were located along privately-owned segments were granted permission for access and consent

for soil collection was obtained from local land owners.

Field Surveys and Soil Sample Collection

Cross-valley transects were surveyed at 23 sites along the main stem and tributary
branches of Big Barren Creek (Figs. 13-14). Twenty-seven total floodplain cores were collected
using either a truck mounted Giddings Rig soil corer, shovel-dug pit sampling, or open-face cut
bank sampling (Fig. 15). Sampling depths ranged from 35 — 80 cm for seven dug pits, 70- 80 cm
for five cut-banks, and 22-120 c¢m for 15 truck-mounted auger cores. Samples for all methods
were collected at intervals of 3-10 cm based on stratigraphic units encountered, and the
maximum length of the core obtained. Field data collection and surveys were completed during
four extended field visits taking place beginning December of 2017, June 2018, October 2018,

and December of 2018 (Appendix A-1).

Fine-grained sediment storage within valley alluvial landforms was estimated by using a
simple storage calculation combining channel cross-sectional information obtained by total
station, auto level, and LIDAR, with depth of fine-grained sediment refusal determined using a
tile probe. Volumes were approximated using an equation relating length of landform, depth of
fine-grained sediment, both multiplied by 1 meter, to calculate the storage volume in m? using

the following equation:

WxDxL=V (Eq. 1)

Where:
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W = landform width (m)
D = mean probe depth to refusal (m)
L = unit length (1 m)

V = Fine-grained storage volume (m3/ (m of stream length))

Landform Identification

To properly estimate fine-grained storage in alluvial landforms, both in-field and
hydraulic classification of landform features was performed. In the field, cross-section surveys
with auto-level and stadia rod were used to gauge approximate heights and widths of landform
features delineated by breaks in slope (Fig. 16). By utilizing observations of the soil and
vegetation we were able to accurately distinguish landform features. Higher landform features
containing Bt soil horizons were generally classified as terrace features, and major breaks in
vegetation and the identification of riparian areas helped to delineate channel and floodplain
boundaries. Identification of bar and bench features with changes in sediment texture also helped
to identify channel boundaries. Cross-sectional information was then analyzed in excel to double
check in-field landform distinctions using flood recurrence interval information. The tops of
floodplain surfaces in stable channels should approximately equal the stage height of a 1.5 to 2-

year flood event.

Predicting Fine-grained Storage

Previous work done by Theis (2017), utilized a USGS developed rural discharge
equation to identify the stage heights of the 2-year flood event using Hydra Flow Express

hydraulic modeling software at each of his sites. By doing this, he effectively estimated the
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approximate bankfull stage height in natural, channelized, and aggraded stream types in Big
Barren Creek for the upper half of the watershed. By modeling his reported data on maximum
depth (m) for the bankfull discharge against drainage area (km?) we were able to obtain a power
function capable of predicting max depth at any site along the channel where drainage area was
known. The following equations were used to model predicted maximum depths for both

channelized and natural reaches:
Channelized reach equation:

y = 0.5028x%4143 (Eq. 2)

R2=0.5756
Natural reach equation:

y = 0.6824x%18 (Eq. 3)

R>=0.558

where:
y = max depth

X = cross-sectional area

These predicted depth values where then compared to our in-field identified floodplain
heights and fell within a reasonable range of the predicted values. Some variability did exist
between predicted and observed max depths but can be explained by the natural variability of the
stream and the difficulty of modeling multi-threaded stream sites alongside of single-threaded
stream sites. In general, the bankfull stage was typically found to be the top elevation of the first

bank confining the active channel belt.
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Dating Methods

Three methods used for determining sedimentation rates including the use of Cesium-137
(1¥’Cs) to determine the 1950’s radionuclide depositional surface (Magilligan, 1985; Walling and
He, 1993; Walling and He, 1998; Owens et al., 1999; Knox, 2006; Owen et al., 2011), buried
root crown dendrochronology (Phipps et al., 1995), and the identification of buried A-horizons

(Magilligan, 1985; Owens et al., 1999; Owen et al, 2011).

Cesium-137. '*’Cs is a radionuclide that quickly and strongly absorbs to fine-grained
sediments and is associated with two primary processes of adsorption (Walling and He, 1993).
The two methods capable of capturing adsorbed '3’Cs include the direct interaction of the
floodplain with atmospheric fallout or the remobilization and deposition of fine-grained
floodplain deposits previously containing '3’Cs (Walling and He, 1993). Floodplain sediment

cores can be analyzed, and the resulting levels of '*’Cs within the profile will vary with depth.

The depth-integrated relationship between '*’Cs can be directly related to the temporal
distribution of '3’Cs in the atmosphere (Walling and He, 1993). Therefore, by pinpointing the
maximum concentration of '*’Cs within the stratigraphic profile, one can isolate the surface
associated with the height of nuclear bomb testing which occurred in the early 1960’s
(Magilligan, 1985; Walling and He, 1993.) This surface serves as a stratigraphic boundary
separating deposition occurring after or before 1963 as well as serving as a point of reference
used to constrain rates of deposition occurring within a given interval (Walling and He, 1998).
The first occurrence of '*’Cs in the atmosphere occurred in 1954 at the start of nuclear testing. It
is suggested that Cs-137 can mix downward by approximately 10 cm within the floodplain

creating a small potential error in the date. Research done by Walling and He, 1998 use this as
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the principle method for determining sedimentation rates occurring within the floodplains of the

River Culm in the Ukraine.

Buried Root-crown Dendrochronology. Root crown dendrochronology is a technique
that combines data on the ages of trees, and the burial depths of tree roots to estimate rates of
sedimentation. By measuring the depth of sediment from the buried root crown to the present
ground surface, one may derive a sediment yield constrained by tree age and current depositional

surface age (Phipps et al., 1995; Sigafoos, 2014).

Tree core samples were collected when a set of three criteria were met at a site. First,
there had to be an appreciable thickness of fine-sediment deposited on the landforms of trees
being analyzed. Coring trees in areas of erosion yield little information on the change in rates of
sedimentation, but are rather more indicative of the long-term rate of erosion for that area
(Sigafoos, 2014). Second, the site had to contain a reliable species of trees in which tree age and
the depth to root crown could be determined (Sigafoos, 2014). The tree cores collected included
species of short leaf pine, sycamore, hackberry, and green ash. The most reliable tree data
collected came from the shortleaf pine as the wood was softer and less likely to break during the
coring process and due to the distinct visibility of the tree rings. Additionally, at each tree, a pit
was dug directly adjacent to the tree center to be certain of the depth to buried root crown where

the original lateral roots began to develop (Fig. 17).

Third, mature trees of a variety of different sizes were sampled to ensure that sample ages
were representative. If only large trees were sampled, this may effectively under or over-estimate
rates of sedimentation occurring if at any time during that tree’s life sedimentation rates spiked
or declined for a period of time. This occurs because the burial depth of the tree reflects the net

deposition of sediment during the entire life of the tree, any fluctuations occurring within that
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time will not be identified (Sigafoos, 2014). Rather, they will be represented as an average
sedimentation rate occurring over the entire life of the tree. For this reason, trees of varying
diameter were selected to ensure this bias could be avoided. All cores were extracted from trees
at standard breast height of approximately 1.5 m and information on the diameter and fine-
grained burial depth to root crown was recorded (Fig. 18). Burial depth was determined as the
distance from the present-day ground surface down to the furthest extent of the buried root

crown of the tree where the lateral tree roots first begin to emerge (Sigafoos, 2014).

In the historically logged headwaters of BBC, historically cut pine stumps were used to
establish pre-settlement soil boundaries. These historical pine stumps varied in burial depth from
6 cm to 22 cm in depth. And while the stump itself could not be cored to determine tree ring
counts and subsequent tree ages, we could reasonably assume that these large mature pines
germinated in pre-settlement soils with lateral root crown’s that still exist to mark that boundary
today. In total, four pine stumps were used to identify pre-settlement boundaries from two sites
in the headwaters of BBC, three at the Upper Big Barren Gauge, and one at the Upper Big

Barren Farm Site.

Buried A-horizons. Floodplain soil cores can also be studied to identify buried A-
horizons. A buried A-horizon is a stratigraphic marker indicative of the organic-rich pre-
settlement depositional surface. The dark, mollic A-horizon separates the post-settlement
boundary from the more mature, stable pre-settlement soils (Knox, 1972, 1977; Beach, 1994;
Owen et al., 2011). In the Upper Midwest, these darkened, A-horizons can be identified in the
field with the naked eye when found buried under more recent sediment (Magilligan, 1984;
Owen et al., 2011) (Fig. 19). Extensive historical records date the European settlement surface

in the Ozarks to occur in the early 1800’s (Jacobson and Pugh, 1992; Jacobson and Primm,
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1997). The location of a buried A-horizon acts as a benchmark for constraining rates of
sedimentation occurring after the onset of European settlement (Owen et al., 2011). Research
done by Knox (1987) utilized this method to identify the overlying legacy floodplains in the
Galena River in southwest WI and northwest IL. Knox (1972, 1977) was one of the first to show
the usefulness of the testable relationship between depth below the ground surface and the
temporal distribution of organic matter found in floodplain soils. He illustrated that identifying
peaks in organic matter content within the soil profile could establish the boundary between the
presettlement and post settlment soil surfaces of that region. In the Ozarks, buried A-horizons are
not as readily identified in the field but analysis of organic carbon peaks within the floodplain
samples can still accurately identify these surfaces where these boundaries are not visually

apparent (Owen et al., 2011).

Laboratory Analysis

All soil samples were dried immediately after sampling for 48 hours in an oven at 60
degrees Celsius, disaggregated with mortar and pestle. After samples were properly
disaggregated, they were then sieved to less than 2 mm to separate out the fine soil fraction for
137Cs gamma spectroscopy analysis, and to less than 250 microns for loss on ignition organic

carbon analysis.

137Cs Analysis. After sieving, approximately 100g of fine-grained soil from samples
KRB1-KRB40 and EB9 -EB29 (seven cores) were put into Marinelli beakers and analyzed for
20 hours using a GC4020 GE Co-Axial Detector and DSA 1000 Digital Spectrum Analyzer with

747 Series Lead Shield. This 20 hour analysis detects and quantifies gamma-ray emitting
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radionuclides. All samples run using this method were measured under an activity uncertainty of
<1 Bg/Kg. The standard operating procedure for the method can be found at
http://oewri.missouristate.edu/58411.htm. Note: Samples KRB89-KRB111 (four cores) were
prepped in OEWRI’s sediment analysis lab and were sent to Dartmouth University Laboratories
for Cs-137 processing following a period where the GC4020 GE Co-Axial Detector and DSA

1000 Digital Spectrum Analyzer was unavailable for use.

Organic Matter Analysis. After samples (KRB1 to KRB162; KRB187 to KRB215)
were sieved to less than 250 microns they were analyzed for peak organic matter content.
Organic content was determined using the Loss on Ignition (LOI) method following procedures
defined in the Soil Science Society of America Methods of Soil Analysis (Sparks, 1996) and the
OEWRI Standard operating procedure (OEWRI, 2007). Each sample was weighed to
approximately 5 g and placed in a pre-weighed crucible. Then using a 105-degree C convection
oven, all samples were heated for 2 hours to remove all residual moisture content and then
placed in a desiccator to cool. The samples were then measured for their pre-burn weights and
placed in a 600-degree C muftle furnace for eight hours to remove any organic matter present.
After the final burn, samples were placed in the desiccator and measured for their post-burn
weights. The percent organic matter loss was calculated by taking the difference between the
pre-burn sample weight and post-burn sample weight, divided by the pre-burn weight and times
100 as shown in the following equation:

% OM LOI = [(A-B)/ (A)] *100 (Eq. 4)
Where:

A= Pre-burn dry sample weight (g)
B= Post-burn dry sample weight (g)
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This procedure was completed on all 191 samples with an duplicate analyses at <10%
relative percent difference (OEWRI, 2007). Samples KRB163- KRB186 were not analyzed for
organic carbon content due to extremely shallow depth to refusal while coring and due to soil

loss during the initial coring process.

Dendrochronology Analysis. All tree cores were brought back to the lab, dried in an
oven to remove any residual moisture, and examined visually to corroborate tree ages calculated
in the field (Fig. 20). Ages were determined according to the number of counted rings starting
from the center of the core (determined visually) and counting out toward the bark of the tree.
This initial age was then granted five additional years to account for the initial vertical growth

period of the tree as shown in the following equation:

R+5years=A

(Eq. 5)
Where: a

R = number of tree rings counted (count)

A= approximate age of the tree (years)

Channel Change Analysis

A series of five 1: 15,748 scale USGS Government Land Office Township and Range
maps were obtained for regions of Carter and Ripley County, MO. These maps contained survey
information spanning from 1850-1861 from the General Land Survey Office of the United States
on location of streams and timber resources starting at the confluence of the Arkansas and
Mississippi rivers moving west across the United States. The five maps that were chosen for
analysis include township and range maps identifying the locations of streams and tributaries

west of the confluence of Big Barren Creek and the Current River. These maps were rectified
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using 2015 aerial imagery of Big Barren Creek obtained from the MSDIS. The newly rectified
maps were then used to create an 1850’s stream network showing the areas of Big Barren Creek
watershed with visible channels. All areas where the surveyors were unable to identify a channel

were recorded and digitized for comparison to the present-day channel.

To make comparisons to the current channel in Big Barren creek, 1 m resolution LIDAR
provided by the U.S. Forest Service was used in combination with 2 ft resolution, leaf off, 2015
MSDIS aerial imagery to classify segments of Big Barren Creek into distinct channel forms.
Any depressions in the LIDAR were filled using the “Fill” spatial analyst tool and then used to
create a flow direction raster. The flow direction raster was used to create a flow accumulation
raster that could be used to create a precise stream network. This stream network was used in
combination with aerial imagery and the LIDAR to classify areas of the stream as single-
threaded, 1.5 threaded (single channel with a chute channel), multi-threaded (multiple channels),
or channelized. Single-threaded streams were classified as areas of the stream with one distinct
well-defined channel, while areas of the stream with wide valleys and three or more channels
was considered multi-threaded (Fig. 21). Channelized areas while also technically single-
threaded, are also accompanied by artificial levees lining the banks that are readily observed on
the LIDAR (Fig. 22). Additionally, all channelized areas were previously mapped in the field
and were used to double check all areas of the stream that had been classified as channelized in

the LIDAR analysis.
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Figure 15. Examples of soil sample collection. Figure 17-a shows the
collection of soil via pit sampling at the Lower Big Barren 101718 site.
Figure 17-b is an example of soil core analysis in the field using soils cores
from the Giddings soil corer at the Nature Conservancy site 1.
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y

epth at which lateral
tree roots emerge

Figure 17. Example of pit dug at the UBB Farm site showing points where lateral
roots where used to mark depth to tree burial.
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Tile probe used
| to measure
| fine-grained
i depth to refusal

j| Burial depth to
root crown
measured = 0.21m

Figure 18. All cores were extracted from trees at standard breast height of
approximately 1.5 m and information on the diameter and fine-grained burial
depth to root crown was recorded. The above picture is an example of a tree cored
at the upstream of UBB Farm site.
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Figure 19. Buried A-horizon identified at the UBB Head-cut site. Dark mollic A-
horizon separates young sediment from mature pre-settlement soils.
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Rings are then
sanded and
recounted in the lab

Figure 20. Example showing trees rings counted in the field from the center ring
outward. Tree cores are brought back to the lab where they are treated and sanded
for re-counting.
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RESULTS AND DISCUSSION

Hydro-geomorphic Zones

Big Barren Creek can be described using four distinct hydro-geomorphic zones based on
in-field observations, aerial imagery, and a 1-meter resolution LiDAR analysis of the watershed
(Table 9, Fig. 23). These zones are characterized by stream hydrology, geomorphology, and
dominate drivers of channel disturbance. The locations of these channel zones are important to
understanding the non-uniform channel response of Big Barren Creek to historical and current
watershed disturbances. The upper portion of the watershed (R-km 38-40) is characterized by a
multi-threaded channel system that is a relatively undisturbed (EM channel class). This segment
is characterized as ephemeral with a relatively wide planform and forested channel beds
including tall short-leaf pine and hardwoods. The main processes occurring here include periodic
scour of the soil formed on the channel bed and periodic transport of sediment up to fine-gravel
size at relatively low rates. The soil formed on the channel bed has a dark A-horizon about 10 cm
thick, forming a bio- mantle composed of a silt loam to loamy matrix containing fine-gravel and
a dense root system. Fine-sediment deposits occur on the channel bed in places at < 0.5 m thick.

The next hydro-geomorphic zone (R-km 30-38) has an ephemeral, deeply incised, single-
channel morphology resulting from past and on-going stream channelization practiced by local
farmers to reduce flooding in riparian fields (ES channel class) (Table 9). Bradley (2017)
indicated channelization practices occurred sporadically from 1966 to 2018 on over 5.6 km or
(70 %) of this segment of BBC. Channelized segments are characterized by a channel bottom
that is typically 1 m deeper than the surrounding natural channel beds and accompanied by

levees approximately 1 m high on one or both sides of the channel. Additionally, headcuts
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originate at the upstream end of the channelized stream and have migrated upstream 200-400
meters since the initial channelization of the stream. Aggraded deposits typically occur within 1
km downstream of the channelized reaches. These deposits are composed mainly of sand < 0.5 m
thick, distributed over the channel bed (Theis, 2017).

Below the first channelized segment, the stream is again characterized as an EM channel
type (R-km 25.6-30). Below this segment is another ES segment of channelized channel in
middle BBC (Table 9). This downstream-most channelized area (R-km 21-25.6) is more recently
disturbed having underwent channelization sporadically from 2007- 2013 and encompasses over
41 % of the segment length. Channelization in these areas is disconnected, localized within < 1.5
km reaches along privately-owned sections of the stream, and separated by natural stream types
on public land. In response, head-cuts commonly migrate headward upstream of deeply
channelized zones into National Forest lands.

Starting at R-km 21 down to R-km 16.5, the channel exhibits permanent base flow
hydrology with a natural, single-threaded channel morphology (PS channel class) (Table 9). This
area of the stream is a Missouri designated Natural Area with narrow valleys and includes
protected mussel habitats (https://nature.mdc.mo.gov/discover-nature/places/big-barren-creek).
Below the Natural Area, from (R-km 6.5-16.5) the stream is characterized by intermittent
hydrology and alternating areas of natural stream and disturbance reaches (ISD channel class)
(Table 9). Disturbance reaches are large areas of the stream where aggressive lateral bank
erosion is accompanied by widespread bar formation across an over-widened channel
(Jacobson,1995; Martin and Pavlowsky, 2011). These disturbance zones show dramatic changes
in active channel width where gravel bar area increases dramatically with variable planform.

Non-disturbed channel widths range from 15-20 m while disturbed channels may reach up to 100
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m in active width where unstable channels continue to cut into banks and coarse gravel bars form
along opposite banks of the stream (Fig. 24). The widening and extension of channel bends in
disturbance zones probably indicates an inability of the channel to accommodate the increased
sediment transport caused by upstream disturbance. The last segment of BBC (R-km 1-6.5) is
characterized by permanent base flow hydrology, wide valleys, and a relatively undisturbed
channel morphology (PS channel class) (Table 9). However, bed material becomes more fine-

grained and muddier in this segment.

Fine-grained Sediment Storage

A total of 23 sites (10 tributary sites, 13 main stem sites) were assessed to estimate cross-
sectional fine-grained sediment depths (Table 10, Fig. 25) and storage volumes within valley
landforms (Table 11). For discussion purposes, storage analysis is separated by drainage area
into three groups with sites having drainage areas less 10 km? (upper BBC), 10-50 km? (middle
BBC), and 50-103 km? (lower BBC).

Fine-grained Depth. In Big Barren Creek, the distribution of fine-grained sediment was
calculated for each study site by multiplying the width of the landform by the average probe
depth of fine-grained sediment along cross-valley transects for channel, floodplain, and terrace
features (Fig. 26). In places with drainage areas less than 10 km?, fine-grained sediment depths in
the channel ranged from 0 m to 0.60 m with an average depth of 0.26 m (Table 10). Sediment
depths on floodplain features increased slightly to 0.18 m to 0.70 m with an average depth of
0.48 m. Terrace features contained the thickest fine-grained sediment deposits with highest
depths ranging from 0.34 m to 0.89 m, and an average depth of 0.58 m. In places with drainage

areas between 10-50 km?, fine-grained sediment depths in the channel ranged from 0 m to 0.43
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m with an average depth of 0.19 m. Resistant channel beds yielding probe depths of zero,
occurred in heavily scoured or incised areas of the channel at four sites ranging from 1.60 to 48
km? in drainage area. Floodplain features stored slightly more sediment with fine-grained
sediment depths ranging from 0.58 m to 0.98 m with an average depth of 0.75 m. Terrace
features contained the highest fine-grained sediment with depths ranging from 0.83 m to 1.44 m,
with an average depth of 1.09 m.

In the lower portion of the watershed with drainage areas between 50-103 km?, fine-
grained sediment depths in the channel ranged from 0 m to 0.54 m with an average depth of 0.23
m (Fig. 26). Floodplain features had fine-grained sediment depths ranging from 0.38 m to 0.83
m with an average depth of 0.63 m. Terrace features again stored the most fine-grained sediment
with depths ranging from 0 m to 1 m, with an average depth of 0.62 m (Table 10). Depth values
of zero in the terrace features of this section relate to areas of the stream within the Natural Area
where extremely narrow valleys are controlled by steep valley walls and coarse colluvial toe
slopes.

In general, floodplain and terrace depths increase downstream at approximately the same
rate (with terrace values being slightly higher). Our measured depths indicate almost no change
in floodplain depth in lower BBC compared to upper BBC along the main stem (Table 10).
However, fine-grained sediment depths within terrace landforms increase by 50% in
downstream. Conversely, channel depths decrease downstream by 65% in lower BBC compared
to upper BBC (Table 10).

Fine-grained Volume. The volume of fine-grained sediment in each of these landforms
was determined by multiplying average depths by landform width, then multiplied by a one-

meter distance downstream to determine storage volume in m*/m (i.e., cubic meters of sediment
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storage per meter valley length) (Table. 11; Fig. 27). For drainage areas less than 10 km? (upper
BBC), channel features stored the least amount of fine-grained sediment with cross-sectional
volumes ranging from 0 m>/m in places where gravel armored streams beds were affected by
frequent channel scour to over 29 m*/m in areas where large, wide channels stored sand and fines
in bench and bar features. Also, relatively large storages of fine-grained sediment occurred in
upstream channels (<2 km) draining forested upland areas (Fig. 27). The average fine-grained
cross-sectional storage in channel features is approximately 9.3 m*/m. The amount of storage in
floodplain features is considerably higher with storages ranging from 2.4 m*/m to 33.6 m*/m of
sediment. The average fine-grained sediment storage in floodplains is 10.9 m*/m and generally
increases downstream. Terrace features store the most fine-grained sediment reflecting changes
in valley width. Fine-grained sediment storage in terrace features ranges from 2.5 m*/m, where
valley widths are small and channel widths are relatively large, up to 179 m*/m of sediment
where very wide valleys are coupled with narrow single-threaded or channelized streams. The
average fine-grained storage in these features is approximately 39 m*/m.

In the middle portion of the watershed with drainage areas between 10-50 km?, fine-
grained sediment volumes in the channel ranged from 0 m*/m to 16.6 m*/m with an average
volume of 8.8 m*/m (Table. 11; Fig. 27). Channel storage values of zero in this portion of the
watershed occur in channelized areas of the stream with eroded channel bottoms and no
depositional bars or benches. Floodplains contained fine-grained sediment volumes ranging from
9.8 m*/m to 43.8 m*/m with an average volume of 26.4 m*/m. Terrace features again stored the
most fine-grained sediment with depths ranging from 13.3 m*/m to 152.5 m*/m, with an average

volume of 71.4 m3/m.
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Figure 24. Aerial Imagery showing the dramatic changes in channel characteristics between
disturbance and non-disturbance zones. Note: Lighter colored areas in the channel indicate
active gravel beds and bars.
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Drainage Area and Fine-grained Sediment Depth
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Figure 26. Fine-grained sediment depths by landform and drainage area. Locations
labeled with a T indicate tributary sites while all others are mainstem sites. Values of
zero indicated places were fine-grained sediment depth was 0 m deep. Values labeled
N/A indicated places where measurement was unable to be obtained for a landform.
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Fine-grained Sediment Storage in Channel Landforms
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Figure 27. Fine-grained sediment volume by landform and drainage area. Locations
labeled with a T indicate tributary sites while all others are mainstem sites. Vertical
scale for terrace landforms is approximately six times greater than the scale for
floodplain and channel landforms.
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Figure 28. Percent volume of fine-grained sediment stored in landforms by drainage
area. A) All landform features and B) Only floodplain and channel features.
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Figure 32. Buried A-horizon at the Barnes head-cut site at R-km 23.3. Fine
grained depth to refusal at this site at 90 cm on old channel bed.
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bank incision. The destruction of riparian zones along channels lead to more frequent stream
bank failures and lower the filtering capacity provided by vegetative barriers lining the channel
banks. Additionally, increases in fine-grained sediment stored and readily remobilized in BBC
introduce water quality and ecological concerns for the Current River Drainage basin as species
that rely heavily on coarse gravel-bedded streams with suitable void space to provide habitats
may suffer the effects of fine-sediment infill. These changes to the channel imply that
contemporary river processes in BBC may be different from hydrologic and geomorphic
processes occurring in the pre-settlement period and are largely due to the influence of human
induced land disturbance.

More work is needed to better understand the sources of sediment under transport in the
contemporary channel. Geochemical source analysis should be done to determine the sources of
both past legacy sediment and present-day sediment loads. If the source of the sediment can be
determined, than better management techniques can be developed to manage specific land areas
to reduce the amount of human-derived sediment entering the watershed in response to land use
disturbances. By better understanding human influences on sediment production and channel
change in forested watershed systems, we can work to minimize the negative effects of these
activities on water quality and channel stability in Ozark streams. This study is the first to
recognize and explain the presence of legacy floodplain and channel deposits in the Mark Twain
National Forest of the Ozark Highlands. These deposits represent a significant long-term source
of stored fine-grained sediment and, along with human channelization practices since the 1950s,

have led to historical channel change from multiple-thread to single-threaded channel planforms.
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APPENDICES

Appendix A. Physical Characteristics of Valley Cross-section Storage Sites

. Ad Elevation Chan Max Reach Vw

Location R-km (km?) (m) width  depth slope (m)
(m)  (m)

Cemetery
Road 36.6 8 245.7 29.1 1.0 0.16 336
MBB2 26.0 48 115.3 74.1 2.9 0.38 158
NatConl 24.0 53 184.6 28.3 3.1 0.27 200
NatCon2 23.3 21 181.2 18.5 1.0 0.31 200
UNA 18.5 103 163.8 15.9 1.8 0.25 68
Barnes
Head-cut 35.8 9 239.8 34.9 0.9 0.55 280
Upstream
BH 25.0 52 187.5 33.6 0.9 0.61 97
Bristol RU 22.0 87 176.2 23.8 0.9 0.31 230
LBB101718 4.0 183 121.8 59.0 1.4 0.28 424
GSH site 32.8 24 226.3 30.8 0.6 0.61 80
UBB Farm 38.0 2 255.2 27.0 0.6 0.75 65
Ford 10.3 161 137.6 14.9 1.6 0.28 500
Rkm 39 39.0 2 263.2 40.8 0.7 0.85 126
LBB Pasture 4.0 183 121.4 25.8 1.3 0.28 424
UBB Gauge 37.8 3 2543 16.0 0.8 0.71 170
Above Farm 38.2 2 256.6 29.1 0.2 0.72 60
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Appendix D. Fine-grained Storage Depths and Stratigraphic Boundaries Identified within
Valley Cross-sections.
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Appendix D-1. Cross-section with depth to fine-grained sediment refusal and the depth of
the tree cored for sedimentation rates at river kilometer 39.
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Appendix D-2. Cross-section with depth to fine-grained sediment refusal and the depth of
the tree cored for sedimentation rates at Above Farm site.
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Appendix D-3. Cross-section with depth to fine-grained sediment refusal and depth of old
growth pine stump at upper Big Barren Farm site.
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Appendix D-4. Cross-section with depth to fine-grained sediment refusal at upper Big Barren
Head-cut site.
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Appendix D-5. Cross-section with stratigraphic boundary information at Cemetery Road site.
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Appendix D-6. Cross-section with fine-grained depth to refusal information with stratigraphic
boundary information at German Shepard site.
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Appendix D-7. Cross-section with fine-grained depth to refusal information and stratigraphic
boundary information at middle Big Barren site 2.
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Appendix D-8. Cross-section with fine-grained depth to refusal information at upstream of Bearpen
Head-cut site.
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Appendix D-9. Cross-section floodplain and terrace soil cores and stratigraphic boundary
information at Nature conservancy site 1.
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Appendix D-10. Cross-section with fine-grained depth to refusal information at Bristol road site.
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Appendix D-11. Cross-section with fine-grained depth to refusal and stratigraphic boundary
information at upper Natural Area site.
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Appendix D-12. Cross-section with fine-grained depth to refusal information at Ford site.
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Appendix D-13. Cross-section floodplain and terrace soil cores and stratigraphic boundary
information at lower Big Barren pasture site.

142



