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ABSTRACT 

Channelization, levee construction, and gravel mining are land management practices that 

are used for flood control. However, they often alter the balance between sediment 

supply and available sediment transporting power in streams, causing channel instability. 

Streams can respond to instability through channel incision and sediment aggradation 

which can degrade riparian habitat, increase flood risks, and cause property damage. 

These problems have been observed along segments of Big Barren Creek, which drains 

190 km² of the Missouri Ozarks in Mark Twain National Forest. Field assessment and 

modeling methods were used to evaluate the spatial distribution of channel instability 

along the upper 20 kilometers of Big Barren Creek and quantify the changes in channel 

morphology, hydrology, and sediment transport capacity related to channel 

modifications. Results show that channelized reaches of Big Barren Creek are generally 

steeper, up to two times deeper, and can transport up to four times more sediment than 

nearby natural reaches. High sediment transport capacity given unchanged sediment 

supply can account for headcuts, bed coarsening, and downstream sediment aggradation 

that are associated with channelized reaches of Big Barren Creek. These findings identify 

channelization as the primary contributor to channel instability within Big Barren Creek. 

Restoration efforts should focus on development plans to mitigate channelization and 

enhance channel recovery.  
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CHAPTER 1—INTRODUCTION 

 

The dynamics between human activity and stream response is a fundamental 

inquiry in the field of fluvial geomorphology (Gilbert, 1917; Lane, 1954; Leopold et al., 

1964; Gregory, 2006). Flowing water erodes, transports, and deposits sediment to create 

the optimal channel morphology and slope for transporting the imposed sediment supply 

from the watershed (Schumm, 1977; Lane, 1954; Montgomery and Buffington, 1997; 

Church, 2002; Church, 2006; Friend, 1993). In natural settings, streams maintain a state 

of dynamic equilibrium by responding to changes in hydrology and sediment supply 

through erosion and deposition (Mackin, 1948). However, human land management can 

cause abrupt changes in hydrology, channel morphology, and sediment supply that 

overwhelm the ability of a stream to adapt to change, causing stream channel instability 

(Wolman, 1967; Jacobson, 1995; Gregory, 2006). Stream channel instability can cause 

incision, bank erosion, and increased sediment loads while degrading riparian ecosystems 

(Groffman et al., 2003; Jacobson, 1995). In the United States, more than $1 billion is 

spent annually to manage streams that are affected by channel instability (Bernhardt et 

al., 2005).   

Humans are often drawn to settle on river floodplains, landforms that provide flat-

lying land and fertile soil for agriculture (Petroski, 2006). However, these areas are often 

prone to flooding, which can cause property damage and the loss of life (Hooke, 1986). 

Channelization, levee construction, and gravel mining are used to contain high flows, 

reduce the frequency of overbank flows, and mitigate flood risk on floodplains (Petroski, 

2006). Channelization and levee construction lower the channel bed elevation, creating a 
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wider deeper channels that is typically straight and free of instream wood and vegetation 

(Figure 1) (Hooke, 1986; Simon and Rinaldi, 2006). Instream gravel mining maintains 

large channel dimensions through the removal of sediment from the channel bed that can 

also be used as a construction aggregate (Kondolf, 1994). 

 

Channelization and Channel Instability 

Channelized reaches are often prevented from interacting with the adjacent 

floodplain, concentrating flow energy that would normally be dispersed by the floodplain 

(Wohl, 2014). Channel modifications can also reduce hydraulic roughness and change the 

 

 

Figure 1. Conceptual diagram of natural and channelized stream channels. 
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amount of sediment that is available for transport (Kondolf, 1997). These changes can 

create an imbalance between the sediment transport capacity of a channel and the amount 

of sediment that is available for transport, causing stream channel instability (Simon and 

Rinaldi, 2006). Sediment transport capacity is a measure of the maximum amount of 

sediment that can be transport by a channel, and provides insight into the amount of 

energy that is available to transport sediment (Wilcock et al., 2009). Channel instability 

has upstream and downstream effects in a watershed, including incision, headcuts, bank 

erosion, sediment aggradation, and bed armoring. 

Channel Incision. Incision is a fundamental indicator of channel instability 

(Simon and Rinaldi, 2006). Channel modification and maintenance typically increases 

channel slope or creates abrupt changes in the bed elevation, which increases the amount 

of energy that is available to exceed the bed resistance and incise the channel bed (Simon 

and Rinaldi, 2006; Surian and Rinaldi, 2003; Ortega et al., 2014; Rinaldi et al., 2005; 

Martín-Vide et al., 2010; Landemaine et al., 2015). Incision can cause channel deepening 

through the formation of headcuts or widening through bank erosion. Headcuts are 

erosional features that migrate upstream, incising into the undisturbed channel bed (Brush 

and Wolman, 1960). As the channel deepens, the banks can over-steepen and erode, 

causing the channel to widen (Simon and Rinaldi, 2006). As a result, incision caused by 

channel modification can affect unmodified upstream channel reaches through headcut 

migration and associated incision (Simon and Rinaldi, 2006).  

Sediment Aggradation. Incision increases the sediment load of channelized 

streams. Changes in channel geometry from channelization reduce the ability of the 

channelized reach to transport sediment during low flows, resulting in sediment 
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aggradation downstream of unstable reaches (Rhoads, 1990). Over time, aggraded 

sediment can be reworked by the modified channel to form bars and inset floodplains as 

the channel adjusts to change (Landwehr and Rhoads, 2003). Sediment aggradation 

gradually reduces the channel bed slope, reducing the rate of upstream incision (Brush 

and Wolman, 1960). Sediment aggradation also fills in the channel area, reducing the 

discharge capacity of the channel which can increase the frequency of overbank floods 

(Slater, 2016). Gravel mining can be used to remove aggraded sediment from the channel 

bed, maintaining large channel dimensions that prevent overbank flooding. However, 

gravel mining often prolongs channel instability by reducing the amount of available 

sediment that can be used by the channel to adjust to instability (Rinaldi et al., 2005; Chin 

et al., 2014). 

Sediment Connectivity. Channelization affects the linkage, or connectivity, of 

sediment movement through a drainage network (Hooke, 2003). Modified channels can 

transport volumes of sediment during high flows that cannot be transported by natural 

reaches downstream, causing sediment deposition (Constantine et al., 2003; Brierley et 

al., 2006; Fryirs, 2013). During high flows, fine-grained material can be winnowed out of 

the modified channel bed and deposited downstream, forming a coarse, armored channel 

bed upstream and a fine-grained, aggraded bed in downstream unmodified segments with 

a reduced sediment transport capacity (Dietrich et al., 1989; Parker and Klingeman, 1982; 

Venditti et al., 2010). These changes can affect bed mobility and aquatic habitat quality 

(Rinaldi et al., 2005; Vendetti et al., 2010). Sediment pulses and bed coarsening have 

been observed downstream of channelized streams that are maintained by gravel mining 

(Kondolf, 1997; Rinaldi et al., 2005; Frings et al., 2009). 
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Historical Channel Instability in the Missouri Ozarks 

Stream channel instability has been studied in the Ozark Plateau physiographic 

province, which includes portions of Missouri, Arkansas, Kansas, and Oklahoma. The 

Ozarks have a history of natural channel instability that is preserved in Holocene alluvial 

deposits (Jacobson, 2004). However, historical land use practices associated with 

agriculture, mining, and timber production have accelerated the delivery of water and 

sediment to Ozark streams, causing channel instability (Martin and Pavlowsky, 2011). 

When understood in a historical and physiographic context, the measurement of overbank 

deposits, channel planform, gravel bars, and bed material can be used to assess the 

magnitude of stream channel instability (Montgomery and MacDonald, 2002). 

Over the past century, long-time residents of the Ozarks have observed changes in 

the landscape, specifically large volumes of gravel that have accumulated in streams, 

reducing the size of the channel and causing streams to migrate laterally through bank 

erosion (Jacobson, 1995; Jacobson and Primm, 1997). These observations have been 

supported by studies of large Ozark rivers (Jacobson, 1995; Jacobson and Gran, 1999; 

Owen et al., 2011; Martin and Pavlowsky, 2011). Widespread, low-intensity landscape 

disturbance from logging and agriculture has caused headwater streams to incise into 

gravel-rich Quaternary deposits, forming large gravel waves that are routed through 

drainage networks and accumulate in larger rivers (Jacobson and Gran, 1999). While 

current land use practices do not contribute to gravel waves that are observed on large 

Ozark rivers, gravel waves reduce channel dimensions which can cause channel 

instability, degrade aquatic habit, and increase flood risks (Jacobson and Gran, 1999). 

Upland land disturbance associated with historical mining, agriculture, and logging has 
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also increased historical overbank sedimentation rates (Owen et al., 2011) and caused 

changes in channel planform (Martin and Pavlowsky, 2011) in large Ozark rivers. The 

greatest amount of disturbance is typically observed at the confluence of tributaries and 

larger rivers (Jacobson, 1995; Jacobson and Gran, 1999; Martin and Pavlowsky, 2011).     

Headwater streams convey upland landscape disturbances to larger rivers through 

runoff and sediment loading (MacDonald and Coe, 2007). Therefore, it is important to 

understand the geomorphic processes in headwater streams that contribute to downstream 

channel instability. Shepherd et al. (2011) assessed the geomorphic characteristics of 

Ozark headwater streams in northwest Arkansas that were located in forest, agricultural, 

and urban settings. The authors found that bankfull cross-sectional areas of urban and 

agricultural streams were up to 60% larger than that of forested streams, contributing to a 

90% increase in shear stress and a 120% increase in unit stream power. The authors 

suggest that increased channel dimensions, shear stress, and stream power from land use 

changes sediment connectivity in urban streams, causing bed coarsening and incision.  

While there have been many studies on the effects of landscape disturbance on 

channel instability in larger Ozark rivers, fewer have focused on the headwater streams 

that supply sediment to larger rivers (Jacobson, 1995; Jacobson and Gran, 1999). 

Shepherd et al. (2011) provide insight into the potential downstream effects of 

widespread land use in headwater streams. However, there is a current gap in knowledge 

of the effects of direct channel modification on Ozark headwater streams, including 

channelization, levee construction, and gravel mining.  
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Land Management in Big Barren Creek 

Big Barren Creek is a 40 kilometer-long headwater stream within Carter, Ripley, 

and Oregon counties in the Missouri Ozarks (Figure 2). Locations on Big Barren Creek 

will be referred to by river kilometer (R-km), with R-km 0.0 at the confluence of Big 

Barren Creek and the Current River. As part of the Eleven Point Ranger District, the U.S. 

Forest Service has managed 78% of the watershed since 1935, after the United States 

government purchased 3.3 million acres of land that was named Mark Twain National 

Forest in 1939 (United States Forest Service, n.d. a). Since 2012, the U.S. Forest Service  

 

 

Figure 2. Regional location of Big Barren Creek. 
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has used prescribed burning and tree planting to restore the Shortleaf pine population that 

was extensively harvested during the timber boom period from 1880 to 1920 

(Cunningham, 2007; United States Forest Service, n.d. b). 

Humans have directly modified Ozark streams since early settlement in the 1800s 

(Jacobson and Primm, 1997). Residents report that riparian forests were left mostly 

intact, but that some vegetation and instream wood were removed to maintain a “clean” 

channel (Jacobson and Primm, 1997). Channelization and gravel mining efforts increased 

in the 1930s and 1940s when large machinery became more accessible (Jacobson and 

Primm, 1997). Since then, residents have removed gravel from the channel for use as a 

road aggregate and pushed gravel up on to the channel banks to prevent flooding 

inadjacent fields (Jacobson and Primm, 1997). Some privately-managed reaches of Big 

Barren Creek are channelized and maintained by gravel mining that is regulated by The 

Missouri Department of Natural Resources (2003) (Figure 3). Evidence of 

channelmodification appears in the earliest available aerial photographs of Big Barren 

Creek from 1939 (Bradley, 2017). 

Recently, landowners have observed an increase in flooding, erosion, and gravel 

deposition in the Big Barren Creek watershed (OEWRI, 2016). The current perception 

among landowners is that prescribed burning increases runoff rates that cause upland 

incision at headcuts, flooding, and sediment deposition along the main stem of Big 

Barren Creek. Landowners currently remove sediment from the bed of channelized 

reaches following sediment aggradation (Figure 4). Prescribed burning has been linked to 

temporary increases in runoff and erosion in forested environments (Cawson et al., 2012). 
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Figure 3. Location of channelized reaches of Big Barren Creek. 

 

However, the hydrologic effects of prescribed burning have not been studied extensively 

in the Missouri Ozarks. Additionally, current flood patterns may be linked to increased 

annual rainfall in the past decade (Pavlowsky et al., 2016). Furthermore, the effects of 

channelization and gravel mining on channel stability have not been studied at Big 
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Figure 4. Examples of channelization (a) and maintenance by gravel mining (b). 

 

Barren Creek. These activities have been linked to channel instability elsewhere (Simon 

and Rinaldi, 2006; Kondolf, 1997). 

 

Purpose and Objectives 

The Ozarks have a history of stream channel instability that is associated with 

land use changes from logging and agriculture (Jacobson and Primm, 1997). Landowners 

have observed increased flooding in the Big Barren Creek watershed, resulting incision at 

headcuts in tributaries and along the main stem of Big Barren Creek that introduces sand 

and gravel into the drainage network. While Pavlowsky et al. (2016) observed an increase 

(a) (a) 

(b) (b) 

R-km 35.20 (March 2016) 

R-km 37.30 (March 2016) R-km 31.85 (March 2016) 

R-km 31.80 (March 2016) 
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in annual rainfall in the past decade that may contribute to increased flooding, other 

potential drivers of channel instability in Big Barren Creek have not been evaluated.         

The purpose of this study is to evaluate the effects of direct channel modifications 

on geomorphic and hydraulic processes in Big Barren Creek, and how they may 

contribute to channel instability. Previous studies suggest that drainage network 

extension through upland incision introduced large amounts of gravel into larger Ozark 

rivers from landscape disturbance in the previous century (Jacobson, 1995; Jacobson and 

Gran, 1999). However, few studies have addressed the role of direct channel modification 

on headwater channel instability that affects larger rivers in the Ozarks (Shepherd et al., 

2011).  

This study will evaluate the geomorphic, hydrologic, and hydraulic differences 

between reaches of Big Barren Creek with differing land management practices. The 

objectives of this study are to (1) characterize the channel morphology and sediment 

characteristics of channelized reaches and “natural” reaches that have not been 

channelized; (2) quantify differences in hydrology and hydraulics between natural and 

channelized reaches; and (3) use sediment transport modeling to understand the 

differences in geomorphic processes between natural and channelized reaches that 

contribute to channel instability. The guiding hypothesis of this project is that natural and 

channelized segments will have different geomorphic and sediment transport properties 

that may contribute to the observed incision and sediment aggradation in Big Barren 

Creek. 
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Benefits of Study 

This study will contribute to an existing body of knowledge on fluvial 

geomorphology in the Ozarks. Historical channel instability in the Ozarks has been 

linked to headwater channel incision from landscape disturbance (Jacobson, 1995; 

Jacobson and Gran, 1999). Shepherd et al. (2011) identified geomorphic differences in 

forested, agricultural, and urban Ozark streams that could potentially cause channel 

instability. This study will evaluate direct channel modification as a driver of channel 

instability in the Ozarks. The findings could be used to understand the processes that 

have caused previous channel instability in the Ozarks.  

The results of this study can also be used to understand the current channel 

instability problem in Big Barren Creek. Direct channel modification can cause upstream 

incision and downstream sediment aggradation, affecting multiple stakeholders in a 

watershed. Understanding the geomorphic and hydraulic processes that are changed by 

channel modification is important for predicting the adjustment of the channel over time, 

and identifying actions that can be taken to reduce the effects of stream channel 

instability (Latapie et al., 2014). Ultimately, this study could help managers understand 

the cause-effect relationships resulting from direct channel modification at Big Barren 

Creek, and assist in identifying areas to focus channel restoration practices. 
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CHAPTER 2—STUDY AREA 

 

Big Barren Creek is a tributary of the Current River that drains 190 km² of the 

Salem Plateau of the Ozark Highlands physiographic province. The Salem Plateau is 

characterized by dissected Paleozoic sedimentary strata (Fenneman, 1928). Tributaries of 

the Current River are low-gradient, shallow pool-riffle streams with gravel beds (Panfil 

and Jacobson, 2001). Drainage basin morphology and an extensive karst network are 

primarily controls on channel morphology in the Current River basin, with minor 

influences from land use (Panfil and Jacobson, 2001).     

  

Geology and Soils 

Big Barren Creek is underlain by Lower Ordovician-age strata, including the 

Gasconade Dolomite, Roubidoux Formation, and Jefferson City Dolomite (Weary et al., 

2014) (Figure 5). The Gasconade Dolomite and Jefferson City Dolomite are composed of 

dolomite with minor sandstone and chert. The Roubidoux Formation is composed of 

sandstone, with minor chert and dolomite (Weary et al., 2014). The Wilderness-Handy 

Fault Zone, a group of Northeast-trending faults, runs through the middle and lower 

portions of the Big Barren Creek watershed, forming steep bedrock bluffs (Weary et al., 

2014).  

Soils in the Salem Plateau are typically classified as alfisols or ultisols that are 

formed by the weathering of chert-rich bedrock (USDA, NRCS, 2006). Some areas are 

capped by a layer of nutrient-rich glacial loess (Jacobson, 2004). There are seven alluvial 

soil series in the Big Barren Creek watershed (USDA NRCS Soil Map Unit Symbol
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Figure 5. Bedrock geology and alluvial soils of the Big Barren Creek watershed.
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74625-76999) that are located in the valley bottom of upland tributaries and the main 

stem of Big Barren Creek (Figure 5). Although alluvial soils make up about 12% of all 

soils in the watershed, they contain high amounts of sand and gravel that are quickly 

delivered to the drainage network through incision (Jacobson, 2004). An overview of the 

alluvial soil series in the Big Barren Creek watershed and the sedimentology of each soil 

series are presented in Tables 1 and 2, respectively. 

The Midco, Secesh, and Tilk-Secesh soil series underlay most of the streams in 

the Big Barren Creek water. The Midco very gravelly loam contains up to 70% sand, 

while the Secesh series and the Tilk-Secesh complex and contain up to 30% and 60% 

sand (USDA NRCS Web Soil Survey). The Secesh series contains up to 75% gravel-size 

rock fragments, while the Midco series and Tilk-Secesh complex contain up to 90%  

 

Table 1. Alluvial soil series in the Big Barren Creek watershed (USDA NRCS Official 

Soil Series Descriptions) 

Series Name 
Area 

(km²) 

% of 

Alluvial 

Soils 

% of 

All 

Soils 

Bearthicket silt loam 2.1 9.1 1.1 

Higdon silt loam 0.2 0.7 0.1 

Midco very gravelly loam 4.8 20.5 2.5 

Relfe-Sandbur complex¹ 1.4 6.2 0.8 

Sandbur-Wideman-Relfe complex¹ 0.1 0.3 0.04 

Secesh silt loam 2.8 11.8 1.5 

Tilk-Secesh complex¹ 12 51.3 6.3 

¹Complexes include multiple, dissimilar soil series that occur in a repeating pattern 
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Table 2. Big Barren Creek alluvial soil sedimentology (USDA NRCS Official Soil Series Descriptions) 

  

   

Overbank Unit Coarse Unit 

Series 

Name 

Land- 

form¹ 

Slope 

(%) 

Parent 

Material 

Depth 

(m) 
Texture 

% Rock 
Fragments 

Texture 
% Rock 

Fragments 

Bearthicket Tr, Fp 0-3 
Silty 

alluvium 
0.51 

Silt loam - 

Silty clay 

loam 

0-5 Silt loam - Sandy clay loam 0-80 

Higdon Tr, Ft 0-9 
Silty colluvium, 

alluvium 
0.58 

Silt loam - 

Silty clay 

loam 

0-3 Loam - Silty clay loam 0-40 

Midco Fp 1-4 Alluvium 0.20 
Gravelly 

loam 
35 

Very - Extremely gravelly 

sandy loam 
30-80 

Relfe Fp 0-3 
Sandy and 

gravelly alluvium 
0.15 

Very 

gravelly 

sandy loam 

50 
Very - Extremely gravelly 

loamy coarse sand 
65-90 

Sandbur Fp 0-3 
Loamy 

alluvium 
0.48 

Fine sandy 

loam -  

Loamy fine 

sand 

0 Loamy fine sand - Fine sand 0-5 

Secesh 
Fp, 

Tr, Ft 
0-8 

Loamy alluvium, 

Cherty residuum 
0.48 

Silty clay 

loam - Loam  
5-25 

Gravelly silty clay loam - 

Extremely 

gravelly sandy clay loam 

25-75 

Tilk 
Fp, 

Af, Tr 
0-5 

Loamy and sandy 

alluvium with rock 

fragments 

0.20 

Loam - 

Coarse 

sandy loam 

25-75 
Silt loam - 

Loamy coarse sand 
35-90 

Wideman Fp 0-5 
Sandy 

alluvium 
0.30 Fine sand 0 Loamy sand - Fine sand 0-85 

¹Tr = Terrace; Fp = Floodplain; Ft = Footslope; Af = Alluvial Fan 
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gravel-size rock fragments (USDA NRCS Official Soil Series Descriptions). The high 

percentage of sand and gravel in these soil series can account for the coarse sediment 

supply that enters the drainage network through incision. 

 

Climate and Hydrology 

The Ozark Plateau has a temperate climate with a mean annual temperature of 15° 

C (Adamski et al., 1995). Annual high temperatures occur in July and annual low 

temperatures occur in January (Adamski et al., 1995). Precipitation patterns are 

influenced by moist air masses that originate in the Gulf of Mexico in the spring 

(Adamski et al., 1995). The southern region of the Ozark Plateau receives 120 cm of 

rainfall annually (Adamski et al., 1995). In the past decade, annual rainfall and the 

frequency of extreme rainfall events (> 7.6 cm/day) have increased in the Big Barren 

Creek watershed (Pavlowsky et al., 2016). 

Carbonate rock dissolution has formed an extensive karst aquifer system in the 

Ozark Plateaus. Abundant karst drainage causes headwater streams to typically be dry, 

except during flash flood events that oversaturate soils and initiate overland flow 

(Jacobson, 2004). The Big Barren Creek watershed lies above the Lower Ozark aquifer 

member of the Ozark Plateaus aquifer system. Interbedded sandstone layers in the 

Roubidoux Formation store groundwater within the Lower Ozark aquifer (Westerman et 

al., 2016; Orndorff et al., 2001). The Lower Ozark aquifer has one of the highest densities 

of springs in the United States, playing an important role in the human development in 

the Ozarks (Vineyard and Feder, 1974).  
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Land Use 

The Ozarks were originally inhabited by hunter-gatherer societies (Jacobson and 

Primm, 1997). Widespread settlement began in the early 1800s after the United States 

acquired the Ozarks during the Louisiana Purchase (Jacobson and Primm, 1997). Settlers 

cleared valley bottoms for grazing, row crop production, and minor timber production 

(Jacobson and Primm, 1997). A population influx occurred during the timber boom 

period, which began in the 1880s and lasted until the onset of the Great Depression in the 

1920s (Jacobson and Primm, 1997). At the peak of the timber boom period, lumber from 

up to 0.3 km² of forest was processed daily at Grandin Mill in Grandin, MO 

(Cunningham, 2007). The population of the Ozarks declined after the timber boom 

period, and the remaining residents used the land for subsidence agriculture (Jacobson 

and Primm, 1997). 

The Ozarks are currently dominated by mixed oak, hickory, and shortleaf pine 

forest and grassland. The landscape is used for logging, recreation, and agriculture 

(USDA, NRCS, 2006). The land within the Big Barren Creek watershed is classified 

mostly as deciduous forest (75.6%), with minor evergreen forest (9.5%), mixed forest 

(6.8%), and farmland (4.2%) (Table 3; Figure 6). The US Forest service manages 78 

percent of the property in the Big Barren Creek watershed, while the rest is privately 

managed. The road network is made up of unpaved forest roads and two state highways. 
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Table 3. National Land Cover Database (NLCD, 2011) land use classification 

Land Use Class Percent of Watershed 

Open Water 0.03 

Developed 2.1 

Deciduous Forest 75.6 

Evergreen Forest 9.5 

Mixed Forest 6.8 

Shrubland 0.5 

Grassland/Herbaceous 0.7 

Planted/Cultivated 4.2 

Wetlands 0.5 



 

 

2
0
 

 

Figure 6. Land use classification for the Big Barren Creek watershed. 
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CHAPTER 3—METHODS 

 

Field methods were used to characterize the overall channel morphology and 

substrate of the upper 20 kilometers of Big Barren Creek. From this study, three pairs of 

natural and channelized reaches were selected for additional geomorphic analysis and 

sediment transport modeling to understand differences in boundary conditions and 

geomorphic processes that may contribute to channel instability. Field, laboratory, and 

computational methods were used to collect and prepare input data for sediment transport 

modeling.    

 

Model Site Selection and Description 

A geomorphic assessment was conducted to characterize the downstream trends 

in channel geometry and sediment properties of Big Barren Creek. Twenty three study 

sites were selected along the upper 20 kilometers of Big Barren Creek that reflect 

changes in drainage area and land use (Figure 7). A longitudinal profile, cross-section, 

pebble count, and large woody debris (LWD) inventory were collected at each site. The 

longitudinal profile spanned three riffle-pool sequences, or six channel widths if notable 

bed topography was absent. The channel cross-section was surveyed at the middle riffle 

crest along the longitudinal profile. Channel geometry was surveyed with an auto-level 

and stadia rod following methods described by Harrelson et al. (1994). Five bed particles 

were blindly-selected and measured with a gravelometer at seven transects along the 

longitudinal profile using the Wolman (1954) pebble count method. If LWD was present 

at a study site, the length and diameter was measured with a stadia rod or tape measure.



 

 

2
2
 

 
Figure 7. Map of study sites used in this project. 
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During the geomorphic assessment, potential indicators of channel instability 

were found along the main stem of Big Barren Creek. Headcuts were found upstream of 

channelized reaches and fine-grained sediment pulses were found downstream of 

headcuts (Figure 8). Headcuts indicate vertical incision that increases the sediment supply 

in the channel. Fine-grained sediment pulses indicate sediment aggradation in response to 

increased sediment supply from incision. The close proximity of headcuts and fine-

grained sediment pulses to channelized reaches suggests that these features may be linked 

to abrupt changes in land management. To test this hypothesis, three pairs of natural and 

channelized reaches were selected for additional geomorphic analyses and sediment 

transport modeling to compare differences in channel geometry, hydraulics, and 

hydrology that lead to differences in the maximum sediment transport capacity that can 

cause instability. The following three sites were selected for sediment transport modeling: 

 

 

Figure 8. Examples of channel incision (a) and sediment aggradation (b) that were 

observed during the geomorphic assessment of Big Barren Creek. 

 

 

(a) 

R-km 37.60 (March 2016) 

(b) 

R-km 36.80 (March 2016) 
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The Upper Big Barren (UBB) model site is located upstream of State Highway J 

between R-km 37.94 and 36.68 (Table 4). The natural reach is managed by the US Forest 

Service and the channelized reach is privately managed. A 1-meter tall headcut has 

incised into the Tilk-Seceh complex and Midco very gravelly loam between the two 

reaches, supplying sand and gravel to the drainage network. The channelized reach is 

maintained by gravel mining. An aggraded reach is located downstream of the 

channelized reach, extending to State Highway J. 

The Polecat Hollow (PH) model site is located along County Road J-174 between 

R-km 32.90 and 29.70. The natural reach is located upstream of the confluence of Polecat 

Hollow and Big Barren Creek, and is covered with a layer of fine-grained sand and 

gravel. The channelized reach is located below the confluence of Polecat Hollow and Big 

Barren Creek and is maintained by gravel mining. Both reaches are located on private 

property. While there are no headcuts on the main stem of Big Barren Creek at this model 

site, headcuts at Wolf Pond and Polecat Hollow have incised into the Tilk-Secesh 

complex and Midco very gravelly loam, suppling sand and gravel to the channelized 

reach. An aggraded reach is located downstream of the channelized reach, extending to 

R-km 29.70. 

 

Table 4. Longitudinal extent of channel types at model reaches (R-km) 

Site Natural Incised Channelized Aggraded 

Upper Big Barren (UBB) 37.94 - 37.85 37.85 - 37.65 37.65 - 37.02 37.02 - 36.68 

Polecat Hollow (PH) 32.90 - 32.77 32.77 - 32.10 32.10 - 30.65 30.65 - 29.70 

Bearpen Road (BP) 24.99 - 24.90 24.90 - 24.65 24.65 - 23.13 N/A 
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The Bearpen Road (BP) model site is downstream of County Road J-176, locally 

known as Bearpen Road, between R-km 24.99 and 23.13. The natural reach is managed 

by the US Forest Service and the channelized reach is privately managed. The 

channelized reach extends below the confluence of Cedar Bluff Creek and Big Barren 

Creek. A 2-meter headcut has incised into the Midco very gravelly loam between the 

natural and channelized reaches, supplying sand and gravel to the channelized reach. 

Sediment aggradation was not as easily identifiable at this site, suggesting that fine-

grained sediment has a greater mobility that in upstream reaches of Big Barren Creek. 

This most likely occurs because groundwater enters Big Barren Creek at springs near the 

confluence of Cedar Bluff Creek, providing more frequent flows that are capable of 

mobilizing fine-grained sediment.  

 

Bedload Transport Processes and Modeling  

Changes in channel dimensions, slope, and substrate from channelization can 

increase the amount of energy in a channel that is available to transport sediment (Simon 

and Rinaldi, 2006). Instability can occur if the channel has the capacity to move more 

sediment than it is being supplied (Simon and Rinaldi, 2006). In this study, sediment 

transport modeling was used to estimate the maximum transport capacity of natural and 

channelized reaches. Understanding the differences in sediment transport between natural 

and channelized reaches of Big Barren Creek will provide insight into the downstream 

effects of abrupt changes in land management (Wilcock, 2001). 

The bedload of a stream is defined as the coarse sediment that is not typically 

suspended in the water column (Church, 2006). Bedload moves by rolling, sliding, or 
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bouncing along the channel bed during high flows (Church, 2006). Because the bedload 

is infrequently mobilized, it acts as the “engine” of fluvial geomorphology by regulating 

channel geometry and slope (Montgomery and Buffington, 1997; Church, 2006; Wilcock 

et al., 2009; Pfeiffer et al., 2017).  

Bedload transport is controlled by shear stress; the frictional force that acts 

parallel to the channel bed. The amount of available shear stress in a channel at a given 

water depth is expressed by the following equation (Baker and Ritter, 1975): 

τ = ρ g R S 

where τ is the available shear stress (N/m²), ρ is the density of the fluid in the channel 

(kg/m³), g is the acceleration due to gravity (m/s²), R is the hydraulic radius (m), and S is 

the channel slope (m/m). Particle movement begins when the available shear stress 

exceeds the frictional resistance of the channel bed, referred to as critical shear stress. 

The following equation is used to calculate critical shear stress: 

τc = τ*(ρ
s
 - ρ

w
) g D 

where τc is the critical shear stress (N/m²), τ* is a dimensionless Shields number for 

sediment with a grain size of D (m), ρs is the sediment density (kg/m³), ρw is the fluid 

density (kg/m³), and g is the acceleration due to gravity (m/s²) (Buffington and 

Montgomery, 1997). The first dimensionless Shields numbers were derived by Shields 

(1936) using homogeneous sediment in a flume. Subsequent studies have shown that 

flow turbulence, drag, grain protrusion, and grain packing influence the Shields number 

in heterogeneous sediment, resulting in a wide range of Shields numbers for natural 

stream channels (Buffington and Montgomery, 1997). 
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Bedload transport rates are commonly expressed as a function of the discharge of 

water that flows through the channel (Wilcock et al., 2009). Discharge (m³/s) is the 

product of the cross-sectional flow area (m²) and the flow velocity (m/s) at a given depth. 

The average flow velocity in metric units is calculated with the Manning equation: 

v = 
R

2
3 S

1
2

n
  

where v is velocity (m/s), R is the hydraulic radius (m), S is the channel slope (m/m), and 

n is Manning’s n; a dimensionless hydraulic roughness coefficient that quantifies the 

amount of flow resistance that is offered by the boundary conditions of the channel. 

While the Manning equation does not account for non-uniform flow, differences in 

velocity in the water column, and local acceleration and deceleration from obstacles and 

backwatering, the equation is commonly used to characterize the average flow velocity of 

natural channels (Ferguson, 2010). A variety of empirical and visual methods are used to 

estimate Manning’s n values for natural channels (Barnes, 1967; Limerinos, 1970; 

Pizzuto et al., 2000; Arcement and Schneider, 1989; Phillips and Tadayon, 2006). 

 

Bedload Assessment for Gravel-bed Streams (BAGS) Modeling 

The BAGS model is an Excel-based sediment transport model that was developed 

by the US Forest Service (Wilcock et al., 2009). It was previously used by Owen et al. 

(2012) to predict the optimal timing of in-channel dredging of lead-contaminated 

sediment in the Missouri Ozarks. The model estimates sediment transport rates (kg/s) and 

sediment transport stage between a minimum and maximum discharge. The transport 

stage is a dimensionless ratio of the available shear stress to the critical shear stress at a 
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given discharge (Pitlick et al., 2009). Significant sediment transport occurs as the 

transport stage approaches and exceeds a value of one (Church, 2006).  

Six different calibrated and uncalibrated sediment transport equations can be used 

in the BAGS model. All equations are based on the concepts of available shear stress and 

critical shear stress that vary with discharge (Pitlick et al., 2009). The Wilcock-Crowe 

(2003) surface-based equation (WC) and the Parker-Klingeman (1982) sub-surface-based 

equation (PK) were used for this project. Both equations are uncalibrated and use 

complex operators to produce sediment transport rates for multiple size fractions of the 

grain size distribution (Pitlick et al., 2009). The WC and PK equations were chosen 

because they model sediment transport for the entire grain size distribution and do not 

require empirical bedload data to operate.  

The BAGS model requires a channel cross-section, slope estimate, surface or sub-

surface grain size distribution, and hydraulic roughness estimate to operate. Minimum 

and maximum discharge values are required to produce a rating curve. The following 

methods were used to collect the channel morphology, grain size, and hydrologic data to 

operate the model. 

Channel Morphology. An auto-level and stadia rod were used to survey the 

cross-sectional area and longitudinal profile of each model reach following standard 

methods (Harrelson et al., 1994). The longitudinal profile of the UBB channelized reach 

was surveyed with a Topcon total station. Longitudinal profiles included three riffle-pool 

sequences or 12 active channel widths if bedforms were not easily identifiable. One 

channel cross-section was surveyed at the riffle crest at the center of the longitudinal 

profile, and extended to the elevation of the high terrace in the natural reaches or the 
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maximum levee height in the channelized reaches. The elevation of bankfull indicators 

and flood debris deposits were included in channel cross-sections. 

Grain Size. Field and laboratory methods were used to produce grain size 

distributions of the surface and sub-surface sediment at each model site. A pebble count 

method was used to determine grain size distribution of a number of measured particles, 

and volumetric sampling was used to determine the grain size distribution of the weight 

of a sub-surface sediment sample. Comparing the surface and sub-surface sediment 

provided insight into the degree of armoring in each model reach (Bunte and Abt, 2001). 

Although different methods were used to characterize the surface and sub-surface grain 

size distribution, the grain size distributions can be compared without conversion 

(Kellerhals and Bray, 1971; Rice and Church, 1996). 

A Wolman (1954) pebble count technique was used to measure the intermediate 

axis of 30 blindly-chosen particles from the bed surface with a gravelometer along eight 

transects with a spacing of one active channel width. Particles that could not be measured 

with the gravelometer were classified as sand (0.063 mm), fines (2 mm), or soil. Soil was 

considered to be non-mobile, cohesive sediment and was not included in the grain size 

distribution for the BAGS model. 

Sub-surface sediment was collected from a pit that was dug to a depth of at least 

twice the diameter of the largest mobile clast on the channel bed (Bunte and Abt, 2001). 

Two to three bedload pits were dug in each sub-reach to account for heterogeneity in the 

sub-surface sediment distribution. The sediment was passed through the following sieves 

and weighed in the field with a hanging scale: 63 mm, 45 mm, 25.4 mm, and 16 mm. A 

portion of the <16 mm fraction was returned to the laboratory, dried in an oven at 60˚ C, 
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and passed through the following sieves: 8 mm, 4 mm, 2 mm, and 1 mm. Laser 

diffraction was used to determine the proportion of sand, silt, and clay in a 0.2-gram 

portion of the <1 mm fraction of each sub-surface sample (OEWRI, 2008). The mass of 

the size fractions from field sieving, lab sieving, and laser diffraction methods were 

combined to produce a cumulative frequency distribution of grain size to the total mass of 

each sub-surface sample. 

The BAGS model assumes that all sediment has a uniform density of 2.65 g/cm³ 

(Pitlick et al., 2009). The density of particles in the three modified sub-reach bed load pits 

was measured by water displacement using a beaker and digital scale. Particles were 

divided by lithology into chert and non-chert and into the following size categories: 8-16 

mm, 16-32 mm, and 32-45 mm. Chert samples had a mean density of 2.33 g/cm³ with a 

10.09 % coefficient of variation, while the non-chert samples had a mean density of 2.26 

g/cm³ with a 13.59 % coefficient of variation (Figure 9). In both cases, the modeled  

 

Figure 9. Particle density distribution of model site sub-surface sediment. 
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sediment in Big Barren Creek has a lower density than what is assumed by the BAGS 

model. Because sediment density contributes to the critical shear stress of the bed 

sediment, it is possible that the BAGS model could under-predict sediment transport rates 

for the degree of variation in the channel cross section, n3 accounts for the effect of 

obstructions on flow resistance, n4 accounts for the amount of vegetation in the channel, 

and m accounts for the degree of meandering in the channel (Arcement and Schneider, 

1989).All values are dimensionless, and the selection guides that were used to estimate 

the base n and adjustment factors are presented in Appendix A.  

Measurements of the position and diameter of trees within 20-meter cells centered 

at the cross-sections of natural reaches were used to calculate the percentage of flow 

obstruction from vegetation. Additionally, the following equation was used to calculate 

the vegetation density of each natural reach (Petryk and Bosmajian, 1975):  

Vegetation density = 
∑Ai

AL
 

where ∑Ai is the total frontal area of vegetation blocking the flow through the reach 

(m²), A is the cross-sectional flow area (m²), and L is the length of the channel reach (m) 

(Petryk and Bosmajian, 1975). 

Flood Frequency. Flood frequency estimates provide insight into the timing of 

bedload-transporting discharge events. Least-squares regression equations published by 

the US Geological Survey were used to estimate the 2-, 5-, 10-, 25-, 50-, and 100-year 

flood discharge for each model site, using drainage basin area (mi²) and slope (ft/mi) 

(Alexander and Wilson, 1995). Basin slope is measured between two points that are at 10 

and 85 percent of the distance from the mouth of the channel. The equations were derived 

from hydrologic data from basins in rural Missouri between 0.33 and 29,700 km² in size 
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and have an average standard error between 30 and 40 percent (Alexander and Wilson, 

1995). The drainage basin area and slope at each model site were calculated in ArcMap 

(version 10.2.2) using a delineated Big Barren Creek drainage network from a USGS 10-

meter Digital Elevation Model. 

Discharge Capacity. Calculated flood discharges were simulated in channel 

cross-sections using Intelisolve (2006) Hydraflow Express software. This analysis was 

used to estimate the bankfull stage in the natural reaches to measure channel geometry, 

model flow recurrence intervals at model reaches, and select the minimum and maximum 

discharge values for the BAGS model operation. This process was based on the 

assumption that the 2-year flood discharge is roughly equivalent to the bankfull discharge 

at which the channel is filled to immediately before spilling out onto the floodplain 

(Dury, 1961; Wilkerson, 2008). The calculated 2-year flood discharges were confirmed to 

be similar to the estimated bankfull discharge at the natural model sites. The discharge 

capacity for channelized and incised segments of Big Barren Creek was defined as the 

maximum volume of water that can be contained by the incised channel or modified 

channel dimensions. From this analysis, the BAGS model was operated between one fifth 

of the 2-year flood discharge and the 100-year flood discharge at each model site. 

 

 

 

 

 

 



 

33 

CHAPTER 4—RESULTS AND DISCUSSION 

 

Downstream Trends in Channel Morphology 

Channel width, depth, and cross-sectional area of all 23 sites were measured in 

Hyraflow Express at the estimated bankfull stage in natural reaches. At incised and 

channelized reaches that are non-alluvial, these dimensions were measured at the 

maximum channel capacity (Florsheim et al., 2013). These dimensions, along with 

channel slope and median grain size, were plotted against the drainage area at each site 

(Figure 10). A sequence of four distinct channel types was observed during the 

geomorphic assessment that was supported by non-linear overall trends in channel 

geometry, slope, and substrate. Photos of various sites are presented in Appendix B. 

Channel assessment sites were classified as natural, channelized, incised, or aggraded 

based on the channel geometry and sediment that was present at the site (Table 5; Figure 

11; Appendix C). Natural reaches of Big Barren Creek are wide and shallow, with mixed 

gravel-cobble beds that are stabilized by trees and vegetation. Channelized reaches have a 

similar width but are deeper, free of instream vegetation, bounded by artificial levees, and 

have loose, armored gravel-cobble beds. Incised reaches have headcuts, steep slopes, and 

small width-depth ratios and are located upstream of channelized reaches. Aggraded 

reaches are located downstream of channelized reaches and have a natural channel 

morphology that is blanketed by a layer of sand and fine gravel (Appendix B). 

The reoccurring pattern of incised and aggraded reaches near channelized reaches 

suggested that channelization may be linked to incision and sediment aggradation on the 

main stem of Big Barren Creek (Figure 12). Other studies have shown that channelization  
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Figure 10. Downstream trends in channel geometry, substrate, and slope in the upper 20 

kilometers of Big Barren Creek. Note: trend line fitted to natural sites. 
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Table 5. Mean values of channel morphology characteristics for different channel types 

Channel 

Type 

Sites 

(n) 

Width 

(m) 

Mean 

depth 

(m) 

Max 

depth 

(m) 

CS 

Area 

(m²) 

W/D 

Ratio 

D50 

(mm) 

Slope 

(%) 

LWD 

Volume 

(m³) 

Natural 9 30.7 0.7 1.3 20.1 60 17.7 0.53 0.2 

Aggraded 4 17.1 0.7 1.3 12 29.9 14.1 0.45 0.7 

Incised 2 14.7 1.2 2 17.8 12.1 27.3 0.81 0 

Channelized 8 26.7 1 1.9 32.3 33 22.7 0.35 0.13 

  

 

alters channel geometry, substrate, and bed resistance, which can initiate upstream 

incision and downstream sediment aggradation (Simon and Rinaldi, 2006; Gregory, 

2006; Landwehr and Rhoads, 2003). These effects are often attributed to an increase in 

the available energy to transport sediment, coupled with a decrease in the erosional 

resistance of the modified channel bed (Simon and Rinaldi, 2006). The downstream 

progression of channelization-induced disturbance at Big Barren Creek is illustrated in 

Figure 13. 
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Figure 11. Channel types of Big Barren Creek. 

Aggraded: R-km 36.80 (March 2016) 

Incised: R-km 37.60 (March 2016) Natural: R-km 37.87 (February 2017) 

Channelized: R-km 37.30 (March 2016) 
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Figure 12. Classified survey sites from the geomorphic assessment. 
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Figure 13. Conceptual diagram of channelization-induced instability on Big Barren 

Creek. 

 

Geomorphic Characteristics of Model Sites 

Upstream incision and downstream sediment aggradation were observed near 

channelized reaches of Big Barren Creek, suggesting that abrupt changes in land use may 

initiate channel instability. Three pairs of natural and channelized sites were selected for 

additional geomorphic analysis and sediment transport modeling to quantify differences 

in channel morphology, hydraulics, hydrology, and sediment transport that may lead to 

channel instability (Appendix B). Paired sites are between 500 and 1,000 meters apart 

and have drainage areas that range within 30% of each other. Natural and channelized 

sites were selected in close proximity to each other to reflect differences that can be 

attributed to land use. However, there may be natural drivers of geomorphic differences 

at the PH site. The natural and channelized reaches are separated by the confluence of 

Polecat Hollow and Big Barren Creek, which provides 8 km² of additional drainage to the 

channelized reach. This could cause the channel to naturally enlarge to accommodate the 
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increased discharge that does not flow through the natural reach. Additionally, the 

channelized reaches receives sediment from a headcut on Polecat Hollow.   

Channel Morphology and Hydraulics. Natural and channelized reaches of Big 

Barren Creek have distinct differences in channel geometry, substrate, and vegetation that 

influence hydraulic roughness, discharge capacity, and sediment transport processes 

(Table 6). Natural and channelized reaches have similar channel widths, but channelized 

channels are deeper, increasing the cross-sectional flow area by up to 130%. With the 

exception of the Upper Big Barren modeling site, the slopes of channelized reaches are 

up to 45% steeper than the natural reaches (Appendix D). While these large channel 

dimensions reduce overbank flooding in channelized reaches of Big Barren Creek, they 

also increase the amount of excess flow energy that can cause incision and channel 

instability (Simon and Rinaldi, 2006).  

In addition to modifying channel dimensions, channelization actions often remove 

vegetation and trees that grow in the active channel and the riparian zone (Hooke, 1986).  

Vegetation and trees can promote channel stability by increasing hydraulic roughness that 

dissipates flow energy and facilitates sediment deposition (McKenney et al., 1995; 

Keeton et al., 2017). McKenney et al. (1995) found that tree roots can promote bank 

stability in Ozark streams if the rooting depth is greater than the bank height; however the 

effects on bank stability decrease with increasing drainage area. Due to the ephemeral 

nature of the upper portion of Big Barren Creek, woody vegetation and up to 200 year-

old trees grow on the active channel bed of natural reaches. This vegetation forms a root 

and soil-supported matrix that stabilizes the channel bed of natural reaches. Removing 

this vegetation during channelization can cause instability by altering the erosional  
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Table 6. Channel morphology and hydraulics of model sites 

  
Upper Big 

Barren 

Polecat 

Hollow 
Bearpen Road 

  N¹ C¹ N C N C 

River kilometer 37.87 37.3 32.82 31.85 24.95 24.35 

Drainage area (km²) 2.52 3.89 23.75 32.17 51.76 52.75 

Cross-sectional area² (m²) 6.61 12.87 14.78 76.45 18.52 68.08 

Channel width² (m) 15.02 14.26 25.49 56.71 31.5 31.73 

Maximum depth² (m) 0.76 1.4 1.03 2.38 0.91 3.05 

Surface D50 (mm) 22.6 16.9 0.063 36.9 7.8 18.5 

Sub-surface D50 (mm) 6.8 7.0 3.1 5.7 2.5 11.3 

Slope (%) 0.67 0.5 0.28 0.45 0.38 0.41 

Vegetation density  (per meter) 0.0042 N/A 0.0085 N/A 0.0088 N/A 

Hydraulic roughness 

(dimensionless) 
0.065 0.04 0.063 0.045 0.065 0.04 

¹N = Natural; C = Channelized 
      

²Dimensions at estimated bankfull stage in natural reaches and top of levees in channelized 

reaches 

 

resistance of the natural channel bed (Hooke, 1986; Montgomery and Buffington, 1997). 

Grain Size. Natural and channelized model reaches have different grain size 

distributions that provide insight into sediment supply and transport processes (Figure 14; 

Figure 15) (Bunte and Abt, 2001). Natural reaches have a gravel bed with a root-

supported mixed soil and gravel sub-surface. Channelized reaches have an armored, 

gravel-cobble bed surface that overlies loose mixed sand and gravel. With the exception 

of the Polecat Hollow natural reach, the bed surface sediment is coarser than the sub- 
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Figure 14. Grain size distributions of the natural reaches at each model site. 
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Figure 15. Grain size distributions of the channelized reaches at each model site. 
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surface sediment at all model reaches (Table 6; Figure 16). At the Polecat Hollow natural 

reach, a fine-gravel and sand sediment pulse covers the channel bed that was transported 

downstream from upstream incision. Bed armoring and aggradation have implications for 

sediment mobility and supply (Bunte and Abt, 2001). Bed armoring occurs when fine-

grained sediment is selectively transported and winnowed out of the channel bed (Bunte 

and Abt, 2001). Fine-grained sediment pulses are indicators of increased sediment 

loading that overwhelms the transport capacity of the channel (Rhoads, 1990). The 

thickness and abundance of sediment pulse deposits generally decrease with distance 

below channelized segments of Big Barren Creek. 

Flood Frequency and Discharge Capacity. Channelization is intended to 

increase the flood conveyance of natural channels by increasing the cross-sectional flow 

area (Gregory, 2006). However, these changes can concentrate flow energy and cause 

incision by increasing the sediment transport capacity of a modified channel (Simon and 

Rinaldi, 2006). The calculated peak flood discharges at different return intervals are 

presented in Table 7. Natural reaches can contain between 2-year and 10-year flood 

 

 

Figure 16. Root-supported natural channel bed (a) and loose, armored channelized bed 

(b). 

(a) (b) 

R-km 24.90 (March 2016) R-km 24.35 (September 2016) 
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events, while channelized reaches can contain between 10-year and 100-year flood events 

(Figure 17; Figure 18; Figure 19). The greatest differences in peak flood discharges occur 

between the natural and channelized reaches at the PH model site, where the drainage 

area increases from the confluence of Polecat Hollow and Big Barren Creek. The abrupt 

changes in discharge capacity between natural and channelized reaches could potentially 

cause instability in channelized reaches that is translated upstream and downstream. 

 

Table 7. Peak flood discharge (m³/s) return intervals (years) at model sites¹ 

Return 

Interval 

Upper Big Barren Polecat Hollow Bearpen Road 

Natural Channelized Natural Channelized Natural Channelized 

Q2 6 8.1 28.4 35.6 47.9 48.2 

Q5  10.8 14.7 53.3 67.3 90.4 90.9 

Q10  14.8 20.2 73.8 93.6 125.4 126 

Q25 20.5 27.9 102.8 130.8 175 175.6 

Q50  24.6 33.4 123.9 157.9 210.9 211.6 

Q100  28.9 39.3 146.4 186.9 249.3 250 

¹Underlined values indicate maximum flows that are contained by channel dimensions  
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Figure 17. Cross-sectional geometry and discharge capacity of the UBB model reaches. 

 

 

 

 
Figure 18. Cross-sectional geometry and discharge capacity of the PH model reaches. 
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Figure 19. Cross-sectional geometry and discharge capacity of the BP model reaches. 

 

BAGS Modeling Results 

The BAGS model provided estimates of sediment transport rates and shear stress 

for channels with known geometry, hydraulic roughness, and sediment properties 

(Appendix E). The model was run between one fifth of the 2-year flood discharge and the 

100-year discharge at each model reach. Sixth-order polynomial regression methods were 

used to find the sediment transport rate and the transport stage at the 2-, 5-, 10-, 25-, 50-, 

and 100-year flood discharge at each model reach for the surface and sub-surface 

sediment.  

Transport Capacity. Sediment transport rates provide an estimate of the 

maximum transport capacity of a channel (Wilcock et al., 2009). BAGS modeling results 

indicate that channelized reaches tend to have a greater sediment transport capacity than 

natural reaches (Figure 20; Appendix F). The greatest differences in sediment transport 
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capacity are found at the UBB model site, where the channelized reach can transport up 

to 300 times more surface sediment and up to 6,000 times more sub-surface sediment 

than the natural reach. These differences decrease with increasing discharge due to the 

exponential nature of the sediment transport equations (Pitlick et al., 2009). The PH and 

BP model sites have more moderate differences in surface sediment transport capacity 

between natural and channelized reaches. At both sites, the channelized reaches can 

  

 

Figure 20. Sediment transport capacity of natural and channelized model reaches. 
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transport about twice as much surface sediment as the natural reaches. However, the PH 

natural reach can transport up to 27 times more sub-surface sediment than the 

channelized reach. This can be attributed to the fine-grained sediment pulse that covers 

the channel bed and increases bed mobility (Rinaldi et al., 2005). 

While the BAGS model output shows that there are large relative differences 

between the sediment transport capacity of natural and channelized segments of Big 

Barren Creek, further validation may be required to determine the absolute differences in 

sediment transport capacity between the model reaches. Actual sediment transport rates 

are dependent on the available sediment supply, flow discharge, and the boundary 

conditions of the channel bed that dissipate flow energy (Wilcock et al., 2009). Further 

work to characterize these influences could refine the model results. 

Transport Stage. The transport stage is the ratio of the available shear stress in 

the channel to the critical shear stress that is required to initiate sediment transport 

(Pitlick et al., 2009). Sediment transport begins when the transport stage approaches one 

(Pitlick et al., 2009). Mixed-bedload and suspended load transport occurs when the 

transport stage exceeds three (Church, 2006). The transport stage-discharge relations for 

the model reaches have implications for bed mobility and the degree of excess shear 

stress that may cause incision and bed armoring (Figure 21; Appendix F) (Simon and 

Rinaldi, 2006; Frings et al., 2009). The results show that the bedload at the UBB natural 

reach is far less mobile than the other model reaches. A 10-year flood event would be 

required to mobilize the surface sediment, and a 5-year flood event would be required to 

mobilize the sub-surface sediment. At all other sites, the surface and sub-surface 

sediment could be mobilized by a 2-year flood discharge. The transport stage is 
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consistently greater in the channelized reaches of the UBB and BP model sites than in the 

respective natural reaches, indicating that there are greater amounts of excess shear stress 

in the channelized reaches. These findings support other studies that link abrupt changes 

in shears stress from channelization to channel incision (Simon and Rinaldi, 2006). 
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Figure 21. Sediment transport stage of natural and channelized model reaches. 
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The greatest differences in transport stage are found at the PH site, where the 

transport stage for the surface sediment in the natural reach is twice that of the 

channelized reach and the transport stage for the sub-surface sediment in the natural 

reach is four times greater than that of the channelized reach. Typically, high shear stress 

ratios are found in streams with a high fine-grained sediment supply that aggrades on the 

channel bed (Pfeiffer et al., 2017). Because critical shear stress decreases with grain size, 

the high surface and sub-surface sediment transport stages can be attributed to the fine-

grained sediment pulse that covers the channel bed at the PH natural reach. 

BAGS Model Accuracy and Limitations. While the BAGS model provides 

important estimates of sediment transport capacity and shear stress, there are limitations 

to bedload transport modeling that must be considered when evaluating the model output 

(Wilcock et al., 2009). Due to the non-linear nature of sediment transport equations, 

small inaccuracies in the input data can cause exponential overestimates of sediment 

transport rates and shear stress (Pitlick et al., 2009). Generally, bedload transport 

equations overestimate transport rates when compared to empirical bedload transport 

rates (Haschenburger, 2013; Vázquez-Tarrío and Menéndez-Duarte, 2015). In forested 

environments, bedload transport equations often overestimate transport rates by an order 

of magnitude (Hassan et al., 2005). Bedload transport rates can be overestimated if there 

is not a constant sediment supply, if there is spatial heterogeneity in the grain size 

distribution of the bed material, or if obstacles are present that dissipate flow energy and 

promote sediment deposition (Haschenburger, 2013; Vázquez-Tarrío and Menéndez-

Duarte, 2015).  
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A major assumption of the BAGS model is that the entire channel bed is occupied 

by active sediment that is available for transport (Pitlick et al., 2009). However, bed 

mobility is limited by boundary conditions, including vegetation and overlying sediment. 

The bed surface sediment must be mobilized by high flows in order for significant sub-

surface sediment transport to occur (Wilcock et al., 2009). Thus, sub-surface sediment 

transport is limited by bed surface sediment mobility. Additionally, vegetation, trees, and 

large woody debris stabilize the active channel bed of the natural reaches and can restrict 

sediment movement (Hassan et al., 2005). During dry periods, vegetation can increase the 

critical shear stress of the bed material, reducing sediment mobility (Wilcock et al., 

2009). At the BP natural reach, cohesive, non-mobile soil makes up 30% of the channel 

bed, which limits the amount of available sediment for transport. In the natural model 

sites, trees cover between 0.15 and 0.60% of the total area of the active channel bed. 

While these percentages are low, small amounts of vegetation can offer significant flow 

obstruction in natural stream channels (Gregory, 2006). In contrast, the channelized 

reaches that were modeled are made up of loose, unconsolidated sediment that is not 

stabilized by tree roots and woody vegetation. As a result, the channelized reaches have a 

greater active width with more available sediment for transport than the natural reaches. 

Correcting the model results to include these effects would lead to even greater relative 

differences in sediment transport capacity and excess shear stress between natural and 

channelized reaches of Big Barren Creek.   

Model accuracy can be improved when empirical bedload transport rates are 

available to calibrate sediment transport equations (Wilcock, 2001; Vázquez-Tarrío and 

Menéndez-Duarte, 2015; Schneider et al., 2015). If empirical bedload measurements are 
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unavailable to calibrate the BAGS model, the model developers suggest that the 

maximum transport rate per unit width should not exceed 10 kg/m/s, and is typically 

between 0.01 and 0.1 kg/m/s in stable gravel-bed streams (Mueller et al., 2005; Pitlick et 

al., 2009). Assuming an average particle density of 2.3 g/cm³, a unit-width transport rate 

of 0.1 kg/m/s would move about 43 cm³ of sediment over a 1-meter width of the channel 

bed in one second; enough sediment to hold in one’s hands. The unit-width transport 

rates (kg/min/s) were calculated at the maximum discharge that is contained in each 

model reach by dividing the transport rate (in kg/s) by the top width of the channel at the 

respective discharge (Appendix F). At each model site, the unit-width transport rate is 

below 10 kg/m/s, but the transport rates become less accurate with increasing discharge. 

These results could be refined by adjusting the hydraulic roughness coefficient in the 

BAGS model for different discharge values. For this project, a reach-averaged hydraulic 

roughness coefficient was estimated at the bankfull stage for each model site. However, 

hydraulic roughness can change with increasing discharge, and high-discharge flows 

often interact with vegetated surfaces that increase flow resistance (Ferguson, 2010). 

Accounting for varying hydraulic roughness at different discharge values could result in 

more accurate BAGS modeling results.  

BAGS Model Summary. The BAGS model was used to compare differences in 

sediment transport capacity and shear stress properties between pairs of natural and 

channelized reaches of Big Barren Creek. Results indicate that channelized segments of 

Big Barren Creek have a greater sediment transport capacity and greater amounts of 

excess shear stress than nearby natural reaches. The Polecat Hollow natural reach has 

greater bed mobility than the Upper Big Barren and Bearpen Road natural reaches due to 
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the sand and fine-gravel that blanket the channel bed. Overall, the modeling results 

support the hypothesis that channelization alters sediment transport capacity and shear 

stress properties that cause channel instability, which is manifested through incision at 

headcuts. The sediment that enters the drainage network from incision, in addition to 

winnowed bed material from channelized reaches, aggrades in downstream segments of 

Big Barren Creek that have a natural channel morphology. As shown at the Polecat 

Hollow natural reach, this sediment is highly mobile and can be transported downstream 

during high flows. Correcting the modeling results for the influence of vegetation and 

active sediment supply on transport rates would likely lower the sediment transport 

capacity of natural reaches, further reinforcing the findings that channelization alters 

sediment transport capacity and shear stress properties that can lead to instability. 

 

Land Management and Channel Instability in Big Barren Creek 

Landowners in the Big Barren Creek watershed have observed disturbance-

induced incision and sediment aggradation that is often perceived to be linked to upland 

erosion from prescribed burning. However, results of this study indicate another cause of 

channel instability. A geomorphic assessment of the upper 20 kilometers of Big Barren 

Creek has shown that sediment aggradation occurs below channelized reaches that have 

been modified for flood control. This sediment is generated from upstream incision at 

headcuts and bed winnowing by selective transport in channelized reaches. Similar 

effects have been observed in streams where channel geometry and bed resistance are 

altered from channelization (Simon and Rinaldi, 2006). 
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Incision and sediment aggradation play a critical role in the natural response to 

channelization (Chin et al., 2014). Larger channel dimensions are capable of conveying 

deeper flows, which increases the available shear stress in the channel (Chin et al., 2014). 

Excess shear stress causes incision, which increases the sediment supply in the channel 

(Chin et al., 2014). This sediment is transported and deposited to reshape the channel 

morphology, gradually reducing the effects of incision (Chin et al., 2014). In the Big 

Barren Creek watershed, some landowners respond to channel instability by removing 

gravel that accumulates in channelized reaches. While gravel mining prevents overbank 

flooding by maintaining large channel dimensions, it may prolong channel instability 

because it removes sediment from the fluvial system that would aid in the natural 

recovery from channelization (Figure 22) (Kondolf, 1997; Surian and Rinaldi, 2003). 

Direct channel modification has upstream and downstream effects that extend 

beyond the modified channel segment (Gregory, 2006). Channelization can cause 

upstream incision by headcut migration, downstream sediment aggradation, and 

increased flood intensity in downstream reaches that are not channelized (Bravard et al., 

1999). Therefore, the land management practices of one stakeholder may have negative 

consequences for other stakeholders in a watershed. Understanding of the effects of land 

management in a watershed context is an important first step in developing strategies to 

reduce stream channel instability (Wohl et al., 2015; Gregory, 2006). 

In addition to understanding the physical processes that regulate stream channel 

stability, understanding the local perspective of streams and the history of land use can 

assist in setting realistic goals for stream restoration projects (Wohl et al., 2015). 

Channelization and gravel mining have been used in the Ozarks for the past century, and 
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will probably continue to be used to manage streams for flood control (Jacobson and 

Primm, 1997). Furthermore, restoration projects should also consider the future effects of 

climate change on stream channel instability (Wohl et al., 2015). Changing rainfall 

patterns in the Ozarks over the past decade may be accelerating stream channel instability 

in the Big Barren Creek watershed (Pavlowsky et al., 2016). This trend is expected to 

continue as climate patterns change in the Midwest (Mallakpour and Villarini, 2015). 

 

 

Figure 22. Natural adjustment of streams to channelization through incision and sediment 

aggradation. Gravel mining can prolong incision by maintaining large channel 

dimensions that are normally reduced by sediment aggradation. 
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The natural recovery from instability may take decades as streams adjust to 

change through incision and sediment aggradation (Chin et al., 2014). Grade-control 

structures and floodplain reconnection can also be used to remediate the effects of 

channel instability, but these methods are costly and can be ineffective if the amount of 

incision is irreversible (Bravard et al., 1999). Simpler approaches like limiting gravel 

mining activity or lowering the height of agricultural levees could be more resilient to 

increased flooding as the climate changes, and help promote the natural recovery of 

unstable reaches of Big Barren Creek. 
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CHAPTER 5—CONCLUSIONS 

 

The purpose of this project was to evaluate the downstream trends in channel 

morphology and substrate of Big Barren Creek, and evaluate channelization as a driver of 

channel instability. Channelization can cause abrupt changes in channel geometry and 

bed resistance that alter sediment transport processes and shear stress, causing incision 

and selective transport of bed material (Simon and Rinaldi, 2006). A geomorphic 

assessment was conducted to characterize the downstream trends in channel morphology 

and sediment of the upper half of Big Barren Creek and identify locations of instability. 

Additional geomorphic analysis and sediment transport modeling were used to compare 

differences in channel geometry, hydrology, hydraulics, sediment transport capacity, and 

shear stress between three pairs of natural and channelized reaches of Big Barren Creek.  

The following three key findings support the hypothesis that channelization may 

be linked to channel instability on Big Barren Creek: 

1. A reoccurring sequence of incision and sediment aggradation was 

observed on the upper half of Big Barren Creek. Incised reaches were found upstream 

of channelized reaches and aggraded reaches were found downstream of channelized 

reaches. Incised, channelized, and aggraded reaches have different channel dimensions 

and substrate properties than natural reaches that not been channelized. Similarly, other 

studies have shown that channelization can alter the hydraulics and hydrology of 

modified streams, causing upstream incision through headcuts that delivers sediment 

downstream (Simon and Rinaldi, 2006; Surian and Rinaldi, 2003; Ortega et al., 2014; 

Rinaldi et al., 2005; Martín-Vide et al., 2010; Landemaine et al., 2015; Rhoads, 1990). 

 

2. Channelized reaches have different channel morphology, sediment, and 

hydraulic properties than natural reaches of Big Barren Creek. These differences in 

channel geometry and boundary conditions can cause an imbalance between the sediment 

supply and transport capacity in channelized reaches that can lead to incision (Simon and 

Rinaldi, 2006). Three pairs of natural and channelized reaches of Big Barren Creek were 

selected for additional geomorphic analysis of channel geometry, vegetation, surface 

sediment, and sub-surface sediment. It was found that channelized reaches are deeper 

than nearby natural reaches, and can convey greater flood discharges as a result. 
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Additionally, channelized reaches have coarser beds than natural reaches, suggesting that 

the channelized reaches have a greater sediment transport capacity than natural reaches 

that results in bed armoring from the winnowing of fine-grained sediment. Vegetation 

and tree roots stabilize the active channel bed of natural reaches in Big Barren Creek, 

forming a resistant horizon that is not present in channelized reaches. Because instream 

wood and vegetation regulate channel stability by increasing hydraulic roughness, 

dissipating flood energy, and acting as a site for sediment deposition, the integrity of the 

natural vegetated bed should be preserved during any future channel management 

practices (McKenney et al., 1995; Keeton et al., 2017). 

 

3. Sediment transport modeling shows that sediment transport capacity and 

shear stress properties differ between natural and channelized reaches of Big 

Barren Creek. At the UBB and BP model reaches, the ratio of available shear stress to 

the critical shear stress of the channel bed is consistently greater in channelized reaches 

than natural reaches. The opposite was found at the PH model reach, where a fine-grained 

sediment pulse has covered the channel bed of the natural reach. These differences 

translate to differences in the amount of sediment that can be transported by a reach. At 

all model sites, the channelized reaches have a greater surface sediment transport 

capacity that the natural reaches, with the greatest differences occurring at low flows. The 

sub-surface sediment at each model reach has a similar transport capacity, with the 

exception of the fine-grained sediment pulse at the PH model reach. During large flood 

events (RI > 2 years), the channelized reach at the UBB model site can transport up to 

100 times more sediment than the natural reach. The channelized reaches the PH and BP 

model sites can transport between 2 and 4 times more sediment than their respective 

natural reaches. While the model results are currently uncalibrated, they agree with field 

observations and show that there are large relative differences in available transporting 

power between natural and channelized reaches, which could drive channel incision and 

sediment aggradation during large floods in the Big Barren Creek watershed. 

 

These findings have implications for land management and channel instability in 

Big Barren Creek. In a broader context, the findings of this project identify 

channelization-induced incision as a sediment source to watersheds in the Ozarks. Future 

work could significantly improve the accuracy of the BAGS modeling by using empirical 

sediment transport rates to calibrate modeling results (Wilcock, 2001; Pitlick et al., 

2009). Further, better discharge records could help to better refine the timing of flood 

frequency that initiates bedload transport in the Big Barren Creek watershed. Continued 

monitoring of channel morphology and substrate is necessary to evaluate the any 
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management actions that are taken to reduce channel instability, as well as understand the 

response of Big Barren Creek to instability.  

There is a repeating pattern of disturbance that is limited to channelized zones of 

Big Barren Creek. Channel instability can be managed by understanding the geomorphic 

response of stream channels to instability. Headcuts are typically found within 300 

meters of channelized reaches, and sediment aggradation is limited to 1,000 meters 

downstream of channelized reaches that range in length from one to two kilometers. 

From field observations, it appears that tree roots and woody vegetation stabilize the 

natural channel bed and offer resistance to instability. Instream and riparian vegetation 

have been shown to assist in the recovery of other Ozark streams to instability (Jacobson 

and Pugh, 1998). Future land management practices and channel stability measures 

should aim to maintain natural bed characteristics by not disturbing the soil and 

vegetation in the active channel bed and riparian zone that promote channel stability. 
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APPENDICES 

 

 

Appendix A1—Base Manning's n selection guide (modified from Arcement and 

Schneider, 1989) 

    Base n value 

Bed Material 
Median size of 

bed material (mm) 

Straight uniform 

channel 

Smooth 

channel 

Sand 0.2 0.012 - 

Sand 0.3 0.017 - 

Sand 0.4 0.020 - 

Sand 0.5 0.022 - 

Sand 0.6 0.023 - 

Sand 0.8 0.025 - 

Sand 1.0 0.026 - 

Concrete - 0.012 - 0.018 0.011 

Rock cut - - 0.025 

Firm soil - 0.025 - 0.032 0.020 

Coarse sand 1.0 - 2.0 0.026 - 0.035 - 

Fine gravel - - 0.024 

Gravel 2.0 - 64  0.028 - 0.035 - 

Coarse gravel - - 0.026 

Cobble 64 - 256 0.030 - 0.050 - 

Boulder > 256 0.040 - 0.070 - 
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Appendix A-2—Manning's n adjustment factor selection guide (modified from 

Arcement and Schneider, 1989) 

Channel 

conditions 

n value 

adjustment 
Example 

Degree of 

irregularity 

(n1) 

Smooth 0.000 
The smoothest channel attainable in a given 

bed material. 

Minor 
0.001- 

0.005 

Carefully dredged channels in good condition 

but having slightly eroded or scoured side 

slopes. 

Moderate 
0.006- 

0.010 

Dredged channels having moderate to 

considerable bed roughness and moderate 

sloughed or eroded side slopes. 

Severe 
0.011- 

0.020 

Badly sloughed or scalloped banks; unshaped, 

jagged, and irregular surfaces. 

    

Variation 

in channel 

cross 

section 

(n2) 

Gradual 0.000 
Size and shape of channel cross sections 

change gradually. 

Alternating 

occasionally 

0.001- 

0.005 

Large and small cross sections alternate 

occasionally, or the main flow occasionally 

shifts from side to side. 

Alternating 

frequently 

0.010- 

0.015 

Large and small cross sections alternate 

frequently, or the main flow frequently shifts 

from side to side. 

 
   

Effect of 

obstruction 

(n3) 

Negligible 
0.000- 

0.004 

A few scattered obstructions, including debris 

deposits, stumps, roots, logs, or boulders, 

occupy less than 5% of the cross-sectional flow 

area. 

Minor 
0.005- 

0.015 

Obstructions occupy less than 15% of the 

cross-sectional flow area. 

Appreciable 
0.020- 

0.030 

Obstructions occupy between 15 and 50% of 

the cross-sectional flow area. 

Severe 
0.040- 

0.050 

Obstructions occupy more than 50% of the 

cross-sectional flow area. 
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Appendix A-2, continued 

Channel 

conditions 

n value 

adjustment 
Example 

Amount of 

vegetation 

(n4) 

Small 
0.002-

0.010 

Average flow depth is at least three times the 

height of the vegetation on the channel bed. 

Medium 
0.010-

0.025 

Average flow depth is two to three times the 

height of the vegetation on the channel bed. 

Large 
0.025-

0.050 

Average flow depth is about equal to the height 

of the vegetation on the channel bed. 

Very Large 
0.050-

0.100 

Average flow depth is less than half of the 

height of vegetation on the channel bed. 

 
   

Degree of 

meandering 

(m) 

Minor 1.00 Channel sinuosity between 1.0 and 1.2. 

Appreciable 1.15 Channel sinuosity between 1.2 and 1.5. 

Severe 1.30 Channel sinuosity greater than 1.5. 
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Appendix B-1—Photo Log of Select Geomorphic Assessment Sites 

 

 
 

Site 3: Upper Big Barren headcut, R-km 37.60 (September 2016) 

 

 

 
 

Site 8: Bank erosion at a channelized reach, R-km 35.13 (March 2016) 
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Appendix B-1, Continued 

 

 
 

Site 15: Sand aggradation downstream of a channelized reach, R-km 29.67 (March 2016) 

 

 

 
 

Site 20: Bearpen Road headcut, R-km 24.82 (March 2016) 
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Appendix B-2—Photo Log of Sediment Transport Modeling Sites 

 

 
 

Site 2: Upper Big Barren Model Site, Natural Reach (September 2016) 

 

 

 
 

Site 4: Upper Big Barren Model Site, Channelized Reach (September 2016) 
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Appendix B-2, Continued 

 

 
 

Site 11: Polecat Hollow Model Site, Natural Reach (March 2016) 

 

 

 
 

Site 13: Polecat Hollow Model Site, Channelized Reach (March 2016) 
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Appendix B-2, Continued 

 

 
 

Site 19: Bearpen Road Model Site, Natural Reach (March 2016) 

 

 

 
 

Site 21: Bearpen Road Model Site, Channelized Reach (September 2016)
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Appendix C—Big Barren Creek Channel Assessment Site Data 

Site Classification R-km 
Ad 

(km²) 

LWD 

vol 

(m³) 

CSA¹ 

(m²) 

Width¹ 

(m) 

Max 

depth¹ 

(m) 

Mean 

depth¹ 

(m) 

Width- 

depth 

ratio 

D50 

(mm) 

Dmax 

(mm) 

Slope 

(%) 

1 Natural 39.20 1.6 0.5 7.7 38.7 0.7 0.2 195.2 16 170 0.92 

2* Natural 37.87 2.5 0.0 6.6 15.0 0.8 0.4 34.2 22.6 150 0.67 

3 Incised 37.60 3.7 0.0 10.1 8.6 1.9 1.2 7.4 22.6 295 1.24 

4* Channelized 37.30 3.9 0.0 12.9 14.3 1.4 0.9 15.8 16.9 200 0.50 

5 Aggraded 36.80 8.4 0.6 4.7 14.5 0.9 0.3 45.0 5.6 170 0.63 

6 Aggraded 36.70 8.8 0.4 6.5 9.9 1.0 0.7 15.1 5.6 170 N/A 

7 Channelized 36.44 8.9 0.0 8.4 29.2 0.7 0.3 102.4 0.063 N/A 0.13 

8 Channelized 35.13 19.0 1.1 16.5 16.7 1.6 1.0 16.9 22.6 350 0.19 

9 Channelized 34.28 22.7 0.0 13.2 18.6 1.6 0.7 26.2 22.6 250 N/A 

10 Natural 33.75 23.1 0.1 9.7 17.7 1.3 0.5 32.3 2 450 0.61 

11* Aggraded 32.82 23.8 0.0 14.8 25.5 1.4 0.6 44.0 0.063 100 0.28 

12 Channelized 32.47 25.4 0.0 17.6 25.0 1.7 0.7 35.4 32 320 0.48 

13* Channelized 31.85 32.2 0.0 76.5 56.2 2.4 1.4 41.3 36.9 250 0.45 

14 Channelized 31.05 41.4 0.0 45.1 22.1 2.7 2.0 10.8 32 310 0.28 

15 Aggraded 29.67 42.3 1.8 22.1 18.5 1.9 1.2 15.5 45 300 0.45 

16 Natural 28.80 43.8 0.0 25.7 34.8 1.6 0.7 47.1 N/A N/A N/A 

17 Natural 27.70 44.5 0.4 32.4 41.0 2.0 0.8 51.8 16 150 0.34 

18 Natural 25.77 48.0 0.0 28.9 37.1 1.5 0.8 47.8 32 300 0.12 

19* Natural 24.95 51.8 0.5 19.4 33.0 0.9 0.6 56.0 7.8 180 0.38 

20 Incised 24.82 51.8 0.0 25.6 20.7 2.1 1.2 16.8 32 210 0.38 

21* Channelized 24.35 52.6 0.0 68.1 31.7 3.1 2.1 14.8 18.9 200 0.41 

22 Natural 22.30 85.0 0.1 27.1 21.4 1.8 1.3 16.9 22.6 450 0.54 

23 Natural 21.05 97.7 0.1 23.4 37.2 1.2 0.6 59.2 22.6 600 0.70 

¹Dimensions at the estimated bankfull stage in natural aggraded sites, and at the highest stage in incised and channelized sites 

*Sediment transport modeling site 
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Appendix D—Model Site Longitudinal Profiles 
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Appendix D, Continued 
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Appendix D, Continued 

 

 

0.0

1.0

2.0

3.0

4.0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

R
el

at
iv

e 
el

ev
at

io
n
 (

m
)

Distance (m)

BP Natural Reach Longitudinal Profile

Cross section

Slope points

0.0

1.0

2.0

3.0

4.0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

R
el

at
iv

e 
el

ev
at

io
n
 (

m
)

Distance (m)

BP Channelized Reach Longitudinal Profile

Cross section

Slope points

Natural channel 

bed 

Headcut 

Incised channel 

bed 



 

81 

Appendix E—BAGS Model Input Data 

 

Upper Big Barren: Natural Reach BAGS Model Input Data 

Cross Section   Surface sediment   Sub-surface sediment 

Lateral 

distance (m) 

Elevation 

(m) 
  

Grain size 

(mm) 
% Finer 

  

Grain size 

(mm) 
% Finer 

0.0 1.15 

 

2 3.3 

 

0.0019 0.1 

1.3 1.16 

 

4 6.7 

 

0.0039 0.2 

2.5 0.90 

 

11 20.0 

 

0.0078 0.3 

3.3 0.78 

 

16 30.0 

 

0.0156 0.4 

4.4 0.49 

 

22.6 50.0 

 

0.0311 0.4 

5.1 0.39 

 

32 73.3 

 

0.125 1.3 

6.5 0.37 

 

45 90.0 

 

0.25 6.7 

8.0 0.36 

 

64 93.3 

 

0.5 14.4 

9.2 0.28 

 

90 100.0 

 

1 20.1 

10.7 0.28 

    

2 28.8 

12.2 0.33 

 

Slope (m/m) 0.0067 

 

4 40.2 

12.6 0.24 

 

n 0.065 

 

8 53.1 

13.2 0.15 

 

Min Q (cms) 1.2 

 

16 67.1 

13.7 0.16 

 

Max Q (cms) 28.9 

 

25.4 85.5 

14.1 0.04 

    

45 100.0 

14.3 0.00 

      15.0 0.04 

      15.4 0.06 

      17.5 0.50 

      18.7 0.86 

      20.0 1.64 
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Appendix E, Continued 

 

Upper Big Barren: Channelized Reach BAGS Model Input Data 

Cross Section   Surface sediment   Sub-surface sediment 

Lateral 

distance (m) 

Elevation 

(m) 
  

Grain size 

(mm) 
% Finer 

  

Grain size 

(mm) 
% Finer 

0.0 1.08 

 

0.063 1.1 

 

0.125 0.7 

0.8 1.18 

 

2 2.3 

 

0.25 6.9 

2.0 1.45 

 

2.8 3.4 

 

0.5 14.2 

3.2 0.42 

 

4 4.5 

 

1 20.9 

4.1 0.01 

 

5.6 10.1 

 

2 30.4 

5.0 0.00 

 

8 16.9 

 

4 43.1 

6.0 0.09 

 

11 30.3 

 

8 56.1 

7.0 0.16 

 

16 49.5 

 

16 69.8 

8.0 0.17 

 

22.6 62.9 

 

25.4 85.8 

9.0 0.24 

 

32 74.2 

 

45 93.1 

10.0 0.23 

 

45 86.6 

 

63 100.0 

11.8 0.38 

 

64 100 

   13.0 0.82 

      14.2 1.17 

 

Slope (m/m) 0.0050 

   16.0 1.33 

 

n 0.040 

   17.6 1.71 

 

Min Q (cms) 1.6 

   18.4 1.63 

 

Max Q (cms) 39.3 
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Appendix E, Continued 

 

Polecat Hollow: Natural Reach BAGS Model Input Data 

Cross Section   Surface sediment   Sub-surface sediment 

Lateral 

distance (m) 

Elevation 

(m) 
  

Grain size 

(mm) 
% Finer 

  

Grain size 

(mm) 
% Finer 

0 1.83 

 

0.063 63.3 

 

0.00049 1.0 

3 1.68 

 

2 66.7 

 

0.00098 1.9 

4 1.58 

 

4 70.0 

 

0.0019 3.9 

5.5 1.39 

 

5.6 76.7 

 

0.0039 6.1 

6.6 1.15 

 

8 90.0 

 

0.0078 8.6 

8.3 1.03 

 

11 93.3 

 

0.0156 11.4 

9.7 0.64 

 

16 100.0 

 

0.0311 13.0 

10.6 0.49 

    

0.0625 13.7 

11.4 0.34 

 

Slope (m/m) 0.0028 

 

0.125 22.2 

12.4 0.25 

 

n 0.063 

 

0.25 42.0 

13.2 0.16 

 

Min Q (cms) 5.7 

 

0.5 53.6 

14 0.25 

 

Max Q (cms) 146.421 

 

1 60.4 

14.6 0.38 

    

2 66.2 

15.5 0.44 

    

4 74.6 

16.3 0.55 

    

8 80.5 

17.3 0.47 

    

16 84.2 

18.6 0.53 

    

25.4 89.8 

20.0 0.47 

    

45 96.3 

20.2 0.32 

    

63 99.9 

21.0 0.65 

      22.6 0.55 

      24.0 0.47 

      26.6 0.56 

      27.7 0.38 

      28.9 0.33 

      30.0 0.47 

      31.7 0.68 

      33.3 1.13 

      34.8 1.47 

      36.4 1.91 
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Appendix E, Continued 

 

Polecat Hollow: Channelized Reach BAGS Model Input Data 

Cross Section   Surface sediment   Sub-surface sediment 

Lateral 

distance (m) 

Elevation 

(m) 
  

Grain size 

(mm) 
% Finer 

  

Grain size 

(mm) 
% Finer 

0.0 3.36 

 

0.063 6.9 

 

0.0019 0.05 

1.0 2.37 

 

4 10.3 

 

0.0039 0.09 

3.0 2.37 

 

8 13.8 

 

0.0078 0.15 

6.0 2.2 

 

11 17.2 

 

0.0156 0.19 

11.0 1.71 

 

32 41.4 

 

0.0311 0.20 

18.0 0.71 

 

45 62.1 

 

0.125 0.84 

20.0 0.78 

 

64 86.2 

 

0.25 5.42 

22.7 0.74 

 

90 100 

 

0.5 10.87 

25.4 0.57 

    

1 16.87 

27.0 0.70 

 

Slope (m/m) 0.0045 

 

2 26.50 

28.0 1.15 

 

n 0.045 

 

4 40.84 

29.0 1.21 

 

Min Q (cms) 7.1 

 

8 59.09 

30.3 1.09 

 

Max Q (cms) 186.9 

 

16 74.70 

31.7 1.33 

    

25.4 92.60 

33.2 1.45 

    

45 98.53 

34.7 1.33 

    

63 100 

35.9 1.11 

      36.9 0.89 

      37.5 0.78 

      38.5 0.32 

      40.0 0.22 

      42.1 0.08 

      44.5 0.00 

      46.0 0.02 

      47.9 0.06 

      49.5 0.17 

      51.0 0.42 

      52.0 0.36 

      52.9 0.24 

      54.1 0.57 

      55.0 1.62 

      57.0 2.32 

      57.5 2.49 

      58.0 2.74 

      58.8 2.96 
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Appendix E, Continued 

 

Bearpen Road: Natural Reach BAGS Model Input Data 

Cross Section   Surface sediment   Sub-surface sediment 

Lateral 

distance (m) 

Elevation 

(m) 
  

Grain size 

(mm) 
% Finer 

  

Grain size 

(mm) 
% Finer 

0.0 2.97 

 

0.063 35.0 

 

0.00049 0.7 

2.3 2.47 

 

4 40.0 

 

0.00098 1.2 

4.6 1.97 

 

5.6 45.0 

 

0.0019 2.1 

6.9 1.47 

 

11 55.0 

 

0.0039 3.1 

9.2 0.97 

 

16 60.0 

 

0.0078 4.0 

11.5 0.47 

 

22.6 70.0 

 

0.0156 5.0 

13.1 0.40 

 

32 75.0 

 

0.0311 5.6 

13.8 0.26 

 

45 80.0 

 

0.0625 5.8 

17.0 0.19 

 

64 95.0 

 

0.125 10.9 

18.2 0.24 

 

90 100.0 

 

0.25 23.5 

21.0 0.23 

    

0.5 30.9 

23.5 0.17 

 

Slope (m/m) 0.0038 

 

1 38.9 

24.9 0.08 

 

n 0.065 

 

2 47.2 

26.1 0.23 

 

Min Q (cms) 9.6 

 

4 56.8 

27.0 0.29 

 

Max Q (cms) 249.3 

 

8 67.4 

28.5 0.11 

    

16 77.8 

29.5 0.02 

    

25.4 90.9 

30.5 0.14 

    

45 98.0 

31.3 0.00 

    

63 99.9 

33.0 0.00 

      34.5 0.33 

      37.0 0.68 

      38.5 0.77 

      40.8 0.92 

      43.8 0.99 

      46.5 1.05 

      48.5 0.98 

      49.9 0.93 

      51.5 1.06 

      53.5 1.23 

      55.5 1.32 

      58.3 1.29 

      59.5 1.29 

      61.5 1.52 

      64.5 2.71 

      66.5 2.71 
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Appendix E, Continued 

 

Bearpen Road: Channelized Reach BAGS Model Input Data 

Cross Section   Surface sediment   Sub-surface sediment 

Lateral 

distance (m) 

Elevation 

(m) 
  

Grain size 

(mm) 
% Finer 

  

Grain size 

(mm) 
% Finer 

0.0 3.12 

 

0.063 3.4 

 

0.125 0.6 

1.0 2.92 

 

4 10.3 

 

0.25 5.3 

3.0 2.10 

 

5.6 20.7 

 

0.5 12.7 

4.2 1.80 

 

8 24.1 

 

1 21.2 

6.0 1.10 

 

11 31.0 

 

2 30.9 

9.0 0.00 

 

16 41.4 

 

4 40.7 

12.0 0.15 

 

22.6 62.1 

 

8 49.1 

14.0 0.31 

 

32 79.3 

 

16 58.3 

16.0 0.28 

 

45 89.7 

 

25.4 71.4 

18.0 0.36 

 

64 96.6 

 

45 80.9 

21.0 0.38 

 

90 100 

 

63 85.0 

24.0 0.40 

    

170 100 

25.0 0.24 

 

Slope (m/m) 0.0041 

   27.0 0.90 

 

n 0.040 

   29.0 1.56 

 

Min Q (cms) 9.6 

   31.7 2.84 

 

Max Q (cms) 250.0 

   32.7 3.45 
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Appendix F-1—Sediment Transport Rate (kg/min) at Different Flood Return Intervals 

  Upper Big Barren Polecat Hollow Bearpen Road 

  Natural Channelized Natural  Channelized Natural Channelized 

Return 

Interval 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 

Q2 0.1 3.8E-02 34.0 252.1 36.0 1314.6 93.2 47.3 343.3 185.8 1330.3 1693.4 

Q5 0.9 1.9 111.4 809.4 138.7 2829.1 519.0 225.7 1191.6 735.1 3903.2 6650.6 

Q10 3.5 9.2 199.3 1373.3 271.8 4132.5 1114.8 435.6 2111.4 1299.6 6478.2 11865.3 

Q25 16.0 35.2 397.5 2527.3 512.4 5962.6 2132.9 752.7 3611.8 2153.9 10571.2 20119.5 

Q50 36.2 66.4 581.3 3507.8 719.2 7288.4 3030.7 1007.4 4908.5 2843.9 13873.7 26748.0 

Q100 69.6 107.9 837.0 4746.8 963.7 8691.7 4328.3 1336.0 6499.4 3638.3 17817.3 34579.4 

 

 

Appendix F-2—Sediment Transport Stage (dimensionless) at Different Flood Return Intervals 

  Upper Big Barren Polecat Hollow Bearpen Road 

  Natural Channelized Natural  Channelized Natural Channelized 

Return 

Interval 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 
Surface 

Sub- 

surface 

Q2 0.7 0.8 1.7 1.8 3.6 6.2 1.8 1.7 3.5 2.0 4.2 2.0 

Q5 0.9 1.1 2.1 2.2 5.0 8.5 2.4 2.3 5.0 2.8 5.7 2.8 

Q10 1.1 1.3 2.3 2.4 6.1 10.5 2.8 2.7 5.9 3.3 6.7 3.2 

Q25 1.2 1.5 2.7 2.7 7.5 12.7 3.2 3.0 6.9 3.9 7.8 3.8 

Q50 1.4 1.7 2.9 3.0 8.4 14.3 3.4 3.3 7.7 4.3 8.6 4.1 

Q100 1.5 1.8 3.2 3.3 9.2 15.8 3.8 3.6 8.5 4.7 9.4 4.5 
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Appendix F-3—Unit-width Transport Rates (kg/m/s) at Different Return Intervals 

Model Site 
Reach 

Classification 

Return 

Interval¹ 

Top 

Width 

(m) 

Max 

Depth 

(m) 

Surface 

sediment unit-

width transport 

rate (kg/m/s) 

Sub-surface 

sediment 

unit-width  

transport rate (kg/m/s) 

Upper Big Barren Natural Q2 15.7 0.8 0.0001 3.99E-05 

 

Natural Q5 17.3 1.1 0.001 0.002 

 

Channelized Q2 10.5 0.9 0.05 0.40 

 

Channelized Q5 12.1 1.2 0.15 1.11 

 

Channelized Q10 14.3 1.4 0.23 1.60 

       Polecat Hollow Natural Q2 35.9 35.9 0.02 0.61 

 

Channelized Q2 39.2 39.2 0.04 0.02 

 

Channelized Q5 44.7 44.7 0.19 0.08 

 

Channelized Q10 48.0 48.0 0.39 0.15 

 

Channelized Q25 52.7 52.7 0.67 0.24 

 

Channelized Q50 56.6 56.6 0.89 0.30 

 

Channelized Q100 57.1 57.1 1.26 0.39 

       Bearpen Road Natural Q2 55.7 55.7 0.10 0.06 

 

Natural Q5 58.8 58.8 0.34 0.21 

 

Natural Q10 61.2 61.2 0.58 0.35 

 

Channelized Q2 24.5 24.5 0.90 1.15 

 

Channelized Q5 27.6 27.6 2.36 4.02 

 

Channelized Q10 29.3 29.3 3.68 6.74 

 

Channelized Q25 31.6 31.6 5.57 10.61 

¹The unit-width transport rate was only calculated at discharges that are contained by the channel dimensions 
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