Standard Operating Procedure for:

accumet excel XL25 Dual Channel pH/Ion Meter for Chloride Concentration Determination
(Chloride_R02.doc)

Missouri State University

and

Ozarks Environmental and Water Resources Institute (OEWRI)

Prepared by: _______________________________ Date: _____________
OEWRI Quality Assurance Coordinator

Approved by: _______________________________ Date: _____________
OEWRI Director
Table of Contents
1 Identification of the test method ... 3
2 Applicable matrix or matrices ... 3
3 Detection limit .. 3
4 Scope of the test method ... 3
5 Summary of test method ... 3
6 Definitions ... 3
7 Interferences ... 4
8 Health and safety ... 4
9 Personnel qualifications .. 4
10 Equipment and supplies ... 5
11 Reagents and standards .. 5
12 Sample collection, preservation, shipment and storage 5
13 Quality control ... 5
14 Calibration and standardization .. 7
15 Sample Analysis ... 8
16 Data acquisition, calculations, and reporting ... 9
17 Computer hardware and software .. 10
18 Method performance .. 10
19 Pollution prevention ... 10
20 Data assessment and acceptable criteria for quality control measures 10
21 Corrective actions for out-of-control or unacceptable data 10
22 Waste management ... 11
23 References ... 11
24 Tables, diagrams, flowcharts and validation data 11
1 Identification of the test method
 Operation of the accumet excel XL25 dual channel pH/Ion meter for chloride concentration determination.

2 Applicable matrix or matrices
 This method is suitable for the determination of chloride concentrations in potable, surface, and waste waters. The accumet excel XL25 meter has an operating range of 1×10^{-5} to 100 ppm chloride.

3 Detection limit
 The practical detection limit is 0.1 ppm.

4 Scope of the test method
 This standard operating procedure provides Missouri State University (MSU) laboratory personnel protocol for determining chloride concentration in water samples.

5 Summary of test method
 A water sample is combined with an ion strength adjuster to create a uniform background ionic strength, which provides more accurate and reproducible measurements with the ion selective electrode (ISE) used for these determinations. The chloride electrode is introduced to the sample and the electrode’s sensing membrane develops an electrical potential which is proportional to the activity of the chloride anion in the sample. The sample activity is compared to the activity of the range of standards used to calibrate the instrument and chloride concentration is calculated.

6 Definitions
 6.1 Analytical batch: The set of samples processed at the same time.
 6.2 Calibration standard: A solution prepared from the primary dilution standard solution or stock standard solutions. The calibration standards are used to calibrate the instrument response with respect to analyte concentration.
 6.3 Chain of Custody (COC): Used to describe the written record of the collection possession and handling of samples. Chain of custody forms should be completed as described in the Chain of Custody SOP # 1030R01. Chain of custody (COC) forms are located on a board in Temple Hall 125.
 6.4 Field Duplicate (FD): Two samples taken at the same time and place under identical circumstances and which are treated identically throughout field and laboratory procedures. Analysis of field duplicates indicates the precision associated with sample collection, preservation, and storage, as well as laboratory procedures.
 6.5 Ionic Strength Adjuster (ISA): Buffer solution added to the samples and standards to create a uniform background ionic strength for increased accuracy and precision.
6.6 Laboratory Duplicate (LD): Two aliquots of the same environmental sample treated identically throughout a laboratory analytical procedure. Analysis of laboratory duplicates indicates precision associated with laboratory procedures but not with sample collection, preservation, or storage procedures.

6.7 Laboratory Reagent Blank (LRB): An aliquot of HPLC water that is used to calibrate the instrument at the beginning of the analysis and is analyzed within the batch analysis sequence to determine if analytes or interferences are present in the laboratory environment or the apparatus.

6.8 Method detection limit (MDL): The lowest level at which an analyte can be detected with 99 percent confidence that the analyte concentration is greater than zero. To calculate the MDL:
 a. Analyze seven aliquots of HPLC water including all sample processing steps prior to the determination.
 b. Calculate the standard deviation (s).
 c. The multiplier used to derive the MDL is from a table of a one-sided t distribution where the value of t for 7 – 1 = 6 degrees of freedom at the 99% level was selected. This value is 3.14.
 d. The product 3.14 times s is the desired MDL.

6.9 Relative Percent Difference (RPD): calculated as the difference between a sample and duplicate results, divided by the average of the sample and duplicate results, multiplied by 100%.

6.10 Standard Check: Standards analyzed as samples to monitor instrument shift or analyst error.

7 Interferences
 Cyanide, thiosulfate, and ammonia are potential interferences to the chloride electrode and could significantly influence electrode response. Samples should be free of sulfide as it destroys the electrode surface. Wastewater samples should be screened for sulfide and ammonia content prior to being exposed to the electrode associated with this meter.

8 Health and safety
 This analysis involves handling freshwater samples that may contain live microorganisms and therefore pose some threat of infection. Laboratory personnel who are routinely exposed to such water samples are encouraged to protect themselves from water borne illnesses by wearing clean disposable gloves and washing their hands frequently.

9 Personnel qualifications
 Laboratory personnel shall have a working knowledge of this analytical procedure and will have received training from an MSU employee knowledgeable of the proper sample analysis procedures. Prior to the first batch of sample analyses, the analyst will complete a demonstration of capability exercise as described below in the Quality control section.
10 Equipment and supplies
10.1 Fisher Accumet Excel XL 25 with Chloride ISE Electrode.
10.2 Fisher Scientific stir plate.
10.3 100 ml Griffin Beakers (Fisher Cat. No. S63242).
10.4 Stir bars (Fisher Cat. No. 14-513-58SIX).
10.5 1000 µL pipette and tips (Fisher Cat. No. 21-377-146).
10.6 10 µL pipette and tips.

11 Reagents and standards
11.1 Chloride Electrode Storage Solution: 98.4% H₂O, 1% KHP, and 0.6% KCl (98.4 ml H₂O, 1 g KHP, and 0.6 g KCl).
11.2 DI water: For rinsing electrode between samples.
11.4 HPLC (Fisher Cat. No. W5-4): For mixing standards.
11.5 Spex CertiPrep Ion Chromatography Chloride Standard Solution – 100mg/l (Fisher Cat. No. AS-CL9-1X).
11.6 Thermo Scientific Orion ISE Ionic Strength Adjuster (Fisher Cat. No. 13-641-852): Use 2 ml/100 ml sample to produce a uniform background ionic strength.

12 Sample collection, preservation, shipment and storage
12.1 Refer to the Water Sampling SOP for appropriate collection procedures (SOP: 1040R01 Water Sampling.doc).
12.2 Samples are stored on ice for transport to the laboratory and are refrigerated immediately upon transfer to the laboratory. Chloride samples do not require any preservation solution addition.
12.3 There is a 28 day holding time for chloride (EPA-600/4-79-020), however, samples should be analyzed as soon as possible.

13 Quality control
13.1 Quality control program: The minimum requirements of the quality control program for this analysis consist of an initial demonstration of laboratory capability, and the periodic analysis of laboratory reagent blanks and other laboratory solutions as a continuing check on performance. The laboratory must
maintain performance records that define the quality of the data that are generated.

a. Analyses of laboratory blanks are required to demonstrate freedom from contamination. Analyze one LRB for every 10 samples analyzed.

b. The laboratory shall, on an ongoing basis, demonstrate through calibration verification and analysis of the ongoing precision sample that the analysis system is in control. Each standard used to calibrate the instrument is re-analyzed at the end of the batch or after every 20 samples and at the end of the batch to verify calibration and quantify instrument drift. A laboratory duplicate is analyzed for every 10 samples analyzed to quantify precision.

d. The laboratory should maintain records to define the quality of data that is generated.

13.2 Demonstration of capability; a new analyst should:

a. Read this standard operating procedure,

b. Demonstrate to a previously trained analyst that the procedures outlined here are being followed, and

c. Successfully report data collected using these procedures to the QA/QC manager.

13.3 Initial demonstration of performance. The following must be satisfied before the analytical procedure may be used for samples.

a. Method Detection Limit (MDL): To establish the ability to detect the analyte, the analyst shall determine the MDL by carrying through 7 or more separately prepared reagent blank solutions through the analytical procedure. The average value, X, and the standard deviation of the values, s, shall be calculated. The MDL is equal to $3s$ ($3 \times$ standard deviation). The MDL and average value, X, must both be less than 0.10 mg Cl/L.

b. Initial Precision and Recovery: To establish the ability to generate acceptably precise and accurate results, the operator shall perform 10 replicates of a mid-range standard. Using the results of the replicates, compute the average value, X, and the standard deviation, s, for the analyte. The value of X should be within $\pm 10\%$ of the true value. The standard deviation should be less than or equal to 10% of the average value.

13.4 Duplicate reproducibility:
a. Measure the sample and a separate aliquot of the same sample (LD).

b. The relative percent difference (RPD) between the two values should be \(\leq 10\% \) of their average value.

c. Use equation 1 to calculate RPD:

 \[
 \text{Equation 1: } \text{RPD} (\%) = \left(\frac{A - B}{A + B}/2 \right) x 100\%
 \]

 Where: \(A = \) first measurement, and \(B = \) duplicate measurement

d. Analyze one set of duplicates for every 10 samples analyzed.

14 **Calibration and standardization**

14.1 The accumet excel XL25 chloride meter will be calibrated prior to every batch analysis.

14.2 Calibration employs a standard curve derived from plotting electrical potential or the activity produced from the standard solutions (including the reagent blank) versus known chloride anion concentration in the standards. The data is fit to a linear equation using the software associate with the meter and concentration is presented on the screen.

14.3 The chloride electrode will always be stored in the Chloride Electrode Storage Solution: 98.4% HPLC H\(_2\)O, 1% KHP, and 0.6% KCl (98.4 ml H\(_2\)O, 1 g KHP, and 0.6 g KCl) or will be cleaned, drained, and stored within the original box when not in use for extended periods of time.

14.4 Clean and perform routine maintenance as outlined in the accumet excel XL25 operator’s manual.

14.5 Calibration Solutions Preparation

 a. Prepare the Blank (0.00ppm) by using a 40 ml aliquot of HPLC water only.

 b. Prepare Standard 1 (10 ppm) by removing a 4 ml aliquot of Spex CertiPrep 100 ppm Standard Stock Solution from the standard bottle with a pipette and clean tip and combine it with 36 ml HPLC in a clean beaker.

 c. Prepare Standard 2 (50 ppm) by removing a 20 ml aliquot of Spex CertiPrep 100 ppm Standard Stock Solution from the standard bottle with a pipette and clean tip and combine it with 20 ml HPLC in a clean beaker.

 d. Prepare Standard 3 (100 ppm) by removing a 40 ml aliquot of Spex CertiPrep 100 ppm Standard Stock Solution from the standard bottle with a pipette and clean tip and transfer it to a clean beaker.
e. Remove 0.8 ml of the ionic strength adjuster solution from the bottle with a pipette and clean tip and transfer it to each standard and the blank.

14.6 Calibration Procedures

a. Add a clean stir bar to each standard and the blank.

b. Rinse the electrode with HPLC water and blot with paper towel.

c. Place the Blank on the stir plate and turn dial to 6.

d. Immerse electrode into the blank solution but DO NOT allow the stir bar to touch the electrode.

e. Press **Standardize** on the Ion Measure screen to access the standardization screen.

f. Press **Clear** if necessary to remove a previous standardization.

g. Proceed when the screen reads “Not standardized”.

h. Press **Blank**. A beaker icon labeled blank will be displayed on the Ion Measure screen.

i. Remove the Blank from the stir plate, rinse the electrode, and blot with a paper towel. Place Standard 1 on the stir plate, and immerse the electrode in the standard.

j. Press **Standardize** and then **Standard**. The screen will flash each standard icon once and then a numeric keypad will appear. Input the value of the standard and press **Enter**.

k. The screen will illustrate the value of the standard solution in the flashing beaker. Wait until **Stable** appears on the screen and press **Confirm** once to confirm the standardization.

l. Repeat procedures 14.6 i-k with Standard 2 and Standard 3.

15 Sample Analysis

15.1 Thoroughly shake sample in sample bottle and measure 40 ml into a clean labeled beaker.

15.2 Remove 0.8 ml of the ionic strength adjuster solution from the solution bottle with a pipette and clean tip and transfer it to the sample.

15.3 Add a clean stir bar to each sample.
15.4 Rinse the electrode with HPLC and blot with paper towel.

15.5 Place the sample on the stir plate and turn dial to 6.

15.6 Immerse the electrode in the stirring sample but DO NOT allow the stir bar to touch the electrode.

15.7 Press **Measure** to begin the analysis of the sample.

15.8 Wait until **Stable** appears on the screen, press **Log Data**, and record the concentration on the chloride bench sheet.

15.9 Remove the electrode from the sample and rinse with HPLC water.

15.10 Repeat procedures 15.1-15.9 until all samples are analyzed.

15.11 Use a separate 40 ml aliquot of one of the samples to produce a Laboratory Duplicates (LD) for every 10 samples analyzed. Record the sample number and “-LD” on the bench sheet when recording the concentration of the laboratory duplicate.

15.12 Use the original standards and blank to check the calibration and instrument drift by analyzing each solution after every 20 samples and at the end of the batch. Repeat procedures 15.1 – 15.9 for each standard and blank treating them as “samples” so the original calibration is used throughout the analysis. Record “Standard 1”, “Standard 2”, “Standard 3”, and “Blank” concentrations on the bench sheet.

16 **Data acquisition, calculations, and reporting**

16.1 **Data Exporting Procedures**

a. Press **View** in the mV setup screen.

b. Press **Export View and Header** to save data in HTML format.

c. Press **SD Card** and name the file using the alphanumeric keypad at the bottom of the screen. The file name should include “Chloride Data”, the date of analyses, the project names and date of sample collection associated with the COCs completed during the analysis.

d. Press **OK** in the upper right corner of the Save As screen.

e. Close all applications prior to SD card removal.

f. Press gently down on the card to unlock it and when the card disengages and pops up, pull it from the expansion slot.

g. Data can be viewed using Windows Explorer:

1. Press **Setup** and then **View**.
2. Data is listed inversely of analysis sequence.

16.2 The software associated with the meter calculates all concentrations base on the initial batch calibration.

16.3 Reporting results: Results should be reported to the 0.1 mg Cl/L precision.

17 **Computer hardware and software**

17.1 Word: This document and attached bench sheet are prepared using Microsoft Word.

17.2 Excel: Quality control charts are created using Excel.

18 **Method performance**

18.1 The desired performance criteria for this measurement are:
 a. Detection limit: 0.1 mg Cl/L
 b. Precision: ± 10% RPD
 c. Accuracy: ± 10% RPD
 d. Minimum Quantification Interval: 0.1 mg Cl/L

18.2 The applicable range for the method is 0.1 to 100 mg Cl/L and may be extended by dilution.

19 **Pollution prevention**

19.1 All wastes from these procedures shall be collected and disposed of according to existing waste policies within the MSU Geography, Geology, and Planning Department.

19.2 Volumes of reagents made should mirror the number of samples being analyzed. These adjustments should be made to reduce waste.

20 **Data assessment and acceptable criteria for quality control measures**

20.1 The analyst should review all data for correctness.

20.2 Precision values are calculated for pairs of duplicate analyses. The desired precision is ± 10% RPD.

20.3 Accuracy values are calculated for standard checks analyzed within and at the end of the batch. The desired accuracy is ± 10% RPD.

20.4 The desired detection limit is 0.1 mg Cl/L.

20.5 All completed bench sheets are reviewed by the OEWRI QA/QC manager.

21 **Corrective actions for out-of-control or unacceptable data**

21.1 The results for precision, accuracy, and blank data are compared to acceptable values for these analyses: ± 10% RPD and 0.1 mg Cl/L respectively.
21.2 If a blank value exceeds 0.1 mgCl/L during batch analysis then the analyst should immediately re-analyze the blank and if the blank continues to exceed the MDL contact the QA/QC manager.

21.3 If data are unacceptable for any reason, the analyst should review their analytical techniques prior to conducting these analyses again.

21.4 The batch may be re-analyzed as QA/QC dictates.

21.5 The meter may require trouble-shooting techniques if the data are unacceptable beyond regular maintenance including cleaning the electrode, changing the reference solution, or replacing the electrode. All maintenance and repairs must be recorded in the instrument log book.

22 Waste management
The waste generated in this method are not hazardous. The quantities generated are small and waste can be discarded in the laboratory sink.

23 References

24 Tables, diagrams, flowcharts and validation data
24.1 There are no tables, diagrams, or flowcharts for this method.

24.2 The following page contains the chloride bench sheet. The analyst should copy this form and use one for each batch of samples analyzed.
Missouri State University
Ozarks Environmental and Water Resources Institute
Chloride Bench Sheet

Analyst: _______________________
Date analyzed: ___________________
Projects COCs associated with Analysis: __

<table>
<thead>
<tr>
<th>Sample Data</th>
<th>Chloride Concentration (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Identification</td>
<td>Date Sample Collected</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blank (0ppm)
Std. 1 (10ppm)
Std. 2 (50ppm)
Std. 3 (100ppm)

Comments: __

Data reviewed by: _______________________

Chloride – Bench Procedures

- Make/Label bench sheet
- Set samples out to warm up to room temp
- Make blank/standards for calibration

<table>
<thead>
<tr>
<th></th>
<th>H₂O</th>
<th>IA</th>
<th>Cl⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank (0ppm)</td>
<td>40.0 mL</td>
<td>0.8 mL</td>
<td>N/A</td>
</tr>
<tr>
<td>Std1 (10ppm)</td>
<td>39.2 mL</td>
<td>0.8 mL</td>
<td>0.8 mL</td>
</tr>
<tr>
<td>Std2 (50ppm)</td>
<td>36.0 mL</td>
<td>0.8 mL</td>
<td>4.0 mL</td>
</tr>
<tr>
<td>Std3 (100ppm)</td>
<td>32.0 mL</td>
<td>0.8 mL</td>
<td>8.0 mL</td>
</tr>
</tbody>
</table>

- Read blank/standards
 - Standardize, clear, standardize, blank: wait-confirm
 - Standardize, standard, enter #: wait-confirm

- Samples

<table>
<thead>
<tr>
<th></th>
<th>Sample</th>
<th>IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
<td>40.0 mL</td>
<td>0.8 mL</td>
</tr>
</tbody>
</table>

- Rinse between each probe reading
- If any samples read ‘under range’ write that down
- LD every ~12 samples
- Run standards again after samples