Short and Hesp, 1982, Silva et al., 2014). Duplicate site 

measurements yield RPDs of 0-200%.  Toppled vegetation indicates the loss of sediment 
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or soil around roots by erosion (Williams et al., 1999). Duplicate sites yield RPDs 

ranging from 0-200%. The presence of substrate greater than 2 mm on the foreshore was 

recorded. The presence of substrate larger than 2 mm is an indication of higher wave 

energy, which is more effective at eroding beaches and removing finer sediment (Folk et 

al., 1970). The RPD of substrate larger than 2 mm ranges from 0-200%. 

  The following characteristics are indicators of accretion, so the lack of these 

features indicates erosion. A beach ridge, or past berm, is located inland of the current 

berm, and indicates accretion (Goy et al., 2003). Duplicate site measurements yield RPDs 

ranging from 0-200%. A vegetated backbeach has ground vegetation and leaf litter that 

has not been eroded by waves overtopping the berm and uprooting plants or depositing 

sand on top of vegetation (Hanslow, 2007). Ground vegetation includes grass, forbs, and 

vines. The presence ground vegetation and leaf litter present indicates that waves have 

not had high enough energy recently to overtop the berm and affect the backbeach and 

vegetation (Miot da Silva et al., 2008). The RPD range for vegetated back beach is 0-

200%. 

Coral protection decreases the energy of the waves before they reach the shore, 

causing less erosion to occur than if there was no coral protection. In Hodges Bay where 

there is coral protection, it would be expected that berm heights would be greater, 

foreshore beach width would be narrower, and beach angle would be higher than in 

Malcolm Bay where there is no reef protection. Erosion indicators such as active scarps 

and toppled vegetation would be less prevalent in a coral protected bay, while accretion 

indicators such as beach ridges and vegetated backbeaches would be more common. The 

exception to this relationship is the presence of substrate greater than 2 mm. Larger 
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substrates are often associated with higher wave energy (Folk et al., 1970), but most of 

the large substrate in this region is composed of broken shells and coral. With Hodges 

Bay so close to the source of this larger substrate, it would be expected that there would 

be more of it on the beaches.  

In May 2016, duplicates and two new sites were surveyed in a second round of 

field work. The previous sample sites were found again using the navigation tool on the 

Trimble GPS units. For duplicates, only the center transect was repeated. Accuracy and 

error analyses were run on the site triplicates and duplicates (Table 3). The coefficient of 

variation for the three transects within each sample site represents the spatial variation of 

the beach characteristics. The relative percent differences for the 11 duplicate sites 

represent temporal variability. The relative percent difference of the duplicate transects is 

two to three times higher than the coefficient of variation for the same variables. This 

shows temporal variability, as there is a five-month gap in time between duplicate 

surveys. Beaches are very dynamic systems, so this shows just how much the features on 

a beach can change in a fairly short amount of time.  

 

Statistical Analysis 

 An Excel database of all of the data collected was created. This database allowed 

for the average, standard deviation, minimum, and maximum to be calculated. Several 

statistical analyses were run to determine the relationship between erosion rate and beach 

characteristics. Simple linear regressions analyze the relationship between a dependent 

variable and one independent variable. This analysis can be done in Microsoft Excel. 

Simple linear regressions were generated to try to show how each different beach  
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Table 3: Coefficient of Variation (CV %) is between the 3 transects within a sample site. 

Relative Percent Difference is between the same transect done during the January and 

May 2016 research trips. 

 

characteristic is related to erosion rate, but these regressions yielded extremely low R2 

values that showed no statistical significance, so other methods had to be pursued. 

 Multiple linear regression determines the relationship between the dependent 

variable and multiple independent variables, in this case recent erosion rate and a beach 

characteristics. Multiple regression is performed in IBM Statistical Package for the Social 

Sciences (SPSS), a software program that can be used for extensive statistical analyses 

(Rogerson, 2015). Multiple linear regression was used because no single beach 

characteristic was significantly related to recent erosion rate.  The backwards phase of 

stepwise regression was used in order to maximize the number of possible erosion 

indicators for use in the erosion risk classification. Backwards multiple linear regression 

starts with all of the variables and removes the least significant variables one at time. 

 
Spatial Variability (CV%) 

(Site triplicates- 20 m spacing) 

Temporal Variability (RPD) 

(5 month duplicates) 

Beach Characteristic Malcolm Hodges Malcolm Hodges 

Berm Height 15.1 % 15.8 % 31.9 % 22.3 % 

Beach Width 15.1% 24.2 % 29.7 % 62.7 % 

Beach Angle 10.0 % 15.7 % 19.5 % 29.1 % 

Vegetated Backbeach 23.1 % 0 % 40 % 100 % 

Active Scarp 5.8 % 39.4 % 80 % 100 % 

Toppled Vegetation 34.6 % 47.2 % 80 % 100 % 

Beach Ridge 0 % 0 % 80 %  0 % 

Substrate >2 mm  17.3% 7.8 % 100 % 50 % 
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After selecting linear regression analysis, the dependent and independent variables are 

entered and the method is changed from “enter” to “backwards”. The option to also 

generate correlations, descriptive statistics, covariance matrices, and plots can also be 

selected. The significance for backward multiple linear regression was set to 0.05, 

meaning it will eliminate the variables that are not significant and will cause the least 

amount of change in the R2 value (Rogerson, 2015). The output window shows all of the 

statistics generated by the program.  

 

Erosion Classification  

Once the most statistically significant beach characteristics were determined, a 

classification system was developed to indicate areas of very high risk to low risk (Table 

4). This classification was created in order to represent both erosion rates and erosion 

indicators in a simple, visual way that can be easily distributed and understood. Erosion 

rates indicate year to year changes in the beach, while erosion indicators indicate more 

seasonal and immediate erosion. The erosion indicators were chosen based on their 

statistical significance. Areas of long term erosion (2003-2016) are also identified. 

Having a classification system that considers both of these factors is good at identifying 

areas of risk. A map of erosion risk in Galleon Fish Sanctuary was then created using this 

classification. This map can be used to make recommendations for shoreline management 

in the study area so that the marine protected area can be sustained and flourish. An 

accompanying substrate map will show where there are mangroves, sand beaches, and 

coral reefs. For the purpose of this study, the shoreline will only be classified as 

mangrove if there are fringe mangroves or basin mangroves within 10 m of the berm, and 
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the rest will be classified as sand. Areas with the highest risk of erosion or a new 

occurrence of erosion indicators can be monitored more closely, especially if mangroves 

are at risk.  

 

Table 4: The risk levels used for the Erosion Risk Map are based on the recent erosion 

rates from 2012-2016 and the erosion indicators that were found to be statistically 

significant in SPSS for each bay.  

Risk Level Description 

Very High Is actively eroding (> -0.34 m/yr) and displays erosion indicators. 

High Is actively eroding (> -0.34 m/yr) but does not display erosion 

indicators. 

Moderate Is currently stable or accreting (-0.34 to +2.62 m/yr) but displays 

erosion indicators. 

Low Is currently stable or accreting (-0.34 to +2.62 m/yr) and does not 

display erosion indicators. 
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CHAPTER 5- RESULTS AND DISCUSSION 

 

Recent Erosion Rates 

 The updated erosion rates for the years 2012-2016 showed that most of the beach 

along the sanctuary is recovering or stable (Figure 14). Within the sanctuary, 24% of the 

shoreline was eroding (> -0.34 m/yr), 32% of the shoreline was stable (-0.34 m/yr to 0.34 

m/yr) and 44% of the shoreline was accreting (> 0.34 m/yr). The range for stability is 

based on the test point error of the satellite images; anything within the range is 

insignificant. The average rate of shoreline change was +0.23 m/yr for 2012-2016, 

ranging from -2.95 m/yr to +2.62 m/yr, with an error of +0.34 m/yr (Figure 15 and 16). 

For comparison, the 2003-2012 average rate of shoreline change was -0.21 m/yr and the 

range was from -2.23 m/yr to +1.42 m/yr (Figure 11) (Zelzer, 2015). Greater rates of 

accretion from 2012-2016 are likely due to the relative lack of storms compared to 2003-

2012. By adding the recent vegetation line change to the historical vegetation line change 

for each transect, it was determined that only 36% of Malcolm Bay and 53% of Hodges 

Bay and Dead-Man Hole have recovered to their pre-Hurricane Ivan position (Figure 17). 

While this indicates that recovery is occurring, the damage done by hurricanes between 

2004 and 2012 and the effects of sea level rise overall are still having effects on the 

shoreline. It is possible that sea level rise could also be playing a role in the area. If sea 

level rise is outpacing sediment deposition in the area, the beach would erode, and even if 

sea level rise and sediment deposition occurred at the same rate, the beach would not be 

able to recover nearly as quickly if at all from storms and other sources of erosion.  
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Figure 14: Recent shoreline change rates for 2012-2016 (this study). Satellite imagery is 

from 2003 and obtained from The Nature Conservancy (2010).  

 

 

 

 
Figure 15: Comparison of beach change rate between the Zelzer (2015) erosion rates and 

the Geier erosion rates for Malcolm Bay. Positive erosion rates indicate accretion. The 

error is +0.34 m/yr.  
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Figure 16: Comparison of beach change rate between the Zelzer (2015) erosion rates and 

the Geier erosion rates for Hodges Bay. Positive erosion rate indicates accretion. The 

error is +0.34 m/yr. 

 

 

 
Figure 17: The net vegetation line change from 2003-2016 showing the number of beach 

transect that have recovered to their 2003 position and those that have not. The error is 

+1.36 m.  
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Beach Morphology 

 Topographic beach profile data were analyzed to find the averages, standard 

deviation, and range of values (Table 5). They were also graphed to show general trends 

and variance (Figures 18 and 19). Berm height and beach width in Galleon Fish 

Sanctuary are much smaller than those reported in Wang et al. (2006). The average berm 

height in Galleon Fish Sanctuary was about a meter and the average width was about 8.63 

m, compared to the Wang et al. (2006) average berm height of about 2 m and the average 

beach width of 36 m. The Wang et al. (2006) beach width was measured from the high 

tide line to the base of the first dune, however, so it would be expected to be wider. The 

average of the coefficient of variation for each beach characteristic is less than 20%, 

which shows that repeatability is good within the sample site. 

 

Table 5: Descriptive statistics of the measured beach characteristics of Malcolm Bay and 

Hodges Bay.  

 

Beach 

Characteristic 

Mean Standard 

Deviation 

Maximum Maximum 

Site 

Minimum Minimum 

Site 

 

Malcolm Bay       

Berm Height (m) 0.98 0.34 1.81   14a 0.34 15c 

Beach Width (m) 8.63 2.92 16      14b 3.6 3a 

Beach Angle 

(degrees) 

7.26 1.34 10.2   13c 4.1 4c 

 

Hodges Bay 

Berm Height (m) 0.65 0.20 1.3 32b 0.4 23c 

Beach Width (m) 7.05 2.4 15.1 22c 2.6 21b 

Beach Angle 

(degrees) 

5.61 1.24 9.13   32a 3.6 31a 
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 Features visible in the topographic profiles also indicate whether a beach is 

eroding, stable, or accreting. Erosional beaches are wide, with less distinct berms and low 

foreshore angles (Wang et al., 2006; Wright and Short, 1984). They may also have beach 

scarps, which indicate that wave energy is reaching further inland (Short and Hesp, 

1982). Stable beaches are narrow, with distinct berms and high foreshore angles (Wright 

and Short, 1984). Accretionary beaches may have beach ridges, indicating the previous 

position of the berm before the beach grew out (Goy et al., 2003). The following beach 

profiles are examples of these three beach states (Figure 20).  

 

Multiple Linear Regression 

 Multiple linear regression in SPSS was run using recent erosion rate as the 

dependent variable and the following as the independent variables: berm height, beach 

width, beach angle, active scarp, toppled vegetation, substrate greater than 2 mm, 

vegetated backbeach, and beach ridge. The model was run for the whole sanctuary using 

the recent erosion rates from 2012-2016 and the total erosion rates from 2003-2016. 

Then, Malcolm Bay and Hodges Bay were run separately because Hodges Bay is 

protected by extensive coral reef coverage, which influences the energy of waves 

approaching the shoreline. The models were selected had a combination of a significant F 

statistic, an R2 value that indicates that at least half of variation in the erosion rate can be 

explained by the independent variables, and independent variables that were statistically 

significant, with a confidence interval of 95% (Appendix F). The SPSS results provide 

valuable information on how each of the beach characteristics is related to erosion or 

accretion rate (Table 6).  
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Figure 20: a) Site 16 T-1, an example of an erosional beach with a beach scarp. The 

erosion rate at this site was -0.38 m/yr. b) Site 27 T-2, an example of a stable beach with 

a distinct berm and a narrow shoreface. The beach change rate was +0.06 m/yr. c) Site 9  

T-3, an example of an accretionary beach with a beach ridge. The accretion rate at this 

site was +1. 29 m/yr. 

 

For the relationship between the recent erosion rate and the independent variables 

in the whole sanctuary, the 6th model with 3 of the 8 variables was used. This model had 

an R2 value of 0.153 and an F value of 4.5. Toppled vegetation and substrate greater than 

2 mm were statistically significant indicators of erosion, as they had negative regression 

coefficients. A relatively higher berm was associated with accretion, as it had a positive 
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regression coefficient. For the relationship between the total erosion rate and the 

independent variables in the whole sanctuary, the 7th model with 2 of the 8 variables was 

used. Active scarps indicated erosion, while vegetated backbeaches indicated accretion. 

This model had an R2 value of 0.075 and an F value of 3.079, making this model 

statistically insignificant. Temporally, erosion and accretion indicators do not have a 

strong relationship with long term erosion trends. The model for the recent short term 

erosion rates indicates a better relationship with erosion and accretion indicators, but it 

still only explains about 15% of the beach change in the sanctuary. To determine if there 

is a geographic component to the relationship, the two bays were split. The extensive reef 

protection in Hodges Bay dissipates wave energy, causing the beaches in Hodges Bay to 

relatively more stable and accretionary than the dynamic beaches in Malcolm Bay 

(Maragos et al., 1996).  

 

Table 6: SPSS results for how beach characteristics are related to beach change rate. For 

Malcolm Bay, positive coefficients represent accretionary characteristics while negative 

coefficients represent erosional characteristics. For Hodges Bay, positive coefficients 

represent accretionary characteristics while negative coefficients represent characteristics 

of stability.   
Malcolm Bay Hodges Bay 

 Substrate 
< 2 mm a 

Vegetated 
Backbeach b 

Beach 
Ridge c 

Vegetated 
Backbeach d  

Beach 
Ridge e 

Regression 
Coefficient 

-0.498 +0.647 +1.186 -0.591 -0.301 

 
Standard Error 

 
0.219 

 
0.209 

 
0.197 

 
0.150 

 
0.080 

 
Standardized 
Coefficient 

 
-0.246 

 
+0.363 

 
+0.707 

 
-0.503 

 
-0.444 

 
Significance 0.028 0.003 <0.0005 <0.0005 0.001 
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For Malcolm Bay, the 6th model that had 3 of the original 8 variables is used. For 

this model, R2 = 0.509, F = 14.539, Significance < 0.0005, and the regression equation 

was Y= -0.174 – 0.498xa + 0.647xb + 1.186xc.. A negative coefficient is associated with 

erosion and a positive coefficient is associated with accretion. For Malcolm Bay, the 

presence of substrate greater than 2 mm was the best predictor of beach erosion, while the 

presence of beach ridges and a vegetated backbeach were the best predictors of accretion. 

All of these beach characteristics correspond to what would be expected on eroding or 

accreting beaches. 

 For Hodges Bay, the 7th model with 2 of the original 8 variables was used. For 

Hodges Bay, the R2= 0.58, F= 20.68, significance < 0.0005, and the regression equation 

wass Y= 0.984 – 0.591xd – 0.301xe. The SPSS results can be found in Appendix F. These 

R2 values show that more than half of the recent erosion rate values in both bays can be 

explained by these groups of variables. These R2 values are much higher than the R2 value 

for the whole sanctuary; the independent variables explain 51-58% of the beach change 

in the sanctuary. In Hodges Bay, the beach is either stable or accreting at all of the 

sample sites. Therefore, negative coefficients correspond to greater stability and positive 

coefficients correspond to accretion. The presence of vegetated backbeaches or beach 

ridges was a significant indicator of stability as opposed to accretion. Vegetated 

backbeaches are expected on stable beaches. A beach ridge could represent that the beach 

was previously accreting, but is now stable.   
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Erosion Risk Classification 

 The Galleon Fish Sanctuary was first classified based on substrate (Figure 21). 

The western part of Malcolm Bay, the point separating the two bays, and almost all of 

Hodges Bay and Dead-Man Hole have mangroves within 10 m of the berm. The part of 

Malcolm Bay closest to the harbor, and the eastern part of Malcolm Bay are sand beaches 

with no mangroves within the sample site. The mixed mangrove and sand area in Hodges 

Bay has sample sites where there are mangroves alternating with sample sites that did not 

have mangroves.  Coral reefs are located in Hodges Bay, Dead-Man Hole, and bordering 

the headland that separates Malcolm Bay from Hodges Bay. Coral reefs attenuate wave 

energy, so it would be expected that coral reef protected beaches would experience less 

erosion than a beach with no coral reef protection (Maragos et al., 1996). This is the case 

for most of Hodges Bay and Dead-Man Hole, as there is less erosion in Hodges Bay and 

Dead-Man Hole than in Malcolm Bay. The exception is the headland that separates the 

bays. This could be caused by the greater energy of the waves that are reflected by the 

coral reefs and the headland rather (Carter et al., 1990). The coral reef may be too 

damaged to provide adequate protection, but this would need to be verified. 

Using all of the data collected and analyzed, the shoreline of the Galleon Fish 

Sanctuary was classified and mapped based on erosion risk and the presence of toppled 

vegetation or substrate greater than 2 mm, the statistically significant erosion indicators 

found using SPSS (Figure 22, Table 7). The highest threat of erosion is along the east and 

west portions of Malcolm Bay, displaying both recent erosion and the presence of erosion 

indicators. The western very high risk area is mangrove forest, while the eastern very 

high risk area is sand beach. The mangrove forest along the resistant headland between  
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Figure 21: Map of beach type in the Galleon Fish Sanctuary based on field observations. 

The substrate is based on what was present 10 m landward from the berm. Mixed 

substrate had alternating sample sites of sand and mangrove.  

 

the two bays and in the eastern part of Hodges Bay are currently experiencing erosion, 

and therefore are high risk areas. Galleon Harbor, where there are a few structures and 

livestock pastures close to the shore, is also a high risk area. Due to the fact that there are 

shops, houses, and farmland threatened by erosion in this part of the bay, action should be 

taken in this area. The moderate risk areas have erosion indicators but are currently stable 

or accreting, so there is less concern in these areas. Low risk areas should be checked 

intermittently for the appearance of erosion risk indicators. The high and very high risk 

areas are where waves converge because of the headlands, while low and moderate risk 

level areas are associated with diverging wave energy within the bays (Pipkin et al., 

2011). The long term risk areas are where there is net erosion from 2003-2016, even if it 

has been depositional or stable in the past four years. These areas are where storm 

damage would likely be the greatest in the future.  
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Table 7: Percent of each bay and the total sanctuary within each risk level category. 

Risk Level Malcolm Bay (%) Hodges Bay (%) Total Sanctuary (%) 

Very High 20 % 0 % 11 % 

High 12 % 36 % 23 % 

Moderate 19 % 11 % 15 % 

Low 49 % 53 % 51 % 

 

 

Mangrove Forest Threats 

Mangrove position was analyzed to gain a better understanding of the substrate 

along the beach. The mangroves on the seaward side of the berm can trap sediment to 

build the beach back out, anchoring the new sediment in place. The alternative is that 

they will die and fall over as their roots are loosened by lack of sediment. There is 

evidence of this happening elsewhere in the form of old root stumps and toppled 

mangrove vegetation on the beaches in some areas. There are more mangroves within 10 

m of the berm in Hodges Bay than Malcolm Bay (Figure 23).  

Based on the 2012-2016 erosion rates, a third of the mangrove beaches are 

eroding, and two thirds of the mangrove beaches are stable or accreting (Figure 24). The 

eroding mangroves are located in the western portion of Malcolm Bay, closest to the 

town of Crawford, and on headlands exposed the highest wave energy. The headlands 

themselves are made of resistant rock, but if the sediment mangroves need to grow is 

removed from the surface by erosion, mangroves will fall, causing the shoreline to appear 

to erode in satellite imagery. Conservation of the mangroves is important because they  
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Figure 23: Number of mangroves at each sample site. The red line designates the split 

between Malcolm Bay and Hodges Bay. There are more mangroves within 10 m of the 

berm in Hodges Bay than Malcolm Bay. 

 

 

  
Figure 24: Mangroves in a state of erosion are at risk. Toppled vegetation is an erosion 

indicator. 

 

Malcolm Bay Hodges Bay 

Malcolm Bay Hodges Bay 
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filter runoff, serve as an important habitat for young fish, and anchor beaches. Mangrove 

restoration is already active in the Galleon Fish Sanctuary, but this information on where 

the mangroves are at the greatest risk of erosion can be used to allocate the resources for 

restoration more efficiently. 

 

Outlook for Galleon Fish Sanctuary 

 The mangrove forest in the eastern part of Malcolm Bay and the sand beach on 

the western part of Malcolm Bay are at the greatest risk for erosion because of their 

location on the flanks of the headlands where the reflected wave energy is concentrated 

(Carter et al., 1990). These areas also have no coral protection to dissipate wave energy. 

With sea level rise and the erosion rates calculated by Zelzer (2015), a total of 4150 m of 

mangrove is at risk in the next 30 years. The average beach change rate for Galleon Fish 

Sanctuary is +0.23 m/yr. Robinson et al. (2012) determined that the erosion rate for 

Negril, Jamaica to be -0.41 m/yr. Therefore, Galleon Fish Sanctuary is doing better than 

developed tourist areas in Jamaica and areas that are not protected by coral reefs, 

mangroves, and embayments.   
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CHAPTER 6- CONCLUSIONS 

 

 The risk of erosion threatens beaches around the world. Geomorphic indicators 

and GIS can be used to determine where erosion risk is the greatest. Little previous 

research on beach morphology and erosion indicators had been done in Jamaica. The 

Galleon Fish Sanctuary’s importance as a natural resource and its diverse and complex 

beach types make it an ideal location for the creation of a classification system for 

erosion risk. 

A geomorphic assessment of Galleon Fish Sanctuary included topographic 

profiles of shorelines, erosion indicators, and vegetation. Shoreline change rates were 

updated for the years 2012-2016, and the relationship between these erosion and 

accretion rates and the geomorphic beach characteristics were determined. An erosion 

risk classification was created based on these relationships. Field research was conducted 

in January and May of 2016. The following are the key findings of this study:   

1) The average erosion rate for the updated recent erosion rates from the years 

2012-2016 was found to be +0.23 m/yr with a range of -2.95 m/yr to +2.62 m/yr. Within 

the sanctuary, 24% of the shoreline was eroding, 32% of the shoreline was stable, 44% of 

the shoreline was accreting. The Galleon Fish Sanctuary is therefore doing well 

compared to many of the beaches in the world, but erosion is still a concern. 

 

2) Malcolm Bay does not have the coral reef protection that Hodges Bay does, so 

it experienced more erosion when Hurricane Ivan hit in 2004. It was determined that 36% 

of Malcolm Bay and 53% of Hodges Bay and Dead-Man Hole have recovered to their 

pre-Hurricane Ivan position. No hurricanes have come within 75 nautical miles of 

Jamaica within the past 4 years, which has given some beaches in the sanctuary a 

sufficient amount of time to recover from the storms that occurred between 2003 and 

2012. However, when the next hurricane does hit the south coast of Jamaica, erosion 

could be extensive, and continued sea level rise will impede recovery.   

 

3) One third of the mangrove-lined along the shoreline is eroding, especially on 

the flanks of the resistant headland. This is due to the wave convergence along the 

headland and possible degradation of the protective reefs. Damage to the mangroves that 
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provide protective anchoring to the beaches is a concern for beach health. Reforestation 

of eroding areas should be expanded based on the findings of this study. 

 

4) Multiple linear regression was used to evaluate the relationships between beach 

morphology and recent erosion rates (2012-2106). For the whole sanctuary, toppled 

vegetation and substrate greater than 2 mm were the most statistically significant erosion 

indicator. In Malcolm Bay, erosion is associated with substrate less than 2 mm. In 

Hodges Bay, none of the sampled sites were eroding. Vegetated backbeaches and beach 

ridges indicated more stable beaches. These beach characteristics can be used by 

management to identify eroding beaches. Multiple linear regression using the long term 

erosion rates (2003-2016) found active scarps to be the best indicator of long term 

erosion, but it was not statistically significant.  

 

5) Significant erosion indicators and current erosion rates were used to classify 

the beaches in the Galleon Fish Sanctuary based on risk from very high to low. A map 

was then created to show erosion risk in the fish sanctuary. This map and classification 

system will be shared with the managers of the Galleon Fish Sanctuary. In Malcolm Bay, 

49% of beaches had a low erosion risk, 19 % had a moderate erosion risk, 12 % had a 

high erosion risk, and 20% had a very high erosion risk. In Hodges Bay, 53% of beaches 

had a low erosion risk, 11% had a moderate erosion risk, and 36% had a high erosion 

risk. Beaches classified as having a very high risk of erosion should be monitored more 

closely by the sanctuary managers.  

 

In the future, a more extensive study on the mangrove forests could be completed 

in order to gain a better understanding of the health of the forests and their ability to 

protect the shoreline. Erosion rates can be updated whenever new satellite imagery 

becomes available so that the beach can be monitored remotely. Resurveying the beaches 

could also provide information on whether erosion continued to occur where erosion 

indicators were present or if the beach has stabilized or accreted. The developed 

classification system could also be used on other beaches in the Jamaica or the Caribbean 

threatened by erosion. 

 The east (beach kilometer 0.25 km- 0.8 km) and west (beach kilometer 2.5 km- 

2.85 km) portions of Malcolm Bay located on the flanks of the headlands have high or 

very high erosion risk classification levels. The eastern part of Malcolm Bay is where 

Galleon Harbour, the town of Crawford, and the mangrove forest is located. Therefore, 
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this area should be a priority for managers to monitor, as buildings and structures are in 

jeopardy. In Hodges Bay, mangrove forests along the headlands (beach kilometer 3.25 

km- 4.15 km and 5.05 km- 5.4 km) are classified as high erosion risk. Efforts to replant 

mangroves should be concentrated in the areas where they are at the greatest risk. The 

central part of Malcolm Bay and most of Hodges Bay have a low to moderate risk level 

and therefore there is the least concern in these areas.   

 Scientifically, classifying beaches by erosion risk is important for communication 

about beach changes. Sharing methods and results helps expand the extent and efficiency 

of research. Combining field and remote sensing based methods allows for a 

comprehensive understanding of beach changes. Recent erosion rates provide up to date 

information about where erosion is occurring in the sanctuary. The significant erosion 

indicators found using statistical analyses provide simple, visual signs that managers can 

use to deduce where erosion is occurring without field equipment and remote sensing 

programs.  The assessment of beach form, beach change, and mangrove interactions in 

the Galleon Fish Sanctuary provides managers with information they can use to ensure 

the health and sustainability of the sanctuary.  
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APPENDICES 

 

Appendix A: GIS Data  

Maps throughout this thesis were created using ArcGIS® software by Esri. ArcGIS® and 

ArcMap™ are the intellectual property of Esri and are used herein under license. 

Copyright © Esri. All rights reserved. For more information about Esri® software, please 

visit www.esri.com. 

 

Appendix A-1. Satellite Image Data Sources 

Data Source Data Year of Map 

The Nature Conservancy, 

MONA GeoInformatics 

Multispectral Imagery, Base 

Map 

2003 

 

Digital Globe 

 

GeoEye Multispectral and 

Panchromatic Imagery 

 

2012 

 

Google Earth Pro, 

CNES/Astrium 

 

Multispectral Imagery, 

JPEG 

 

2016 

 

 

Appendix A-3. Trimble GPS point accuracy, differentially corrected using MONA base 

provider as a reference. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Range Percentage 

0.15 m- 0.30 m 2.8 % 

0.30 m- 0.5 m 35.9 % 

0.5 m- 1.0 m 34.5 % 

1.0m – 2.0 m 25.5 % 

2.0 m- 5.0 m 1.3 % 
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Appendix A-2. Test Point Error for 2016 Google Earth Pro Georectified Image. The test 

point error is found using the distance formula. The average distance for these six test 

points is 1.36 m. 

Year Point X Point Y Distance 

2016 191402.4165 1995954.274 1.381168 

2012 191403.713 1995954.75  

2016 191773.0192 1996951.385 1.322919 

2012 191773.0192 1996950.062  

2016 197154.0067 1995926.146 2.831171 

2012 197156.2557 1995924.426  

2016 196782.9278 1996276.72 1.04586 

2012 196782.3325 1996275.86  

2016 191240.5362 1997312.257 1.206688 

2012 191241.277 1997311.305  

2016 197734.164 1996482.09 0.363073 

2012 197733.9008 1996481.84  
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Appendix B: Sample Site Locations  

 

Appendix B-1. From Trimble GPS points in the field 

 
Site Longitude Latitude 

 
Site Longitude Latitude 

 
Site Longitude Latitude 

Malcolm Bay          

1a -77.9097 18.0328 
 

12a -77.8944 18.0362 
 

23a -77.8816 18.0351 

1b -77.9096 18.0329 
 

12b -77.8942 18.0361 
 

23b -77.8814 18.0351 

2a -77.9084 18.0338 
 

12c -77.8940 18.0361 
 

23c -77.8812 18.0352 

3a -77.9073 18.0344 
 

13a -77.8932 18.0360 
 

24a -77.8808 18.0352 

3b -77.9072 18.0345 
 

13b -77.8931 18.0360 
 

24b -77.8806 18.0352 

3c -77.9070 18.0346 
 

13c -77.8929 18.0359 
 

24c -77.8804 18.0351 

4a -77.9060 18.0349 
 

14a -77.8917 18.0357 
 

25a -77.8803 18.0351 

4b -77.9059 18.0349 
 

14b -77.8916 18.0357 
 

25b -77.8801 18.0351 

4c -77.9057 18.0349 
 

14c -77.8913 18.0356 
 

25c -77.8799 18.0351 

5a -77.9054 18.0351 
 

15a -77.8911 18.0355 
 

26a -77.8798 18.0350 

5b -77.9051 18.0352 
 

15b -77.8909 18.0354 
 

26b -77.8796 18.0350 

5c -77.9050 18.0352 
 

15c -77.8907 18.0354 
 

26c -77.8794 18.0350 

6a -77.9039 18.0354 
 

16a -77.8897 18.0350 
 

27a -77.8791 18.0349 

6b -77.9037 18.0356 
 

16b -77.8894 18.0348 
 

27b -77.8789 18.0349 

6c -77.9036 18.0356 
 

16c -77.8893 18.0348 
 

27c -77.8787 18.0348 

7a -77.9030 18.0357 
 

17a -77.8886 18.0344 
 

28a -77.8786 18.0347 

7b -77.9028 18.0358 
 

17b -77.8885 18.0342 
 

28b -77.8784 18.0346 

7c -77.9026 18.0358 
 

17c -77.8884 18.0341 
 

28c -77.8782 18.0345 

8a -77.9009 18.0361 
     

31a -77.8724 18.0312 

8b -77.9007 18.0361 
 

Hodges Bay 
  

31b -77.8722 18.0311 

8c -77.9005 18.0362 
 

Site Longitude Latitude 
 

31c -77.8721 18.0310 

9a -77.8988 18.0363 
 

20a -77.8832 18.0347 
 

32a -77.8720 18.0309 

9b -77.8986 18.0363 
 

20b -77.8830 18.0347 
 

32b -77.8719 18.0308 

9c -77.8984 18.0363 
 

20c -77.8829 18.0348 
 

32c -77.8718 18.0306 

10a -77.8974 18.0363 
 

21a -77.8829 18.0347 
    

10b -77.8972 18.0363 
 

21b -77.8826 18.0349 
    

10c -77.8970 18.0363 
 

21c -77.8825 18.0349 
    

11a -77.8963 18.0363 
 

22a -77.8824 18.0350 
    

11b -77.8961 18.0363 
 

22b -77.8822 18.0350 
    

11c -77.8960 18.0363 
 

22c -77.8820 18.0351 
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Appendix B-2. By transect number and beach kilometer 

 
 

Beach Km Transect Site Number Beach Km Transect Site Number Beach Km Transect Site Number

Malcolm Bay 2.15 134 Site 12 4.25 176 Site 22

0 91 2.2 135 4.3 177

0.05 92 2.25 136 Site 13 4.35 178 Site 23

0.1 93 2.3 137 4.4 179

0.15 94 2.35 138 4.45 180 Site 24

0.2 95 2.4 139 4.5 181 Site 25

0.25 96 2.45 140 Site 14 4.55 182 Site 26

0.3 97 2.5 141 Site 15 4.6 183 Site 27

0.35 98 2.55 142 4.65 184

0.4 99 2.6 143 4.7 185 Site 28

0.45 100 Site 1 2.65 144 Site 16 4.75 186 Site 29

0.5 101 2.7 145 4.8 187 Site 30

0.55 102 2.75 146 4.85 188

0.6 103 Site 2 2.8 147 Site 17 4.9 189

0.65 104 2.85 148 4.95 190

0.7 105 2.9 149 5 191

0.75 106 Site 3 2.95 150 5.05 192

0.8 107 3 151 5.1 193

0.85 108 3.05 152 5.15 194

0.9 109 Site 4 3.1 153 5.2 195

0.95 110 Site 5 3.15 154 5.25 196

1 111 3.2 155 5.3 197

1.05 112 3.25 156 5.35 198

1.1 113 Site 6 3.3 157 5.4 199

1.15 114 3.35 158 5.45 200

1.2 115 3.4 159 5.5 201

1.25 116 Site 7 5.55 202

1.3 117 Hodges Bay 5.6 203

1.35 118 3.45 160 5.65 204 Site 31

1.4 119 3.5 161 5.7 205 Site 32

1.45 120 Site8 3.55 162 5.75 206

1.5 121 3.6 163 5.8 207

1.55 122 3.65 164 5.85 208

1.6 123 3.7 165 5.9 209

1.65 124 3.75 166 5.95 210

1.7 125 Site 9 3.8 167 6 211

1.75 126 3.85 168 6.05 212

1.8 127 3.9 169 6.1 213

1.85 128 Site 10 3.95 170 6.15 214

1.9 129 4 171 6.2 215

1.95 130 Site 11 4.05 172 Site 18 6.25 216

2 131 4.1 173 Site 19 6.3 217

2.05 132 4.15 174 Site 20 6.35 218

2.1 133 4.2 175 Site 21 6.4 219



 

75 

Appendix C: Field Sheets 

Appendix C-1. Front page of Geomorphic Shoreline Assessment form for sample site set 

up. 
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Appendix C-2. Back Page of Geomorphic Shoreline Assessment form for sample site set 

up. 
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Appendix C-3. Front Page of Beach Profiles form for recording survey points.  
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Appendix C-4. Back Page of Beach Profiles form for recording beach characteristics. 
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Appendix D: Photo Log 

 

 

 
Survey set up with auto level on berm crest, tape pinned with 10 m at berm crest. 

 

 

  
Example of an accretionary beach with a beach ridge.  
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Typical sand beach at Galleon Fish Sanctuary with ground vegetation landward of berm. 

 

 

  
The berm has migrated into the mangrove forest, but there is still beach in front of it.  
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Mangrove forest with very narrow beach.  

 

 

  
Site 16, Transect 1: An example of an eroding beach with an active scarp. 
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Site 6, Transect 2: Example of a stable beach. 

 

  

 
Example of an accretionary beach building out from present berm.



 

83 

Appendix E: Selection of Beach Profiles 
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Appendix F: SPSS Multiple Linear Regression Results 

 

Appendix F-1. Whole Sanctuary, Recent Erosion Rate 
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Appendix F-1. Continued 
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Appendix F-2. Whole Bay, Total Erosion Rate 
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Appendix F-2. Continued 
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Appendix F-3. Malcolm Bay, Recent Erosion Rate 
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Appendix F-3. Continued 
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Appendix F-4. Hodges Bay, Recent Erosion Rate 
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Appendix F-4. Continued 
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